AUTOMATED OBJECTIVE CHARACTERIZATION OF VISUAL FIELD DEFECTS IN 3D

Inventor: Wolfgang Fink, Montrose, CA (US)

Assignee: California Institute of Technology, Pasadena, CA (US)

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 367 days.

Appl. No.: 10/430,367
Filed: May 5, 2003

Prior Publication Data

Related U.S. Application Data
Continuation-in-part of application No. 10/178,966, filed on Jun. 25, 2002, now Pat. No. 6,769,770, which is a continuation-in-part of application No. 09/820,283, filed on Mar. 27, 2001, now Pat. No. 6,578,966.

Provisional application No. 60/379,155, filed on May 3, 2002, provisional application No. 60/251,957, filed on Dec. 7, 2000, provisional application No. 60/250,901, filed on Dec. 1, 2000, provisional application No. 60/204,362, filed on May 15, 2000, provisional application No. 60/192,645, filed on Mar. 27, 2000.

Int. Cl.
A61B 3/10 (2006.01)

U.S. Cl. .................................................. 351/211

Field of Classification Search ..................... 351/211,
351/222, 223, 237, 239, 240, 242, 243, 246;
600/558

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
5,176,147 A 1/1993 Bodis-Wollner .......... 600/558
5,589,897 A 12/1996 Sinclair et al.
6,260,970 B1 7/2001 Horn
6,513,931 B1 2/2003 Torrey et al.
6,572,229 B1 6/2003 Wei

* cited by examiner

Primary Examiner—George Manuel
Attorney, Agent, or Firm—Christie, Parker & Hale, LLP.

ABSTRACT
A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient’s responses to the visual field test pattern are recorded. A visual field representation is generated from the patient’s responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the volume of a patient’s visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient’s visual field defect.

18 Claims, 21 Drawing Sheets
FIG. 7
FIG. 8

ANALYZE

800

REPRESENTATION
Do/Generate Rep.

802

STATISTICS
Do/Generate Statistics

804

HISTORY
Do/Compare to History
Computer Automated Amsler Grid Test for Perimetry

FIG. 9

Contrast sensitivity [%]
FIG. 14

Microprocessor

CPU

Cache

Bus interface

Main Memory

Disk Storage

instructions

Electronic Display Device

Keyboard

Communications Device

PATIENT RESPONSE INPUT DEVICE

Disk Storage Control

Video Control

Keyboard Control

Network Control

I/O Device Controller

I/O Local Bus

Peripheral I/O Interface Control Unit

System Bus
Calculate Areas, Volume, and Slopes using Patient Representation

Compare Patient Areas to Known Areas

Compare Patient Volume to Known Volumes

Compare Patient Slopes to Known Slopes

Generate Diagnosis

FIG. 20
Calculate Current Areas, Volume, and Slopes using Current Patient Representation

Compare Current Areas, Volume, and Slopes to Patient's Own Historical Data

Store Current Patient Data

Generate Report

Report

FIG. 21
1 AUTOMATED OBJECTIVE CHARACTERIZATION OF VISUAL FIELD DEFECTS IN 3D

CROSS-REFERENCE TO RELATED APPLICATION


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

The U.S. Government has certain rights in this invention pursuant to grant PHY-9722428 awarded by the National Science Foundation and 01 STCR R.03.021.048 awarded by NASA.

BACKGROUND OF THE INVENTION

This invention relates generally to the field of medical instrumentation and more specifically to the automated detection of defects of the retina, the optic nerve, and the brain’s visual pathways.

A large number of medical ailments manifest themselves as defects in a patient’s visual field. Patients suffering from, for example, macular degeneration, anterior ischemic optic neuropathy (AION), glaucoma, optic neuritis, detached retina, macular edema, central or branch retinal artery occlusion, some genetic impairments, and brain tumors may experience losses in visual acuity and visual field.

Non-invasive methods to measure a patient’s visual field have been developed. For example, perimeter and camipmetry provide information pertaining to the borderline between seeing and non-seeing areas within a patient’s visual field.

Visual field tests employing visual field test patterns, such as an Amsler grid, have been developed to give a qualitative analysis of a patient’s visual field. However, such tests do not provide data of sufficient resolution or precision to perform a quantitative analysis of a patient’s condition.

Recent developments of testing methods using visual field test patterns have included adjusting a patient’s perception of the contrast levels within a visual field test pattern. For example, a method disclosed in U.S. Pat. No. 4,818,091, the disclosure of which is hereby incorporated by reference, requires the use of eyeglasses with polarized lenses to adjust the apparent contrast level of an Amsler grid.

