
(12) United States Patent (io) Patent No.: US 7,249,003 B2
Fijany et al. (45) Date of Patent: Jul. 24,2007

(54) SYSTEM FOR SOLVING DIAGNOSIS AND
HITTING SET PROBLEMS

(75) Inventors: Amir Fijany, Pasadena, CA (US);
Farrokh Vatan, West Hills, CA (US)

(73) Assignee: California Institute Of Technology,
Pasadena, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(*) Notice:

(21) Appl. No.: 11/353,673

(22) Filed: Feb. 13, 2006

(65) Prior Publication Data

US 200610195302 A1 Aug. 31, 2006

Related U.S. Application Data

(60) Provisional application No. 601652,459, filed on Feb.
11. 2005.

(51) Int. C1.

(52) U.S. C1. 702/196; 7021183; 7021185;
7 14/26

(58) Field of Classification Search 7021182-185,
7021189, 196; 714126, 33, 47; 7091253

G06F 15/00 (2006.01)

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,566,092 A * 10/1996 Wang et al. 702/185
5,808,919 A * 9/1998 Preist et al. 702/183
5,922,079 A * 7/1999 Booth et al. 71426

OTHER PUBLICATIONS

A. Fijany, et al., “An advanced model-based diagnosis engine,”
Proc. 7th Int. Symp. On Artificial Intelligence, Robotics and Auto-
mation in Space, May 2003.
J. de Kleer, et al., “Characterizing diagnoses and systems,” Artificial
Intelligence, 56, 197-222, 1992.
G. Rote, “Path problems in graphs,” Computing, vol. 7, pp. 155-
189, 1990.
T. Hogg, et al., “Solving the really hard problems with cooperative
search,” Proc. Of AAAI-93, pp. 231-236, 1993.
B.C. Williams, et al., “A model-based approach to reactive self-
configuring systems,” Proc. 13th Nat. Conf. Artif. Intell. (AAAI-
96), pp. 971-978, 1996.

(Continued)

Primary Examiner-John Barlow
Assistant Examiner-John Le
(74) Attorney, Agent, or Firm-Tope-McKay & Associates

(57) ABS TRAC ’I

The diagnosis problem arises when a system’s actual behav-
ior contradicts the expected behavior, thereby exhibiting
symptoms (a collection of conflict sets). System diagnosis is
then the task of identifying faulty components that are
responsible for anomalous behavior. To solve the diagnosis
problem, the present invention describes a method for find-
ing the minimal set of faulty components (minimal diagnosis
set) that explain the conflict sets. The method includes acts
of creating a matrix of the collection of conflict sets, and
then creating nodes from the matrix such that each node is
a node in a search tree. A determination is made as to
whether each node is a leaf node or has any children nodes.
If any given node has children nodes, then the node is split
until all nodes are leaf nodes. Information gathered from the
leaf nodes is used to determine the minimal diagnosis set.

20 Claims, 11 Drawing Sheets

200
I

Data Processing output

System i 2 0 4

I

US 7,249,003 B2
Page 2

OTHER PUBLICATIONS J. de Kleer, et al., “Diagnosing Multiple Faults,” Readings in
Model-Based Diagnosis, Morgan Kaufmann Publishers, San Mateo,

S. Chung, et al., “Improving model-based mode estimation through
offline compilation,” Int. Symp. Artif., Intell., Robotics, Automation 1992.
Space (ISAIRAS-Ol), 2001.
F. Wotawa, “A variant of Reiter’s hitting-set algorithm,” Informa-
tion Processing Letters 79, 45-51,2001, * cited by examiner

U.S. Patent Jul. 24,2007 Sheet 1 of 11 US 7,249,003 B2

\

U.S. Patent Jul. 24,2007 Sheet 2 of 11 US 7,249,003 B2

2 H
(3

rn
0
N

U.S. Patent Jul. 24,2007 Sheet 3 of 11

0
0
m

US 7,249,003 B2

0
0 rn

U.S. Patent Jul. 24,2007 Sheet 4 of 11 US 7,249,003 B2

0

e

0

cu
0
d

0

a

0

0

0

e

0

0

0 . 0

0

0

0

0

0

U.S. Patent Jul. 24,2007 Sheet 5 of 11

r-4

0 w
Y
b
c1

US 7,249,003 B2

U.S. Patent Jul. 24,2007

; I

Sheet 6 of 11 US 7,249,003 B2

U.S. Patent Jul. 24,2007

0

0

0

0

0

Sheet 7 of 11

\
0 J O

e 0 0 0

US 7,249,003 B2

0

0

0

0

0

0

0

Traditional
Branch-and-Bound

New
Branch -a nd-Bou nd

30x20 I 0.0045 I 63.49 1 0.00016 I 32.1

Size of
the matrix

40x30 1 0.018 I 186.35 I 0.0017 I 130.48

Size of the
tree Time Size of the Time

(seconds) tree (seconds)

35x40 I 0.027 I 283.65 I 0.0028 I 125.46

120x90

130x1 00

150x1 20

50x40 1 0.059 I 514.8 I 0.0077 I 311.72

18.55 65984.1 1.246 22269.9

40.85 123596 1.87 29093.6

177.475 427467 3.658 46474.9

40x50 I 0.07 I 634.1 I 0.005 I 207.22

60x45 I 0.164 I 1200.38 1 0.0163 I 609.94

70x50 I 0.406 I 2754.06 I 0.048 I 1617.6

80x55 1 0.917 I 5676.74 I 0.1 23 I 3544.24

100x90 I 13.469 I 55836.7 I I .82 I 20841.4

FIG. 8

4 E
h) a
h)
0
0
4

d rn
4
h,
P
\o
0
0 w

h,

U

U

w

U.S. Patent Jul. 24,2007 Sheet 9 of 11 US 7,249,003 B2

0 /I
0
m

r3 /

U.S. Patent Jul. 24,2007 Sheet 10 of 11 US 7,249,003 B2

LL

U.S. Patent Jul. 24,2007

I 1

0 0 /

Sheet 11 of 11 US 7,249,003 B2

0
3

v,

US 7,249,003 B2
2

to many systems of interest. First, existing conflict-gener-
ating algorithms are all based on various versions of the
constraint propagation method and truth maintenance sys-
tems. The problem with these methods is that not only do

5 they need exponential time, but they also require exponen-
tial memory to be implemented. Therefore, these methods
cannot handle realistic systems with a large number of
components. Second, in order to find the minimal diagnosis
set, current model-based diagnosis techniques rely on algo-
nthms with exponential computational costs and thus, are
highly impractical for application to many systems of inter-
est.

