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Abstract 

 

Shortwave infrared detectors are critical for several applications including remote sensing and 

optical communications. Several detectors are commercially available for this wavelength range, but 

they lack sufficient gain, which limits their detectivity. The characterization results of an AlGaAsSb/ 

InGaAsSb phototransistor for shortwave IR application are reported. The phototransistor is grown 

using molecular beam epitaxy technique. Spectral response measurements showed a uniform 

responsivity between 1.2 and 2.4 µm region with a mean value of 1000 A/W. A maximum detectivity 

of 3.4×1011 cmHz1/2/W was obtained at 2 µm at -20oC and 1.3 V. 

 

1- Introduction 
Shortwave IR detectors are important for several applications, including atmospheric remote 

sensing, optical communications and absorption spectroscopy1-3. The availability of laser sources at 

1.0, 1.3, 1.5 and 2.0 µm drives the need for high quality quantum detectors operating at the same 

wavelengths1, 4. Although extended wavelength InGaAs and HgCdTe detectors can provide such 

sensitivity, they lack sufficient responsivity due to the absence of internal gain mechanisms. Besides, 

system complexity increases toward longer wavelengths due to cooling requirement. This limits the 

devices signal-to-noise ratio (SNR) and therefore applicability for some instrumentation.  

InGaAsSb quaternary material show promising performance for shortwave IR detectors5-12. 

Development of InGaAsSb based p-n and p-i-n junctions detectors were reported with relatively lower 

noise and higher speed. Shellenbarger et. al. pointed out that a back-illuminated p-n junction had a 

narrow spectral band centered near 2 µm, which has the advantage of reducing the background signal 

and increasing the detector dynamic range11. Avalanche photodiode (APD) structure increases the SNR 

over the pn and p-i-n structures. This attributed to the internal avalanche gain, which increases the 

device responsivity while maintaining both high bandwidth and dynamic range. AlGaAsSb/InGaAsSb 

APDs with separate absorption and multiplication (SAM) regions structure have been reported at least 



by two research groups. Andreev et. al. presented SAM-APDs operating between 1.2 and 2.3 µm 

wavelength and having multiplication gains of 20 and 100 at room temperature and 78K, respectively, 

while biased with 27V6. Using similar SAM-APD structure Sulima et al reported an improved device, 

by increasing the responsivity to 43 A/W at 2.1 µm and lowering the avalanche voltage to 6.7V at 

room temperature12. In the same paper the avalanching regime was described in InGaAsSb/GaSb 

APDs, and a responsivity of 8.9 A/W at a wavelength of 2.0 µm was measured at 7.5 V also at room 

temperature12. Practically, using a quaternary material for photodetector fabrication increases the 

flexibility to tailor the detection wavelength, but increases the device processing complexity. This 

might limit the commercial availability of such devices. 

Recently high gain heterojunction phototransistors (HPT) have been developed using 

InGaAsSb/AlGaAsSb material by liquid phase epitaxy (LPE)13-15. The advantage of these HPTs is their 

optimization around the 2 µm wavelength with high internal gain, which leads to high responsivity and 

high SNR. For example at 2 µm wavelength device responsivity of 2650 A/W, corresponding to 2737 

internal gain at -20oC and -4V bias voltage was measured14. The detectivity calculation of this LPE-

grown HPT indicated 3.9×1011 cmHz1/2/W, which corresponds to 4.6×10-14 W/Hz1/2 noise-equivalent-

power (NEP). Although these devices indicated excellent performance, they had fundamental 

limitation of the cutoff wavelength due to the LPE growth process16. Compared to LPE, molecular 

beam epitaxy (MBE) provides better control over doping levels, composition and width of the 

AlGaAsSb and InGaAsSb layers, especially with regard to abrupt heterojunctions15, 16. Therefore, 

devices with a longer cutoff wavelength, covering larger spectral range, could be fabricated. In this 

paper, we present the characterization results of a newly developed, MBE-grown InGaAsSb/ 

AlGaAsSb HPT, operating in the wavelength range between 1.0 and 2.6 µm.  