These methods suffer from a variety of problems. Some methods require a patient to endure a long and boring testing process during which time the patient’s concentration may lag because of fatigue. Other methods, while capable of being quickly performed, do not provide the spatial and contrast resolution required for high quality quantitative analysis.

Therefore, a need exists for a method that is quicker, simpler and more revealing than existing methods for characterizing the visual field. The present invention meets such need.

SUMMARY OF THE INVENTION

In various aspects of the invention, a method and apparatus for electronically performing a visual field test for a patient are provided. A visual field test pattern is displayed to the patient on an electronic display device and the patient’s responses to the visual field test pattern are recorded. A visual field representation is generated from the patient’s responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one diagnostic process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient’s visual field at the boundary of a visual field defect. In another diagnostic process, the area of a visual field defect is calculated using the visual field representation. In another diagnostic process, the visual field representation is used to generate a statistical description of the volume of a patient’s visual field defect.

In one aspect of the invention, a data processing apparatus for objectively characterizing a patient’s visual field, includes a processor and a memory coupled to the processor and having program instructions executable by the processor stored in the memory. The program instructions include repeating the following steps a and b for a plurality of varying contrast levels and a plurality of corresponding patient response signals: a) presenting a visual field test pattern to the patient using an electronic display device, the visual field test pattern presented at a contrast level selected from the plurality of varying contrast levels; and b) receiving a corresponding patient response signal. The data processing system then generates a characterization of the patient’s visual field using the plurality of contrast levels and the plurality of corresponding patient response signals.

In another aspect of the invention the characterization includes a statistical description of a boundary of a visual field defect.

In another aspect of the invention, the statistical description includes a percentage of retinal contrast sensitivity loss over degrees of visual field expressed as a slope of a line.

In another aspect of the invention, the statistical description further includes a mean of a plurality of slopes.

In another aspect of the invention, the statistical description further includes a distribution of a plurality of slopes.

In another aspect of the invention, the characterization includes an area of a visual field defect at a specified contrast sensitivity.

In another aspect of the invention, the characterization includes a volume of a visual field defect.

In another aspect of the invention, the program instructions further include generating a diagnosis by comparing the statistical characterization to a set of statistical characterizations associated with known causes of visual field defects.

In another aspect of the invention, the program instructions further included monitoring the progression of a visual field defect in the patient’s visual field by comparing the statistical characterization to a set of statistical characterizations associated with the patient.
BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood with regard to the following descriptions and accompanying drawings where:

FIG. 1 is a depiction of an embodiment of a visual field measurement system according to the present invention;
FIG. 2 is a depiction of a cross section of an eye showing retinal sensitivity within a retina’s visual field;
FIG. 3 is a depiction of an embodiment of a visual field test pattern at a low contrast level used to measure a visual field defect according to an embodiment of the present invention;
FIG. 4 is a depiction of an embodiment of a visual field test pattern at a high contrast level used to measure a visual field defect according to an embodiment of the present invention;
FIG. 5 is a deployment diagram of an embodiment of a visual field measurement system according to the present invention;
FIG. 6 is a deployment diagram of a Web based embodiment of a visual field measurement system according to the present invention;
FIG. 7 is a state diagram for a tester object embodiment of a visual field measurement system according to the present invention;
FIG. 8 is a state diagram for an analysis state embodiment of visual field measurement system according to the present invention;
FIG. 9 is an exemplary visual field representation for a patient with “dry” macular degeneration generated from a patient response by an embodiment of a visual field measurement system according to the present invention;
FIG. 10 is an exemplary output from an embodiment of a visual field measurement system according to the present invention illustrating the generation of a statistical description of a patient’s response;
FIG. 11 is an exemplary visual field representation for a patient with glaucoma generated by an embodiment of a visual field measurement system according to the present invention;
FIG. 12 is a deployment diagram of an embodiment of a distributed diagnostic system according to the present invention;
FIG. 13 is a sequence diagram of the operation of a distributed diagnostic system according to the present invention;
FIG. 14 is an architecture diagram for a general purpose computer suitable for use as a visual field measurement system according to the present invention;
FIGS. 15a, 15b, 15c, and 15d are depictions of visual field test patterns with peripheral fixation points in accordance with an exemplary embodiment of the present invention;
FIG. 16 is a diagram depicting determining slopes for a plurality of cross-sections parallel to a visual field axis through a visual field representation in accordance with an exemplary embodiment of the present invention;
FIG. 17 is a diagram depicting determining slopes for a plurality of cross-sections through the center of a visual field representation in accordance with an exemplary embodiment of the present invention;
FIG. 18 is a histogram of a distribution of slopes determined from a visual field representation in accordance with an exemplary embodiment of the present invention;
FIG. 19 is a diagram depicting determining a plurality of areas of visual field defects at a plurality of contrast sensitivity levels of a visual field representation in accordance with an exemplary embodiment of the present invention;
FIG. 20 is a process flow diagram of a diagnostic process in accordance with an exemplary embodiment of the present invention; and
FIG. 21 is a process flow diagram of a patient monitoring process in accordance with an exemplary embodiment of the present invention.