Thus, a continuing need exists for a system that allows a
15 user to efficiently identify a minimal diagnosis set for

complex systems with a large number of components.

10 .

1
SYSTEM FOR SOLVING DIAGNOSIS AND

HITTING SET PROBLEMS

PRIORITY CLAIM

This is a non-provisional application claiming the benefit
of priority of U.S. Provisional Application No. 601652,459,
filed on Feb. 11, 2005, entitled, “New High Performance
Algorithmic Solution for Diagnosis Problems.”

GOVERNMENT RIGHTS

The invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-517(35 USC 202) in which the
Contractor has elected to retain title.

FIELD OF INVENTION

The present invention relates to techniques for solving
diagnosis problems, and more particularly, to a system and
method using an algorithmic method for solving diagnosis
problems.

BACKGROUND OF INVENTION

Technological advances have led to the conception of a
variety of complex devices and systems. When a system
fails, a technician or user typically fixes the system by
identifying and replacing (or fixing) the failed component.
To ease this process, a variety of model-based diagnostic
tools have been developed that assist a user in identifying the
failed component.

A diagnosis problem arises when a system’s actual behav-
ior fails to match the expected behavior, thereby exhibiting
symptoms (anomalies). System diagnosis is then the task of
identifying faulty components that are responsible for
anomalous behavior. To solve the diagnosis problem, one
typically finds the minimal set of faulty components that
explain the observed symptoms. The most disciplined tech-
nique to diagnosis is termed “model-based” because it
employs knowledge of devices’ operations and their con-
nectivities in the form of models. The model-based approach
reasons from first principles and affords far better diagnostic
coverage of a system than traditional rule-based diagnosis
methods, which are based on a collection of specific symp-
tom-to-suspect rules.

The diagnosis process starts with identifying symptoms
that represent inconsistencies (discrepancies) between the
system’s model (description) and the system’s actual behav-
ior. Each symptom identifies a set of conflicting components
(Le., conflict set) as initial candidates. A minimal diagnosis
set is the smallest set of components that intersects all
conflict sets. The underlying general approach in different
model-based diagnosis approaches can be described as a
two-step “divide-and-conquer’’ technique wherein finding
the minimal diagnosis set is accomplished in two steps: 1)
Generating conflict sets from symptoms; and 2) Calculating
minimal diagnosis set from the conflict sets. As shown in
FIG. 1, the conflict generation corresponds to forming a
collection of conflict sets 100, and calculating the minimal
diagnosis 102 corresponds to the solution of the Hitting Set
problem for this collection. The Hitting Set is the solution
that would explain all of the symptoms.

However, there are major drawbacks in the current model-
based diagnosis techniques in efficiently performing the
above two steps that severely limit their practical application

SUMMARY OF INVENTION

20 The present invention relates to a method for calculating
a minimal Hitting Set from a collection of sets. The method
includes an act of using a computer system to analyze a
system having a collection of sets to derive the minimal
Hitting Set from the collection of sets. The computer system

25 is configured to perform multiple acts to determine the
minimal Hitting Set. For example, the computer system is
configured to perform acts of receiving information regard-
ing the collection of sets from the system; creating an
incidence matrix of the collection of sets; creating nodes

30 from the incidence matrix such that each node is a node in
a search tree and has a label that includes a sub-matrix of the
incidence matrix, and two disjoint subsets of the columns of
the incidence matrix; calculating an upper bound and cal-
culating a lower bound for each label, where the upper

35 bound and lower bound define a range of solutions for the
minimal Hitting Set; and determining whether each label has
any child nodes or is a leaf node without any child nodes. If
the label does not have any child nodes, then stopping the
process and designating the label as a leaf node. If the label

40 does have a child node, then splitting the label to create two
new labels. Finally, repeating acts of calculating and deter-
mining until all labels have been designated as leaf nodes,
with information gathered from leaf nodes determining a
solution of the Hitting Set, thereby allowing a user to

In the act of calculating the minimal Hitting Set, the
minimal Hitting Set is a minimal diagnosis set and the
collection of sets is a collection of conflict sets. In this
aspect, the method for calculating a minimal Hitting Set

In the act of creating an incidence matrix, the incidence
matrix is created as a binary matrix denoted as mxn binary
matrix A having columns and rows. The columns of matrix

55 A are labeled by numbers 1,2, . . . ,n, and any subset of these
columns are denoted as a subset of {1,2, . . . ,n}.

In the act of creating nodes, each node has a label (h) in
a form of h=(M, T,,, To,,). Additionally, M is a sub-matrix
of matrix A, and T,, and To,, are disjoint subsets of the

60 columns of matrix A. T,, denotes a set of columns of matrix
A considered as part of the minimal diagnosis set. Altema-
tively, To,, denotes a set of columns of matrix A that are
considered not as part of the minimal diagnosis set.

The act of calculating an upper bound further comprises
65 acts of calculating a value for the upper bound of h=(M, T,,,

To,,) and a calculating an upper bound set, by performing
the following acts:

45 identify the Hitting Set.

50 calculates a solution for a diagnosis problem.

US 7,249,003 B2
3

Initializing the value of the upper bound as U=size of T,,
and initializing the upper bound set as the set Tz,. The
size of T,, is the number of elements in Tz,;

Choosing a column a, of M with a maximum weight. The
column with the maximum weight is the column of M
with the largest number of 1's;

Increasing the value of U by 1 and adding the column a,
to the upper bound set;

Constructing the matrix M, from M by deleting the
column a, and all rows of M that correspond with
non-zero components of the column a,. If the matrix
M, is empty then the current value of U is the upper
bound and a solution for the Hitting Set is the upper
bound set; otherwise

Repeating the acts of choosing through repeating on the
matrix M,.