 

2- Phototransistor Growth and Structure 
The HPT, shown schematically in Figure 1, is composed of Al0.25Ga0.75As0.02Sb0.98 and 

In0.18Ga0.82As0.17Sb0.83 layers consistent with GaSb lattice matching conditions18. At room-temperature 

the layers bandgaps are 1.0 eV and 0.54 eV, respectively. The layers are grown on an n+-GaSb (001) 

substrate and include a 0.1 µm-thick n+-GaSb contact layer, 0.5 µm thick n-type AlGaAsSb emitter, 

0.8 µm-thick p-type composite base consisting of AlGaAsSb (0.3µm) and InGaAsSb (0.5µm) layers, 

and a 1.5 µm-thick n-type InGaAsSb collector. HPT with different mesa and active areas were defined 

using photolithography and wet chemical etching, as listed in Table I. A backside planar and frontside 



annular ohmic contacts (together with a bonding pad) were deposited by electron beam evaporation of 

Au/Ge. A polyimide coating (HD Microsystems PI-2723 photodefinable polyimide resin) was spun on 

the front surface of the device. The polyimide served several functions including planarisation of the 

top surface, mesa isolation, and edge passivation. After dicing 1×1 mm2 pieces with a single device in 

the middle, the diced pieces were mounted to TO-18 headers using silver conducting epoxy for the 

bottom contact and wire-bonding the upper pad. No antireflection coatings were applied16. 

 

3- Characterization Results and Discussion 
Several HPT samples were characterized to evaluate the performance of the new device 

structure gown with the MBE technique. Characterization of the HPT included dark current, spectral 

response and noise measurements. Based on these measurements, figure-of-merits were calculated 

including the device quantum efficiency, gain and detectivity, D*.  

 

3.1- Dark Current 

Figure 2 shows the dark current density variation with the bias voltage for different samples 

and also at different temperatures for sample M1-a2. Dark current density was obtained by I-V 

measurements in dark conditions using a modulator Semiconductor Characterization system. Device 

mesa area was used to normalize the dark current for current density, as presented in the figure. Two 

distinctive regions were observed from the dark current variation with temperature. The first region, 

where the dark current density is lower than 0.5 A/cm2, is characterized by higher temperature 

dependence. This attributed to the domination of the diffusion and generation-recombination dark 

current components, which are strongly dependent on temperature19. The second region, with dark 

current density above 0.5 A/cm2, tunneling current component is dominant, which has less temperature 

dependence19. Dark current variation with temperature is consistent using different samples with 

different limit for the two regions. Absence of any intersection between the dark current curves at 

different temperatures indicates the absence of any avalanche gain. Therefore, any observed gain is 

mainly due to transistor action. 

 

3.2- Spectral Response and Quantum Efficiency 

The spectral response of the HPT was measured using the substitution method in reference to a 

3×3 mm2 PbS calibrated detector15, 20. Spectral resolution of 20 nm was obtained in the 1.0 to 2.7 µm 



wavelength range. Figure 3 shows the spectral response of the HPT sample M1-a2, operating at zero 

bias voltage and different temperatures. Assuming no gain at this bias level, the figure also compares 

the measurements to constant quantum efficiency contours. The spectral response cuts on around 1.1 

µm, with an almost flat response between 1.2 and 2.2 µm, then cuts off around 2.3 µm. Quantum 

efficiency as high as 70% was achievable using moderate cooling to -20oC. One advantage of the new 

device is the uniformity of the quantum efficiency at wavelengths in the 1.2 - 2.0 µm range. Focusing 

on some wavelengths of interest, such as 1.3, 1.5 and 2.0 µm, Figure 4 shows the quantum efficiency 

variation with temperature from 100 to -192.6oC.This indicates that the device is fully operational 

within a large temperature range, with reproducible results. An optimum operating temperature of -

45oC maximizes the quantum efficiency, independent on the wavelength. According to the InGaAsSb 

composition given in the previous section, the cutoff wavelength is about 2.4 µm at room temperature. 

Cooling down the device shifts the cutoff to shorter value according to the variation of the energy 

bandgap with temperature, as indicated in Figure 4. 

Operating at room temperature, Figure 5 shows the spectral response of different HPT samples 

at different bias voltages. High responsivity is observed at relatively low bias voltage (about 1.4V), 

indicating high device gain. For example, at 2 µm and 20oC the responsivity of sample M1-a2 

increases from 0.75 A/W to 1105 A/W by increasing the bias voltage from 0 to 1.4 V. This indicates an 

internal device gain of 1475. Figure 6 shows the gain variation with bias voltage for the same sample 

at different temperatures. Further increase in the device bias leads to saturation of the gain at a certain 

level dependent on the operating temperature. Experimentally, the bias voltage is limited to the current 

carrying capacity of the device as determined by the dark current measurements. 