DETAILED DESCRIPTION

FIG. 1 is a depiction of an embodiment of a visual field measurement system according to the present invention. A visual field measurement system 100 comprises a computer system with an electronic display 101 upon which a visual field test pattern 102 including a variable fixation point 103 is displayed. A patient response input device such as a touchscreen 104 is used to record for a patient’s 106 response to the displayed visual field test pattern.

In operation, examination of a patient occurs in an examination room with a controlled ambient brightness. The patient is positioned in front of the electronic display at a fixed distance thus determining the angle of the patient’s visual field. The patient’s eye not under examination is covered with an eye-cover.

A visual field test pattern is displayed at a preselected contrast and angular resolution to the patient using the electronic display. The patient responds to the display of the visual field test pattern by selecting locations 107 within the field test pattern between areas where the patient clearly sees the visual field test pattern and areas where the patient is having difficulty seeing the visual field test pattern. The patient’s responses are recorded and a visual field representation 108 is generated for diagnostic purposes.

In another embodiment of a visual field measurement system according to the present invention, analysis of the patient’s responses or the visual field representation occurs at a remote analysis Web server site 110. The visual field measurement system is operably coupled to the Web server via communication links 112 adapted for communications using Transmission Control Protocol/Internet Protocol (TCP/IP) protocols such as Hyper Text Transfer Protocol (HTTP) via a communications network such as a Local Area Network (LAN) or a Wide Area Network (WAN) exemplified by Internet 114. The analysis Web server receives the patient’s responses or the visual field representation and makes a comparison to previously received patients’ responses or visual field representations. From the comparison, a diagnosis can be made of the patient’s medical condition.

FIGS. 15a, 15b, 15c, and 15d are depictions of visual field test patterns with peripheral fixation points in accordance with an exemplary embodiment of the present invention. Visual field test patterns with peripheral fixation points allow testing for diseases that manifest themselves in the central vision of a patient, such as macular degeneration, and for testing of larger visual fields with higher eccentricities. Visual field test pattern 1500 includes peripheral variable fixation point 1502 in an upper right-hand corner of visual field test pattern 1500. Configured in this manner, visual field test pattern 1500 permits testing of a lower right quadrant of a patient’s visual field. Visual field test pattern 1504 includes peripheral variable fixation point 1506 in an upper right-hand corner of visual field test pattern 1504. Configured in this manner, visual field test pattern 1504 permits testing of a lower left quadrant of a patient’s visual field. Visual field test pattern 1508 includes peripheral
variable fixation point 1510 in a lower left-hand corner of visual field test pattern 1508. Configured in this manner, visual field test pattern 1508 permits testing of an upper right quadrant of a patient’s visual field. Visual field test pattern 1512 includes peripheral variable fixation point 1514 in a lower left-hand corner of visual field test pattern 1512. Configured in this manner, visual field test pattern 1512 permits testing of an upper right quadrant of a patient’s visual field. In another embodiment of a visual field test pattern in accordance with an exemplary embodiment of the present invention, a plurality of peripheral fixation points are included in the visual field test pattern.

FIG. 2 is a depiction of a cross section of an eye showing retinal sensitivity within a retina’s visual field. An eye 200 partially comprises a cornea 210 and a retina 212. The cornea focuses light rays 218, 220, and 222 onto the retina. Cells within the retina transduce the incoming light rays into signals via a photochemical reaction. The resultant signals are transported from the retina to the brain for processing by an optic nerve 214. The optic nerve is coupled to the retina at the optic disk 216. The optic disk is not sensitive to light.

The contrast sensitivity of the retina varies from the perimeter of the retina to the center. The retina’s contrast sensitivity is highest at the retina’s center and lowest at the retina’s perimeter. When plotted along a Y axis 224 versus the eccentricity of the retina’s visual field in Degrees along an X axis 226, the contrast sensitivity of the retina describes a contrast sensitivity curve 228 with several local maxima and minima.