In the act of calculating a lower bound, a value for the
lower bound of h=(M, T,,, Tout) is equal to the size of T,,
plus WL. k denotes the number of rows of the matrix M and
L denotes the maximum weight of the columns of M.

In the act of determining whether each label has any child
nodes or is a leaf node without any child nodes, a label is
determined to be a leaf node if any of the following are true:

if T,,UTout={ 1,2, . . . ,n}, where U denotes the union of
two sets;

if the value for the lower bound of h 2 the current value for
the upper bound;

if the columns of T,, form a solution such that if the
columns in T,, are added together to form a resulting
vector, then the resulting vector has no zero compo-
nent; or

if M contains an all-zero row.
In another aspect, the act of splitting the label to create

two new labels further comprises an act of splitting label
h=(M, T,,, Tout) into label h, and label h,. Label h, is
defined as:

h=(RemovecO [M, J I , T,,, T,,,U{JI).

j denotes a column of M with a maximum weight andj is the
corresponding column in the original matrix. Remove-0
[M, j] denotes a sub-matrix of M obtained by deleting the j"
column of M. Label h, is defined as:

h,=(Remove-l [M, J I , T,,UW, Tout).

Additionally, j denotes a column of M with a maximum
weight and j is the corresponding column in the original
matrix. Remove-1 [M, j] denotes a sub-matrix of M
obtained by deleting the j" column of M and deleting all
rows of M that correspond with non-zero components of that
column.

In yet another aspect, the act of splitting a label further
comprises acts of

on label h=(M, T,,, Tout), if the j" column of the matrix
M is an all-one column, then changing the label h to the
label ({ }, T,,U{j}, Tout), where U denotes the union of
two sets, { } is an empty matrix andj is a corresponding
column in the original matrix;

on label h=(M, T,,, Tout), if the matrix M has a row of
weight one, with 1 as its j" component, then changing
the label h to the label (Removed-1 [M, j], T,,U{j},
Tout) where U denotes the union of two sets, j is the
corresponding column in the original matrix, and
Remove-1 [M, j] denotes a sub-matrix of M obtained
by deleting the j" column of M and deleting all rows of
M that correspond with non-zero components of that
column;

4
on label h=(M, T,,, Tout), if the matrix M has an all-one

row, then deleting that row;
on label h=(M, T,,, Tout), if j" column of the matrix M is

an all-zero column, then changing the label h to the
label (Remove-0 [M, j], T,,, T,,,U{j}), where U
denotes the union of two sets, j is the corresponding
column in the original matrix, and Remove-0 [M, j]
denotes a sub-matrix of M obtained by deleting the j"
column of M;

on label h=(M, T,,, Tout), if the matrix M has two equal
rows, then deleting one of them; and

repeating the above acts until all of the above acts are
exhausted.

In yet another aspect, the method further comprises an act
15 of applying a Branch-and-Bound technique to the incidence

matrix A to find an optimal solution for the problem,
comprising acts of

initializing a label h, as h,=Rules*[{A, { }, { }}I, where
Rules" denotes applying and repeating the acts of
paragraph 23 until all of the acts of paragraph 23 are
exhausted;

5

10

2o

initializing a set of labels as {h,};
initializing a value of the upper bound U as the upper

initializing a solution set as the upper bound set of h,;
choosing a label h from the set of labels;
deleting h from the set of labels;
computing U, as the upper bound of h and its correspond-

if U,<U, then changing the value of U to U, and the value
of the solution set to the upper bound set;

if the label h is not a leaf, then splitting h to labels h, and
h, and adding the new labels h, and h, to the set of

if the set of labels is not empty, repeating the acts of
choosing a label h through the act of repeating the acts;

if the set of labels is empty, then the outputting is the
solution set and stopping.

In another aspect, the present invention also includes a
system that is configured perform the acts above.

Finally, as can be appreciated by one skilled in the art, the
present invention also includes a computer program product.
The computer program product includes computer-readable

45 instruction means stored on a computer-readable medium
for causing a computer to perform the operations and acts
described herein.

bound of h,;
25

3o ing upper bound set;

35 labels;

40

BRIEF DESCRIPTION OF THE DRAWINGS
50

The objects, features and advantages of the present inven-
tion will be apparent from the following detailed descrip-
tions of the various aspects of the invention in conjunction
with reference to the following drawings, where:

FIG. 1 is an illustration of an exemplary diagnosis of a
Hitting Set of conflict sets;

FIG. 2 is a block diagram depicting the components of a
diagnosis system according to the present invention;

FIG. 3 is an illustrative diagram of a computer program
product embodying the present invention;

FIG. 4 is an illustration of a matrix, depicting a Hitting Set
Problem being mapped onto Integer Programming;

FIG. 5 is a table illustrating exemplary test results of the

FIG. 6 illustrates an exemplary recursive procedure of

55

6o

6 5 present invention;

pseudo-code for computing an upper bound;

US 7,249,003 B2
5 6

FIG. 7 is a graph illustrating typical solution sets of the
Linear Programming (LP) relaxation and Integer Program-
ming (IP) problems;

FIG. 8 is a table illustrating the performance results of the
algorithm of the present invention and its comparison with 5
the traditional Branch-and-Bound method;

FIG. 9 is an illustration of an exemplary search tree;
FIG. 10 is a graph illustrating an exemplary vertex cover

as applied to a Vertex Covering Problem; and
FIG. 11 is a graph illustrating the performance of the i o

algorithms of the present invention contrasted with the
traditional technique for solving a Vertex Covering Problem.

DETAILED DESCRIPTION

ing of the intended meaning of the terms, but is not intended
to convey the entire scope of each term. Rather, the glossary
is intended to supplement the rest of the specification in
more accurately explaining the terms used.

Conflict Set-The term “conflict set” as used with respect
to the present invention refers to a set of components of the
system such that the assumption of non-faultiness of all of
them is not consistent with the model of the system and
observations.

Hitting Set-The term “Hitting Set” as used with respect
to the present invention, refers to a minimum set that
intersects all conflict sets.