 

3.3- Device Noise and Figure-of-Merit 

The HPT noise was measured using a low-frequency spectrum analyzer (Stanford Research 

Systems; SR570) in the frequency range from 0 to 100 kHz. For a certain operating conditions, in 

terms of bias voltage and temperature, and after subtracting the system noise, the total detector noise 

was averaged in the frequency band. Figure 7 shows the noise variation with bias voltage obtained for 

different samples at 20oC and at lower temperature of -20oC for sample M1-a2. The HPT noise 

increases by increasing the device bias voltage. Reducing the device temperature slightly reduces the 

noise. This might be attributed to the device dark current shot noise, which is the dominating noise 



source for these devices. Dark current shot noise is dependent on the device gain, which is higher for 

the device operating at lower temperature and above 1 V, as presented in Figure 6. 

In the processing of the new MBE grown HPT, the ratio of sensitive to mesa area was 

increased, compared to the previously LPE grown devices13, 16. This leads to increase the SNR of the 

new devices. Figure 8 shows the detectivity (D*) as a function of wavelength compared to the 

background limited D* and that of an LPE-grown HPT sample14. At wavelength shorter than 1.8 µm a 

higher D* was obtained from the MBE samples, while extending the detection wavelength to 2.4 µm, 

for the same operating temperature. For a certain device, reducing the temperature increases the D* 

due to both increase in the gain and decrease in noise. D* as high as 3.4×1011 cmHz1/2/W was obtained 

using sample M1-a2 around 2 µm at -20oC and 1.3 V. A maximum room temperature detectivity of 

1.6×1011 cmHz1/2/W was obtained from sample, M1-c8. 

 

4- Conclusion 
In this paper the characteristics of newly developed InGaAsSb/AlGaAsSb phototransistors 

were presented. The new devices were grown using the molecular beam epitaxy (MBE) technique and 

are sensitive for the 1.0 to 2.6µm wavelength range. The devices exhibit high gain due to the transistor 

action, which results in high responsivity and enhanced signal-to-noise ratio. Responsivity increases 

from 0.75 A/W to 1105 A/W by increasing the bias voltage only form 0 to 1.4 V, indicating an internal 

gain of 1475.1. The new devices are capable of operation in a wide temperature range, between 100 to 

-192.6oC. Although extreme temperature operation affects the performance, the samples recover these 

conditions with reproducible results and without damage. D* as high as 3.4×1011 cmHz1/2/W was 

obtained around 2 µm wavelength at -20oC. Room temperature D* of 1.6×1011 cmHz1/2/W at 2 µm was 

obtained, suggesting simple applicability without complex cooling requirements.  
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Table I: HPT samples grown by MBE technique and the corresponding mesa and active areas 

diameters, Dm and Da, respectively.  

 

Sample Dm [µm] Da [µm] 

M2-d1 100 75 

M1-c8 300 200 

M1-a2 400 300 

M1-e1 1100 1000 

 



 

Figure Captions 

 

Figure 1: Structure of the heterojunction phototransistor samples grown by molecular beam epitaxy. 

 

Figure 2: Dark current variation with bias voltage for different samples, obtained at 20oC and for 

sample M1-a2 obtained at different temperatures (100oC top curve to -20oC bottom curve, with 20oC 

temperature step). 

 

Figure 3: Spectral response of the HPT sample M1-a2, operating at zero bias voltage and different 

temperatures compared to constant quantum efficiency counters. 

 

Figure 4: Quantum efficiency variation with temperature at three common wavelengths for the HPT 

sample M1-a2 operating at zero bias voltage. Also the variation of the 50% cut-off wavelength with 

temperature is shown for the same device. 

 

Figure 5: Spectral response for different HPT samples with different area, obtained at 20oC at various 

bias voltages. 

 

Figure 6: Gain variation with bias voltage at four different temperatures of 100, 60, 20 and -20oC for 

HPT sample M1-a2. 

 

Figure 7: Noise variation with bias voltage for different HPT samples with different area, obtained 

around room temperature. Also the same characteristic is presented for sample M1-a2 at -20oC. 

 

Figure 8: Detectivity calculation for different HPT samples at different operating conditions, compared 

to previously presented LPE device (200 and 400 µm sensitive area and mesa diameters, respectively, 

operating at -20oC and 4.0 V, see reference 14) and background limited D* at 20oC. 
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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