Two contrast sensitivity curve local minima are located on the portion of the contrast sensitivity curve corresponding to the retina’s perimeter of the retina 230 and 232. One contrast sensitivity curve local minimum 234 is located at the portion of the contrast sensitivity curve associated with the retina’s optical disk. As one moves from the perimeter of the retina to the center of the retina, the sensitivity of the retina increases 236.

Defects in the retina may cause the retina to lose its contrast sensitivity 240 either partially or totally. This loss in contrast sensitivity translates into defects in the visual field. Thus, defects in the retina can be detected by measuring the retina’s visual field. Additionally, defects in the optic nerve or in a patient’s ability to process visual information in the brain may also cause defects in the visual field.

The contrast sensitivity of the retina and pathways can be measured by presenting visual field test patterns of differing contrast to a patient. For example, if a first visual field test pattern has a high contrast level, as represented by a first constant contrast sensitivity 241, the retina detects the visual field test pattern at locations, 242 and 244, on the contrast sensitivity curve corresponding to locations on the retina close to the retina’s perimeter.

If a second visual field test pattern has a low contrast level, as represented by a second constant contrast sensitivity line 246, the retina detects the second visual field test pattern at contrast sensitivity curve locations, 248 and 250, corresponding to locations on the retina close to the retina’s center. In this case, the second test pattern’s contrast is too low to be detected by the defective portion of the retina 238.

FIG. 3 is a depiction of an embodiment of a visual field test pattern at a low contrast level used to measure a visual field according to an embodiment of the present invention. A visual field measurement system 100 (FIG. 1) presents the visual field test pattern to a patient using an electronic display 101 (FIG. 1). The visual field test pattern includes a series of vertical lines and horizontal lines substantially orthogonal to one another thus creating a rectilinear grid.
FIG. 5 is a deployment diagram of an embodiment of a visual field measurement system according to the present invention. A visual field measurement system comprises a central processor 500 operably coupled to an electronic display 502 and a patient response input device 504. In one embodiment of a visual field measurement system, a personal computer is used with a conventional CRT display. The CRT display is modified with a touchscreen device so that a patient may simply touch the CRT display at the locations where the patient detects a change in the appearance of the visual field test pattern.

In another embodiment of a visual field measurement system, the touchscreen device is replaced by a pointing device, such as a trackball or mouse, operably coupled to a programmatically controlled cursor presented on the electronic display along with the visual field test pattern. The patient manipulates the cursor to outline the visual field defect.

In another embodiment of a visual field measurement system, the cursor is controlled through keyboard inputs. In another embodiment of a visual field measurement system, a plurality of electronic displays and patient response input devices are operably coupled to a single central processor. In this case, a plurality of patients may be tested at a single time.

In other embodiments of visual field measurement systems, other electronic displays capable of displaying visual field test patterns at varying contrast levels are used such as projection screens, Liquid Crystal Displays (LCDs), plasma displays, etc.

The visual field measurement system further comprises software objects hosted by the central processor. The software objects include a tester 506 operably coupled to the electronic display and the patient response device. The tester generates visual field test patterns for display to the patient using the electronic display. The tester package receives patient response signals from the patient response input device and records patient responses generated from the patient response signals for use by a representation generator 508.

The representation generator accepts patient responses from the tester and generates a visual field representation from the patient response signals suitable for use in a diagnostic process.

In one embodiment of a visual field measurement system, the tester is operably coupled to a patient response database 510. The tester puts the patient response in the patient response database along with a patient identification and time and date information. A time series of stored patient responses taken over time from the same patient is then used for association with the patient response in the previously described patient response database.

A first contrast level is set and a visual field test pattern is generated 702 for the first contrast level. The visual field test pattern is presented to the patient and the collection of patient response signals from a previously described patient input device begins.

The tester collects data from the patient response input device by reading points 706 selected by the patient outlining the perimeter of any visual field defect observed by the patient. The tester updates 708 the electronic display by highlighting the points selected by the patient.

At the end of the test, a clinician or the patient selects an area of the visual field test pattern that the patient can see clearly 709. This indicates to the tester whether the areas of the visual field test pattern within the enclosed perimeter outlined by the patient are areas where the patient can see or not see the visual field test pattern. For example, in the previously described high contrast visual field test pattern 400 (FIG. 4), a patient cannot see the visual field test pattern within the area of the visual field defect 402 (FIG. 4). In this case, the clinician or patient selects an area of the visual field test pattern outside of the visual defect area to indicate that the patient can see that portion of the visual field test pattern.