Incidence Matrix-The term “incidence matrix” as used
with respect to the present invention refers to a O i l matrix

The present invention relates to a solution for diagnosis and columns are labeled by the components of the systems
problems, and more particularly, to a system and method {m,, m,, . . . , mx}, and the entry a,=l if the j“ component
using an algorithmic solution for diagnosis problems. The mJ belongs to the ith conflict set c,, otherwise a,=O.
following description is presented to enable one of ordinary Instruction Means-The term “instruction means” as used
skill in the art to make and use the invention and to 20 with respect to this invention generally indicates a set of
incorporate it in the context of particular applications. Vari- operations to be performed on a computer, and may repre-
ous modifications, as well as a variety of uses in different sent pieces of a whole program or individual, separable,
applications will be readily apparent to those skilled in the software modules. Non-limiting examples of “instruction
art, and the general principles defined herein may be applied means” include computer program code (source or object
to a wide range of embodiments. Thus, the present invention 25 code) and “hard-coded’’ electronics (i.e., computer opera-
is not intended to be limited to the embodiments presented, tions coded into a computer chip). The “instruction means”
but is to be accorded the widest scope consistent with the may be stored in the memory of a computer or on a
principles and novel features disclosed herein. computer-readable medium such as a floppy disk, a CD-

In the following detailed description, numerous specific ROM, and a flash drive.
details are set forth in order to provide a more thorough 30 (2) Principal Aspects
understanding of the present invention. However, it will be The present invention has three “principal” aspects. The
apparent to one skilled in the art that the present invention first is a system for solving diagnosis problems. The system
may be practiced without necessarily being limited to these is typically in the form of a computer system operating
specific details. In other instances, well-known structures software or in the form of a “hard-coded” instruction set.
and devices are shown in block diagram form, rather than in 35 This system may be incorporated into a wide variety of
detail, in order to avoid obscuring the present invention. devices that provide different functionalities. The second

The reader’s attention is directed to all papers and docu- principal aspect is a method, typically in the form of
ments which are filed concurrently with this specification software, operated using a data processing system (com-
and which are open to public inspection with this specifi- puter). The third principal aspect is a computer program
cation, and the contents of all such papers and documents are 40 product. The computer program product generally repre-
incorporated herein by reference. All the features disclosed sents computer-readable instructions stored on a computer-
in this specification, (including any accompanying claims, readable medium such as an optical storage device, e.g., a
abstract, and drawings) may be replaced by alternative compact disc (CD) or digital versatile disc (DVD), or a
features serving the same, equivalent or similar purpose, magnetic storage device such as a floppy disk or magnetic
unless expressly stated otherwise. Thus, unless expressly 45 tape. Other, non-limiting examples of computer-readable
stated otherwise, each feature disclosed is one example only media include hard disks, read-only memory (ROM), and
of a generic series of equivalent or similar features. flash-type memories. These aspects will be described in

Furthermore, any element in a claim that does not explic- more detail below.
itly state “means for” performing a specified function, or A block diagram depicting the components of a diagnosis
“step for” performing a specific function, is not to be 50 system of the present invention is provided in FIG. 2. The
interpreted as a “means” or “step” clause as specified in 35 diagnosis system 200 comprises an input 202 for receiving
U.S.C. Section 112, Paragraph 6. In particular, the use of information from at least one component for use in detecting
“step of’ or “act of’ in the claims herein is not intended to a conflict set. Note that the input 202 may include multiple
invoke the provisions of 35 U.S.C. 112, Paragraph 6. “ports.” Typically, input is received from at least one com-

Before describing the invention in detail, first a glossary 55 ponent, a non-limiting example of which includes a micro-
of terms used in the description and claims is provide. Next, computer within a larger, computer operated system. An
a description of various principal aspects of the present output 204 is connected with the processor for providing
invention is provided. Subsequently, an introduction is pro- information regarding the conflict set and diagnostic solu-
vided to provide the reader with a general understanding of tion to the conflict set. Output may also be provided to other
the present invention. Finally, the details of various aspects 60 devices or other programs; e.g., to other software modules,
of the present invention are provided to give an understand- for use therein. The input 202 and the output 204 are both
ing of the specific details. coupled with a processor 206, which may be a general-

(1) Glossary purpose computer processor or a specialized processor
Before describing the specific details of the present inven- designed specifically for use with the present invention. The

tion, a glossary is provided in which various terms used 65 processor 206 is coupled with a memory 208 to permit
herein and in the claims are defined. The glossary provided storage of data and software that are to be manipulated by
is intended to provide the reader with a general understand- commands to the processor 206.

15 whose rows are labeled by the conflict sets {C,, C,,

US 7,249,003 B2
7 8

An illustrative diagram of a computer program product and solution of the Hitting Set problem to the solution of
embodying the present invention is depicted in FIG. 3. The Integer Programming problems.
computer program product 300 is depicted as an optical disk The Hitting Set Problem, also known as the Transversal
such as a CD or DVD. However, as mentioned previously, Problem, is one of the key problems in the combinatorics of
the computer program product generally represents com- 5 finite sets and the theory of diagnosis. The problem is
puter-readable instructions stored on any compatible com- described as follows. A collection S={S,, . . . , S,} of
puter-readable medium. nonempty subsets of a set M is given. A Hitting Set of S is

a subset H of M that intersects every set in the collection S.
The diagnosis problem arises when a system's actual Of course, there are always trivial Hitting Sets. For example,

behavior fails to match the expected behavior, thereby 10 the background Set M is always a Hitting Set. However,
exhibiting symptoms (anomalies), System diagnosis is then interest remains in minimal Hitting Sets with minimal
the task of identifying faulty components that are respon- cardinality. A Hitting Set H is minimal if no proper subset of
sible for anomalous behavior. To solve the diagnosis prob- H is a Hitting Set.
lem, one must find the minimal set of faulty components that FIG. 4 illustrates the mapping of the Hitting Set Problem
explain the observed symptoms (i.e., minimal diagnosis set). 15 onto Integer Programming. A O i l (binary) matrix A 400 is