The tester determines if there are more contrast levels to test 710 and returns to the visual field test pattern generation and contrast setting state 702 and the collect data state 704 until no more contrast levels are needed.

In another embodiment of a visual field measurement system according to the present invention, the screen update at update state 708 includes updating a cursor location indicating the position of a displayed cursor responsive to a user input device such as a pointing device or track ball.

In another embodiment of a visual field measurement system according to the present invention, a plurality of visual field test patterns with varying contrast levels are presented to a patient in order of decreasing or increasing contrast levels.

In another embodiment of a visual field measurement system according to the present invention, a plurality of
visual field test patterns with varying contrast levels are presented to a patient in random order with respect to the varying contrast levels.

In another embodiment of a visual field measurement system according to the present invention, the visual field test pattern contains a variable fixation point as previously described. In this case, the tester simultaneously generates new fixation points 712 while the tester is collecting patient responses. The tester constantly determines a new 714 fixation point and displays 716 the new fixation point until the test is over 718.

If no more visual field test patterns for new contrast levels are to be generated 720, the tester moves into an analyze state 722 where the collected data is analyzed for diagnostic purposes.

FIG. 8 is a state diagram for an analysis state embodiment of visual field measurement system according to the present invention. In the analyze state, the tester generates a to be described visual field representation using the previously described patient response data 800. The visual field representation can be saved for use in further diagnostic processes or can be displayed directly to a clinician for diagnostic purposes.

FIG. 9 is an exemplary visual field representation generated by an embodiment of a visual field measurement system according to the present invention from a patient response. The visual field representation is a three-dimensional plot of contrast sensitivity 904 plotted across a two-dimensional visual field comprising an X axis 900 and a Y axis 902 demarcated in degrees. As previously described, a patient outlines visual field defects on a visual field test pattern displayed at a plurality of contrast levels. Each of these outlined visual field defects is plotted on a two-dimensional plane defined by the contrast sensitivity at which the visual field defect was outlined by the patient. This process creates a three-dimensional visual field representation 908 with great descriptive power. Returning to FIG. 8, the tester generates 802 a statistical description of the patient response. A statistical description of the patient response is used by a diagnostic tool to determine the severity of a visual field defect. A statistical description of a visual field defect is also useful for comparison of a visual field defect to historical data 804 collected from the patient.

FIG. 10 is an exemplary output from an embodiment of a visual field measurement system according to the present invention illustrating the generation of a statistical description of a patient’s response. In this example, the patient’s response is transformed into a plot of retinal contrast sensitivity 1002 versus displacement along an X axis of the visual field. In this case, a defect in the visual field is shown by a decrease in contrast sensitivity 1004. A line 1006 generated through a linear regression process depicts the steepness of the decline in contrast sensitivity of the retina corresponding to the location of the visual field defect.

In another embodiment of a visual field measurement system according to the present invention, the visual field data is presented as a ratio between the loss of contrast sensitivity over degrees of visual field taken perpendicularly to the steepest or shallowest slope, expressed as a grade (% contrast sensitivity/degree).

As an example measure for the slope calculation a slope grade can be defined as the percentage of retinal contrast sensitivity loss over degrees of visual field. A shallow slope would then be characterized as a percentage of retinal contrast sensitivity loss along a larger number of degrees of visual field, whereas a steep slope would be characterized as a large percentage of retinal contrast sensitivity loss along only a few degrees of visual field. Applying the slope grade measure, all occurring slopes, e.g., parallel to an X-axis of the visual field, can then be automatically calculated. Having calculated all the occurring slopes in one direction the average slope and standard variation for that direction can be obtained. Furthermore, a histogram can be generated using all individual slopes for that direction, ranging from shallow to steep slopes, to actually result in a slope distribution. The same procedure outlined above can then be applied to other directions (e.g., parallel to a Y-axis of the visual field, or radially from the center of fixation).

FIG. 16 is a diagram depicting determining slopes for a plurality of cross-sections parallel to a visual field axis through a visual field representation in accordance with an exemplary embodiment of the present invention. Measurement of the change in contrast sensitivity with respect to displacement along an axis of a visual field may be determined in a plurality of locations. A visual field representation 1514 is displayed in a 3 dimensional graph with contrast sensitivity plotted along a vertical axis 1516, degrees of visual field in the X direction plotted along an X axis 1518, and degrees of visual field along a Y axis 1520. Cross sections may be taken through the visual field representation in a variety of ways and slopes determined along the cross-section as depicted in FIG. 10. For example, cross sections may be taken parallel to the Y axis such as cross sections 1522, 1524, and 1526. Cross-sections may also be taken parallel to the X axis such as cross-sections 1528, 1530, and 1532.

FIG. 17 is a diagram depicting determining slopes for a plurality of cross-sections through the center of a visual field representation in accordance with an exemplary embodiment of the present invention. Measurements of the change in contrast sensitivity with respect to displacement along the visual field may also be made using cross-sections through the center of a visual field representation. A visual field representation 1514 is displayed in a 3 dimensional graph with contrast sensitivity plotted along a vertical axis 1516, degrees of visual field in the X direction plotted along an X axis 1518, and degrees of visual field along a Y axis 1520. Cross sections may be taken through the visual field representation in a variety of ways and slopes determined along the cross-section as depicted in FIG. 10. For example, cross sections may be taken radially from the center of fixation 1604, such as cross-sections 1600 and 1602.

FIG. 18 is a histogram of a distribution of slopes determined from a visual field representation in accordance with an exemplary embodiment of the present invention. A histogram 1700 may be generated for the slopes determined from a visual field representation. The histogram may be generated by plotting the relative number of slopes as a percentage along a Y-axis 1702 and slope grade defined as % contrast sensitivity per degree of visual field along an X axis 1704. This results in generating a histogram with a distinctive pattern that may be used as a statistical measure to compare one visual field representation to another. The comparison may be made between histograms generated from a single patient over time in order to monitor the progression of a visual field defect. The comparison may also be made between different patients, such as a first patient with a visual field defect having a known cause and a second patient having a visual field defect with an unknown cause in order to generate a diagnosis for the second patient.

Referring again to FIG. 9, in another embodiment of a visual field measurement system according to the present invention, a visual field defect is characterized by a ratio of
an area of the visual field defect at a highest measured contrast sensitivity 914 versus an area of the visual field defect at a lowest measured contrast sensitivity 916.

FIG. 19 is a diagram depicting a plurality of areas of visual field defects at a plurality of contrast sensitivity levels of a visual field representation in accordance with an exemplary embodiment of the present invention. A visual field representation 1514 is displayed in a 3 dimensional graph with contrast sensitivity plotted along a vertical axis 1516, degrees of visual field in the X direction plotted along an X axis 1518, and degrees of visual field along a Y axis 1520. Sections may be taken through the visual field representation at various percent contrast sensitivities, such as sections 1800, 1802, 1804, and 1806. The area of visual field loss as a function of contrast sensitivity can be calculated for these sections by automatically counting grid-points (usually one grid-point corresponds to an area of one deg²) that have been marked by a patient and thus calculate the area of visual field loss at the presented contrast level. The percentage of visual field loss at a presented contrast level is calculated by dividing the number of marked grid-points by the total number of presented grid-points at that contrast level. In addition, an overall volume of visual field loss as compared to a “normal” hill-of-vision may be calculated by automatically counting all the grid-points of all presented contrast levels that have been marked by the patient and divide by the total number of grid-points of all presented contrast levels to obtain the percentage of volume of visual field loss compared to a “normal” hill-of-vision.

Referring again to FIG. 8, statistical descriptions of patient’s responses and visual field representations are used by the tester to track the progress of an ailment affecting the visual field. In a history state 804, the tester generates time series of either statistical descriptions or visual field representations for use by a clinician in monitoring the progress of an ailment.

Visual field representations are used to create a diagnostic tool using artificial intelligence to diagnose a patient’s ailments affecting the visual field. For example, patients suffering from macular degeneration experience a loss of vision because of impairments of the central retina and thus will have trouble seeing the visual field test pattern near the center fixation point. Since macular degeneration sufferers have peripheral vision, they would likely outline a central hole on the screen, and if they also had a relative visual field defect, they might trace an ever-smaller circle as the contrast of the visual field test pattern increased.

Referring again to FIG. 9, the visual field representation for a patient with “dry” macular degeneration is characterized by a peripheral area 910 of high contrast sensitivity. In the center of the visual field 912, the contrast sensitivity drops off significantly creating a hole in the visual field representation.

FIG. 11 is an exemplary visual field representation for a patient with glaucoma generated by an embodiment of a visual field measurement system according to the present invention. A glaucoma patient is most likely to experience a loss of retinal contrast sensitivity at the periphery of the retina. Thus a glaucoma patient will outline a central area 1100 of high contrast sensitivity surrounded by an area 1102 of low contrast sensitivity.