(3) Introduction

The present invention relates to a system for solving
diagnosis problems by determining the lower and upper

defined as the incidence matrix of the collection of the
conflict sets. In other words, the entry a, 402=1 if and only

bounds on the size of the solution. The system uses these if the J" element mJ 404 belongs to the ith Set c , 406.
bounds to generate a solution window for the problem. The Additionally, X'(X1, XZ, > X J is a binary vector. xJ=l if
present invention also includes a Branch-and-Bound tech- 20 the element my 404 belongs to the minimal Hitting Set and
nique that is faster than existing techniques in terms of hence the minimal diagnosis set, otherwise xJ=0. Thus, the
number of operations (by exploiting the structure of the Hitting set h h l e m is dmwn as a oil Integer Programming
problem). Using the concept of a solution window, the Problem in the following formulation:
Branch-and-Bound technique allows a massive reduction
(pruning) in the number of branches. Furthermore, as the 25

(1) Branch-and-Bound proceeds, the solution window is
dynamically updated and narrowed to enable further prun-
ing. where bT=(l, . . . ,1) is a vector whose components are all

The present invention includes a powerful, yet simple, equal to one. This mapping provides for the utilization of
representation for calculating the minimal diagnosis set. 30 existing Integer Programming algorithms, such as commer-
This representation enables mapping onto a O i l Integer cially available Integer Programming tools.
Programming problem. Mapping onto the O i l Integer Pro- (4.2) Bounds on the Diagnosis
gramming Problem enables the use ofavariety of algorithms The mapping of the present invention offers two addi-
that can 35 tional advantages that can be exploited to develop yet more
thOusand Components. The algorithms of the Present inven- efficient algorithms. First, the mapping represents a special
tion are significantly improved over the existing ones, case of the Integer Programming Problem due to the struc-
enabling efficient diagnosis of large, complex, systems. In ture of matrix A (i.e., a binary matrix) and vector b. Second,
addition, this mapping enables a fast determination of the by using this mapping, the minimum number of faulty
lower and upper bounds on the solution (i.e.> the minimum 4o components can be determined without solving the problem
number of faulty components). explicitly. For this purpose, the 1-norm and 2-norm of

For further clarification, specific aspects of the present vectors are defined as:
invention are described below. Additionally, tests were per-
formed to further demonstrate the efficacy of the present
invention. For further illustrative purposes, the results of

with the traditional and standard algorithms. As shown
below, the test results demonstrate that the present invention
has a performance with more than ten times improvement
over the traditional approach.

minimize x,+x,+ +x,,

subject to Axzb, xJ=O, 1,

the Problem for to

performance tests of the present invention are compared 45 bill = 2 bJll IIx112 = f i J=I
J=I

Using the above equations and vector b from the optimiza-
50 tion problem (l), results in Ilbll,=m and IIbll,=JE. Because the

elements of both vectors Ax and b are positive, the following
(4) Details of Specific Aspects
For clarity, various details of specific aspects of the

present invention will be described in separate sub-sections
below. The first section describes an algorithmic approach to
the diagnosis problem. The second section describes the 55

can be

1, bounds on the diagnosis. The third section provides an
introduction to the Branch-and-Bound method. The fourth

I lAl l i Xllxl l i 2 m * llxlli 2mi l lA l l i

IlAIIz x IIXIIZ 2 fi * IIXIIZ 2 f i / I IAI Iz
section describes a Branch-and-Bound method according to
the present invention. The fifth section describes perfor-
mance results of the method of the present invention con- 6o where 1 1 denotes the norm, denotes mu~tip~ication, and
trasted with a traditional Branch-and-Bound method. The denotes division, since is a binary vector, then both norms
Sixth section explains mapping other Problems into the in equation (2) give the bound on the size of the solution
Integer Programming And the seventh (Le., the number of nonzero elements of vector x). The
section includes a brief summary of the present invention. number of elements of vector corresponds to the

(4.1) Algorithmic Approach to the Diagnosis Problem 65 minimal diagnosis set. It should be noted that depending on
To overcome the complexity of calculating a minimal the structure of the problem (Le., the 1- and 2-norm of the

diagnosis set, the present invention relates the calculation matrix A and m), a sharper bound can be derived from either

US 7,249,003 B2
9 10

of the norms in equation (2). The present invention derives (4.3) Introduction to the Branch-and-Bound Method
the bounds on the solution of the problem without explicitly The Branch-and-Bound method is one of the most com-
solving the problem. Such a priori knowledge on the size of mon methods for solving intractable problems. In the case of
solution can be used for developing much more efficient the Integer Programming (IP) problem, this method tradi-
algorithms for the problem. 5 tionally begins by solving the Linear Programming (LP)

Furthermore, an upper bound for the solution size can be relaxation of the IP (Le., by removing the condition that the
found using monotonicity of the Integer Programming of variables x,, in the optimization problem (1) of paragraph
optimization problem (1). Monotonicity means that if x is a 00066, are integers).
solution of Ax2b and y2x, then y is also a solution of the FIG. 7 is a graph 700 illustrating typical solution sets of
same system. Note that finding a O i l solution x for the i o the LP relaxation and IP problems. As shown in FIG. 7, the
system Ax 2 b is equivalent to finding a subset of the polygon 702 represents the solution set of the LP relaxation
columns of the matrix A, such that their sum is a vector with and the grid points 704 inside this polygon 702 represent the
components all equal to or greater than 1. Any such solution solution set of the IP problem.
provides an upper bound for the optimization problem (l), If the optimal solution of the LP relaxation consists only
since that problem solves a minimal set of such columns. 15 of integer values, then the optimal solution of the LP