The distinctive characteristics of visual field representations are used as the basis of a diagnostic tool employing pattern matching to determine a diagnosis from a visual field representation created from a patient’s responses.

FIG. 12 is a deployment diagram of an embodiment of a distributed diagnostic system according to the present invention. A plurality of visual field measurement systems as exemplified by visual field measurement system 100 are operably coupled to a diagnostic host 1200 via a communications link 1202 adapted for communications using TCP/IP. The diagnostic host hosts a diagnostic Web server operably coupled to a previously described tester software module 1206 through the communications link. The diagnostic Web server is also operably coupled to a diagnostics generator such as an Artificial Intelligence (AI) engine 1208. The AI engine is also operably coupled to a diagnostic database. The diagnostic database includes a set of visual field representations mapped to a set of diagnoses.

FIG. 13 is a sequence diagram of the operation of a distributed diagnostic system according to the present invention. In operation, a visual field measurement system 100 performs a visual field measurement acquiring a patient’s responses and generates a visual field representation as previously described. A clinician performs an independent analysis of the patient and generates a diagnosis with a high confidence factor. The clinician transmits the visual field representation and diagnosis to a diagnostic database. The database includes a set of visual field representations mapped to a set of diagnoses. A clinician performs an independent analysis of the patient and generates a diagnosis with a high confidence factor. The clinician transmits the visual field representation and diagnosis to the diagnostic database.

The process is repeated 1304, building a set of a set of visual field representations mapped to a set of diagnoses in the diagnostic database.

To determine a diagnosis, a visual field measurement system 100 performs a visual field measurement acquiring a patient’s responses and generates a visual field representation as previously described. The visual field measurement system transmits the visual field representation 1306 to the diagnostic server and the diagnostic server transmits the visual field representation 1308 to the AI engine.

The AI engine receives the visual field representation and gets the set of visual field representations mapped to a set of diagnoses 1310 from the diagnostic database. The AI engine searches the set of visual field representations for visual field representations with a high correlation to the received visual field representation using pattern matching techniques 1312. If a matching database visual field representation is found, the AI engine transmits a diagnosis 1314 associated with the database visual field to the diagnostics Web server.

The diagnostic Web server generates 1316 a diagnostic Web page 1318 using the diagnosis and transmits the diagnostic Web page to the visual field measurement system.

FIG. 20 is a process flow diagram of a diagnostic process in accordance with an exemplary embodiment of the present invention. A diagnostic process 1312 is one process used by an AI engine to detect and diagnose visual field defects. The diagnostic process receives 1900 a patient visual field representation 1306 from a visual field measurement system. The diagnostic process uses the patient visual field representation to calculate 1902 statistical values for the patient visual field representation as previously described. The statistical values may include the areas of visual field loss as a function of contrast sensitivity, overall volume of visual field loss as compared to a “normal” visual field representation, and slope distributions of scotoma boundaries.

The diagnostic process compares 1904 the areas of visual field loss as a function of contrast sensitivity calculated using the patient visual field representation to areas of visual field loss as a function of contrast sensitivity correlated to specific diseases stored in a diagnostic database 1210. The diagnostic process may also compare 1906
overall volume of visual field loss calculated from the patient visual field representation to overall volumes of visual field loss correlated to specific diseases stored in the diagnostic database. The diagnostic process may also compare the slope distributions of scotoma boundaries calculated from the patient visual field representation to slope distributions of scotoma boundaries correlated to specific diseases stored in the diagnostic database. The diagnostic process then uses the comparisons to generate a diagnosis of the cause of a patient’s visual field defect. For example, if all the patient’s statistical values match all of the statistical values correlated to a specific disease, the diagnostic process can determine with a high degree of certainty that the patient has that specific disease.

FIG. 21 is a process flow diagram of a patient monitoring process in accordance with an exemplary embodiment of the present invention. A patient monitoring process may be used by an AI engine to track the progression of an individual patient’s visual field defect. The patient monitoring process receives a patient visual field representation from a visual field measurement system. The patient monitoring process uses the patient visual field representation to calculate statistical values for the patient’s visual field representation as previously described. The statistical values may include the areas of visual field loss as a function of contrast sensitivity, overall volume of visual field loss as compared to a “normal” visual field representation, and slope distributions of scotoma boundaries.

The patient monitoring process compares the patient’s areas of visual field loss as a function of contrast sensitivity calculated using the patient visual field representation to areas of visual field loss as a function of contrast sensitivity, overall volume of visual field loss, and slope distributions of scotoma boundaries calculated from the patient’s own history. The current patient values are then stored as part of the patient’s history for further use. The diagnostic process then uses the comparisons to generate a report of the progression of the patient’s visual field defect.

FIG. 14 is an architecture diagram for a general purpose computer suitable for use as a visual field measurement system according to the present invention. A microprocessor including a Central Processing Unit (CPU) and a memory cache, and a bus interface for storage and retrieval of computer instructions and data. The video controller is operably coupled to a disk storage controller and a computer suitable for use as a visual field measurement system.

A method of objectively characterizing a patient’s visual field, comprising:

1. Repeating steps a and b for a plurality of varying contrast levels and a plurality of corresponding patient response signals:

   a) Presenting a visual field test pattern to the patient using an electronic display device, the visual field test pattern presented at a contrast level selected from the plurality of varying contrast levels;

   b) Receiving a corresponding patient response signal;

   and generating a characterization of the patient’s visual field using the plurality of contrast levels and the plurality of corresponding patient response signals.

2. The method of claim 1, wherein the characterization includes a statistical description of a boundary of a visual field defect.

3. The method of claim 2, wherein the statistical description includes a percentage of retinal contrast sensitivity loss over degrees of visual field expressed as a slope of a line.

4. The method of claim 3, wherein the statistical description further includes a mean of a plurality of slopes.

5. The method of claim 3, wherein the statistical description further includes a distribution of a plurality of slopes.

6. The method of claim 1, wherein the characterization includes an area of a visual field defect at a specified contrast sensitivity.

7. The method of claim 1, wherein the characterization includes a volume of a visual field defect.

8. The method of claim 1, the method further comprising generating a diagnosis by comparing the statistical characterization to a set of statistical characterizations associated with known causes of visual field defects.

9. The method of claim 1, the method further comprising monitoring the progression of a visual field defect in the patient’s visual field by comparing the statistical characterization to a set of statistical characterizations associated with the patient.

10. Data processing apparatus for objectively characterizing a patient’s visual field, comprising:

    a. Processor and a memory coupled to the processor, the memory having program instructions executable by the processor stored therein, the program instructions including:

       repeating steps a and b for a plurality of varying contrast levels and a plurality of corresponding patient response signals:

       a) Presenting a visual field test pattern to the patient using an electronic display device, the visual field test pattern presented at a contrast level selected from the plurality of varying contrast levels;
b) receiving a corresponding patient response signal; and
generating a characterization of the patient’s visual field using the plurality of contrast levels and the plurality of corresponding patient response signals.

11. The data processing apparatus of claim 10, wherein the characterization includes a statistical description of a boundary of a visual field defect.

12. The data processing apparatus of claim 11, wherein the statistical description includes a percentage of retinal contrast sensitivity loss over degrees of visual field expressed as a slope of a line.

13. The data processing apparatus of claim 12, wherein the statistical description further includes a mean of a plurality of slopes.

14. The data processing apparatus of claim 11, wherein the statistical description further includes a distribution of a plurality of slopes.

15. The data processing apparatus of claim 10, wherein the characterization includes an area of a visual field defect at a specified contrast sensitivity.

16. The data processing apparatus of claim 10, wherein the characterization includes a volume of a visual field defect.

17. The data processing apparatus of claim 10, the program instructions further including generating a diagnosis by comparing the statistical characterization to a set of statistical characterizations associated with known causes of visual field defects.

18. The data processing apparatus of claim 10, the program instructions further including monitoring the progression of a visual field defect in the patient’s visual field by comparing the statistical characterization to a set of statistical characterizations associated with the patient.

* * * * *
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO.: 7,101,044 B2
APPLICATION NO.: 10/430367
DATED: September 5, 2006
INVENTOR(S): Fink

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

(*) Notice
After “by 367 days.”,
Insert --This patent is subject to a Terminal Disclaimer.--

(60) Related U.S. Application Data
Delete “60/251,957, filed on December 7, 2000”,
Insert --60/251,957, filed on December 6, 2000--

(56) References Cited
U.S. Patent Documents
6,572,229...

In the Drawings

FIG. 14, Sheet 14 of 21
Delete Drawing Sheet 14 and substitute therefore the Drawing Sheet, consisting of Fig. 14, as shown on the attached page

Signed and Sealed this Twenty-fourth Day of April, 2007

JON W. DUDAS
Director of the United States Patent and Trademark Office