Therefore, to find an upper bound, a column C , of A with relaxation will be the optimal solution for the IP problem.
the largest weight must first be chosen. Then, a submatrix of Otherwise, if the IP problem is defined by a system such
A is constructed by deleting the column C, and all rows of as the optimization problem (l), the optimal solution of the
A that correspond to non-zero components of C,. The same LP relaxation provides a lower bound for the IP problem. In
process is then applied to the new matrix (i.e., submatrix of 20 such a case, one of the non-integer values of the optimal
A), until an empty matrix is derived. The columns C,, solution of the LP relaxation can be chosen (e.g., x,=a), with
C,, . . . , C, that are obtained determine a solution for Ax2b two new sub-problems being defined by adding the condi-
and the number t is an upper bound for the solution of the tions x,S [a] and x,2[a]+l to the system, where [a] denotes
Integer Programming problem of optimization problem (1). the integer part of a. Then, the two new sub-problems need
FIG. 5 is a table illustrating test results of the present 25 to be solved. By continuing this procedure, the sub-problems
invention, indicating that the upper bound is actually sharp, of the original IP problem are defined. Once an integer
particularly for a small size solution. Note that it is easy to optimal solution for the LP relaxation of a sub-problem is
modify this algorithm in a way that it also provides a vector found, that solution gives us an upper bound for the IP
a, such that the vector Aa realizes the corresponding upper problem. After finding such an integer solution, any sub-
bound. 30 problem is eliminated whose (LP relaxation) lower bound is

FIG. 6 illustrates an exemplary recursive procedure of larger than the upper bound provided by some other sub-
pseudo-code for computing the upper bound. As can be problem. This procedure is continued until all sub-problems
appreciated by one skilled in the art, the pseudo-code shown are eliminated or an integer optimal solution is found for the
in FIG. 6 is a non-limiting example of pseudo-code operable corresponding LP relaxation problem. At the end, the opti-
for computing the upper bound, and that the pseudo-code 35 mal solution for the IP problem is the best of the optimal
can be altered to provide the same or similar result. integer solutions of the sub-problems.

There are two simple rules that assist the above algorithm The above procedure can be generalized as follows. To
in the following two extreme cases. The algorithm will begin the Branch-and-Bound method, the following acts
likely end up with sub-matrices that these rules can be need to be performed
applied to. The rules are as follows: Partitioning a problem P into a collection P,, P,, . . . , P,

1. If the matrix A has an all-one column, then the upper
bound is equal to 1; and Finding a lower bound for each sub-problem P,;

2. If some row of the matrix A has weight 1, then remove Finding an integer solution for a subclass of sub-problems
that row and the corresponding column to obtain the matrix
A, and Upper-Bound [A]=l +Upper-Bound [A,], where 45 Optionally, determining whether the integer solution is

40
of mutually disjoint sub-problems;

(in this case by obtaining an upper bound); and

Upper-Bound [A,] and Upper-Bound [A] denote the values
of the upper bound for the corresponding matrices.

The upper bound can also be improved by a step-by-step
method and in an iterative fashion. For example, the cost of
the kth step in the iteration is of the order of nk (i.e., O(ns),
where n is the number of the columns of the matrix. In this
example, the first few steps are practically efficient. More
specifically, for a fixed k, instead of choosing the maximum
weight column for the vector a,, the sum of k columns ofA
can be chosen, with all possible such vectors thereafter being
tried.

optimal for the corresponding sub-problem.
Note that in the case of LP relaxation, whenever an integer

solution for a sub-problem is found, it is guaranteed that it
is an optimal solution for that sub-problem. Starting with the

50 original problem P, defined by a system like the optimization
problem (l), the Mth step of the procedure provides parti-
tions P,,,, P,,,, . . . , P,,, of mutually disjoint sub-problems.
For each sub-problem P,,, a lower bound L,, is found and,
if possible, an integer solution and corresponding upper

55 bound U,, is found. Then, a decision is made as to which
sub-problems Pm.7 should be eliminated at this step. There

As another application of the a priori lower bound, the
cases where a high number of faulty components requires 1. The lower bound L,, is larger than upper bound U,,,
another course of action instead of usual identification of
faulty components, can be separated. These cases can be 60 2. An optimal solution for the sub-problem P,, is found.
separated before starting to solve the hard problem of In the case of (2) (i.e., optimal solution is found), the
finding the minimal Hitting Sets. Also a good lower and record of the best optimal solution of the sub-problems is
upper bound can determine whether the enhanced brute- kept. Then, the act of partitioning a problem P into a
force algorithm can provide a solution efficiently. As it was collection of mutually disjoint sub-problems is applied to the
stated before, this algorithm has a complexity of O(n'), 65 remaining sub-problems and to find the lower and (if pos-
where t is the number of faulty components and n is the sible) upper bounds for the new sub-problems. This proce-
number of the columns of the matrix. dure is continued until no sub-problem remains. Then, the

are two criteria f6r this decision:

of some other sub-problem P,,,; and

provides a greater chance of eliminating sub-problems

Before describing the method according to the present

1 1 0 1

1 0 1 0
with large lower bounds. M =

Matrix A is an mxn binary matrix. The columns of A are

columns is denoted as a subset of { 1, 2, . . . , n}. Similar to
the traditional Branch-and-Bound method, the algorithm of
the present invention is also based on a search of the nodes 35
of a tree. Each node of the search tree has a label of the form:

Then, to compute Remove-l [M, 21, the 2,d column of

ofthis column are 1, the 2,d and 4th rows are deleted as well,
The result is as follows~

labeled by the numbers 1, 2, ' ' ' > n, and any subset Of these is deleted, Since the yd and 4th elements (e,g,, components)

1 0 1

1 1 0
Remove_O[M, 21 =

considered as a subset of the columns of matrix A, whose
addition is a vector with all non-zero components.

US 7,249,003 B2
13 14

Rulc 4 If matrix A has an all-zero column, delete that

Rule 5 If matrix A has two equal rows, delete one of them.
Following is a description of how the above Rules affect

the labels of the nodes in the search tree, with the label of 5
a node being denoted as (M, {Tzn, Tout}).

First, the action of Rule 1 is described. If the matrix M
does not have an all-one column (i.e., a columi having
elements all equal to "l"), then no action is performed and
the label is unchanged. Otherwise, assume that the j" 10 if
column is all-one. In such a case, Rule 1 changes the label
to the following:

otherwise.
column. Finally, the following function describes Rule 5:

of', TI,, Tout), r (M, TI,, Tout),
Rule_5[(M, L, Tout)] =

has rows,

otherwise,

where the matrix M' is obtained from M by deleting one of
the equal rows.

Note that once one of these rules is applied on a label
h,=(M, T,,, Tout), and the result is the label A,, then it may
be possible to apply one of these rules to h,, and so on. For
this reason, the Function Rule* is defined on the set of labels
as repeated applications of Rules-1-5, until none of the

2o rules can be applied anymore. It is easy to show that Rule*
is well-defined (i.e., the result of Rule*@) does not depend
on the order that the functions Rule-1 and Rules-2 are
applied). As a non-limiting example, consider the following
label:

(a, T,,U{JI, Tout),

where 0 denotes an empty matrix and
of two sets (Le., the union of T,, and j (the corresponding
column in the original matrix)).

ln a more formal language, function ~ ~ 1 ~ ~ 1 is defined on
a set of labels as follows:

denotes the union 15

(M, T!,, Tout),

(0, TI, u IS}, Tout),
25

c Ruled [(M, TI,, Todl =

hi=(Mi, a, a),
if M has no all-ne columns,

with its only 1 component at j" position. The action of Rule 0 1 0 0 0

0 0 0 1 0

1 0 1 1 1

2 can now be described by the following function:
MI =

0 0 1 0

M 2 = 1 1 1 1 .
T!,, Tout), 1 1 0 0

Ruled[(M, TI,, Todl =
(M, T!,, Tout),

if M has all-one rows,

otherwise,

where M' is obtained from M by deleting all all-one rows.
The action of Rule 4 is described by the following

function:

The 2"d row of M, is equal to e,, thus Rule-2 can be
applied. The result is the label h,=(M,, {2, 4}, 0), where

55

6o Note that the 3rd column of M, is the 4th column of the
original matrix M,. Finally, Rule-1 is applied and the result
is the label h4=(0, {2,3,4}, {l, 51) (again note that the 2"d
column of the matrix M, corresponds with the 3rd column of
the original matrix M,). Therefore, in this non-limiting

(RemovecO[M, jl, T,,.TOut U Is}),
(M, T!,, Tout), c R u l e X M , TI,, Todl =

if the j" 65 example,

column of M is all-zero, Rule*[h~l=(@, (2, 3, 41, (1, 5))

US 7,249,003 B2
15

(4.4.4) Function Split
As described briefly above, a label can be split into two

new labels. The label is split when it is determined to not be
a leaf node in the search tree (Le., Function Test Leaf as
described in further detail below). A leaf node is a node that
is at an end of a branch in the search tree and has no child
nodes. When a node is split, it creates at least two children
nodes (Le., child nodes). The (partial) function Split is
defined on the set of the labels, where the value Split [h] is
a pair (Lo, h,) of labels. Suppose that h=(M, T,, T,). If
T,nT,={l, . . . n}, Le., ifT,nT, is the set of all columns of
the matrix A, then the function Split is not defined. f'
denotes the intersection of two sets (i.e., the set of elements
common between two sets). Otherwise, let j G , n T , be a
column of the original matrix A which is corresponded with
a maximum-weight column of the submatrix M (if there are
several such columns then the first one is chosen). Gdenotes
a membership relation, where the left-hand side is not a
member of the set in the right-hand side. Then, two new
labels are defined by adding the j" column to the sets T, and
T,, respectively. More specifically, the two new labels are
defined as follows:

h,=(RemovecO [M, J], TI, T2U{j}).

h,=(Remove-1 [M, J], T,U{j}, T2).

Using the above formulation, the Split function is defined as:

Split[h]=(Rule*[h,],Rule* [A,]).

(4.4.5) Function Upper Bound
When solving the optimization problem (l), it is helpful

to identify the range of solutions for the minimum diagnosis
set. The range of solutions is defined by the upper bound and
the lower bound. The Upper-Bound function is defined to
find the number Upper-Bound [A] as an upper bound on the
solution of the optimization problem (1). This function is
extended to the set of labels as follows. For the label h=(M,
T,, T,), where M is a submatrix of the original matrix A,
Upper-Bound [h] provides an upper bound for the optimi-
zation problem defined by (l), augmented by the following
conditions:

x,=l, x,€T,, and

x,=O, x,€T2.

Applying the above, it can be shown that Upper-Bound
[h] =IT, I+Upper-Bound [MI.

In the special case that M=0, Upper-Bound [h]=IT,I. Note
that the function Upper-Bound is applied to both matrices
and labels.

(4.4.6) Function Upper Bound Set
For the label h=(M, T,, T,), the function Upper-Bound-

Set [h] returns the set which realizes the bound Upper-
Bound [h] (Le., the union of T, and the set of columns of
matrix M which provide the bound Upper-Bound [MI).

(4.4.7) Function Lower Bound
Like the previous function, the lower bound defined by (2)

is extended to the set of labels. More specifically, for the
label h=(M, T,, T,), where M is a kxj submatrix of the
original matrix A, Lower-Bound [h]=IT,I+WI~MI~,. In other
words, a value for the lower bound of h=(M, T,,, Tout) is
equal to the size of T,, plus WL, where k is the number of
rows of the matrix M and L is the maximum weight of the
columns of M. That is, each column of M has a weight and
the maximum weight is the largest among these numbers.

16
(4.43) Function Test Solution
This function is defined on the set of the labels and its

value is either True or False. The value of Test-Solution [(M,
T,, T,)] is True if the columns in the set T, form a solution

5 for the optimization problem (1). Otherwise, the value of the
function is False.

(4.4.9) Function Test Leaf
This function is defined on the set of the labels and its

value is either True or False. Function Test-Leaf is used to
i o determine whether or not a node in the search tree is a leaf

(Le., whether that node has any children or not). The
arguments of this function include a label h=(M, T,, T,) and
a value U for the upper bound on the solution of the problem.
The function is as follows:

15

True

True

True

True if M contains an all-zero row, 01

False otherwise.

if TI U T2 = (1, 2, ... , n). or

if Lower_Bound[h] t I/, or

if Test_Solutio~fh] = True, or

20

(4.43) The Branch-and-Bound Algorithm of the Present

The present invention uses the above functions and ter-
minology to create a Branch-and-Bound algorithm. The
algorithm is described below for matrix A: /* solves the
Hitting Set problem defined by the problem (l)*/

25 Invention

30

1. Labels +{Rule* [(A, @, @)I}
2. u +m I* upper bound *I
3. Solution +@

35 4. while Labels # @
5.
6. Labels +Labels - {h}
7.
8. Solution +TI
9. U +Upper-Bound [h]

11.

chose h = (M, TI, T2) €Labels

If TestLSolution [h] = True & Upper-Bound [h] < U then

4o 10. end if
If TestLSolution [h] = True & Upper-Bound [h] = U &
Solution=@ then

Solution +TI
12. If Upper-Bound [h] < U then
13. U tUpper-Bound [h]
14. Solution +Upper_Bound-Set[h]

16.
17. (A,, h,) +Split [h]
18.
19. end if
20.

50 Solution=@
21. then Solution +Upper-BoundLSet[h]
22. end while
23. return Solution

45 15. end if
If TestLLeaf [h, U] = False then

Labels +Labels U {A,, h,}

If TestLLeaf [h, U] = True & Upper-Bound [h] = U &

55 For clarity, the following key can be used to define
various functions and terminology used in the above algo-
rithm:

Labels denotes the set of labels;
+ denotes the substitution operation; the right-hand side

0 denotes the empty set (null set);
U denotes the current best value of the upper bound;
~0 denotes the infinity;
Solution denotes the solution of the problem and the final

/* is a symbol that indicates that the sentence between a

60 is the new value of the left-hand side;

65 Output;

pair of "/* */" is a comment; and

terminology associated with each function is used for illus-

function provides the same or a similar result. Additionally,

0 0 0 0 1 0 0 0 0 0 1
trative purposes only and can be changed provided the Removeel[Ao, 81 = 0 0 0 1 1 0 0 1 0 1 1

0 0 1 0 0 0 1 0 0 1 0

A0 =

.

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 1 0 1 1

0 0 1 0 0 0 1 0 0 0 1 0

0 0 1 1 1 0 0 1 1 1 1 0

0 1 0 0 1 0 0 1 1 0 1 0

0 1 0 1 0 1 1 0 1 0 0 0

1 0 0 1 0 1 1 1 1 0 0 0

1 0 1 0 0 0 0 1 0 0 1 0

1 1 1 0 0 0 0 1 0 1 0 1

routine of GLPK applies a variant of the Branch-and-Bound

shown in FIG. 8 illustrate the average time and the number

0 0 0 1 0 0 0 0 0 1

method for the problem of the present invention. The results 20 A * = 0 0 1 1 0 0 1 0 1 1 .

0 1 0 0 0 1 0 0 1 0

A,=@,, (81, (1)).

30 (4.5.2) Node 1
The label for Node 1 is A,. The updated lower and upper

bounds are Lower_Bound=2 and U=Upper_Bound=4. The
upper bound is realized with the set {3, 5, 6, 9}, and

35 Test-Leaf [A,, U]=False. Thus, Node 1 has two children
(Le., Node 3 and Node 4). Column 8 of the matrix A,, which
is the 9th column of the original matrix A,, has the maximum
weight. Then,

\

J

40
The nodes of the search tree and their labels are as

(4.5.1) Node 0
For Node 0, the label of the root is A,=(A,, 0,0). In this

case, apply Rule*[A,]=A,. The initial lower and upper 45

bounds are Lower_Bound=2, and U=Upper_Bound=5,
where the upper bound is realized with the set {3,4,5, 6,s).
Moreover, Test-Leaf [A,, U]=False, thus this node has two
children (Le., Node 1 and Node 2). To find the two children,

follows.

Remove_O[Al, 81

notice that column 8 has a maximum weight, then; 50

= Az.

RemoveeOIAo, 81 =

0 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 1 0 1 0 .

1 0 1 0 0 0 0 0 1 0

and

0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 1 0 0 1 0 1 1

0 0 1 0 0 0 1 0 0 1 0

0 0 1 1 1 0 0 1 1 1 0

0 1 0 0 1 0 0 1 0 1 0

0 1 0 1 0 1 1 1 0 0 0

1 0 0 1 0 1 1 1 0 0 0

1 0 1 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 1 0 1

and

55

Removeel [A I , 81 =

60

0 0 0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0 0 1

0 0 0 1 1 0 0 0 1 1

0 0 1 0 0 0 1 0 1 0

0 0 1 1 1 0 0 1 1 0

0 1 0 0 1 0 0 0 1 0

0 1 0 1 0 1 1 0 0 0

1 0 0 1 0 1 1 0 0 0

1 0 1 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 0 1

None of the Rules 1-5 can be applied on the matrix
A,=Remove_O [A,, 81. Additionally, only Rule 4 can be
applied to Remove-1 [A,, 8] because 4th column of this

65 matrix, which is also the 4th column of the original matrix
A,, is an all-zero vector. Applying this rule provides the
following matrix:

0 0 0 0 1 0 0 0 0 1

1 0 1 0 0 0 0 0 1 0

A q = 0 0 1 0 0 0 1 0 1 0 .

I I

h5=(A5, @, (8 , 9, 11)), and

h6=(A6, {11), (8 , 9)).

(4.7) Summary and Conclusions
The present invention provides a new approach to over-

come one of the major limitations of the current model-
based diagnosis techniques (i.e., the exponential complexity

60 of calculation of minimal diagnosis set). To overcome this
challenging limitation, the present invention describes an

set. Starting with the relationship between the calculation of
minimal diagnosis set and the Hitting Set problem, the

65 present invention includes a method for solving the Hitting
Set Problem, and consequently the diagnosis problem. This
method is based on a powerful and yet simple representation

(4.5.5) Node 4
The label for Node is ’4. The updated lower and upper

Lower-Bound=U and Test-Leaf [A,, Ul=True, this node is
a leaf of the search tree.

bounds are Lower-Bound=3 and U=Upper-Bound=3. Since algorithmic approach for calculating the minimal diagnosis

(4.5.6) Node 5
The label for Node 5 is A,. The updated lower and upper

bounds are Lower_Bound=3 and U=Upper_Bound=3. Since

The label for Node 6 is A,. The updated lower and upper
5 bounds are Lower_Bound=3 and U=Upper_Bound=3. Since

the Lower-Bound=U and the function Test-Leaf [A,,
U]=True, this node is a leaf of the search tree.

0 0 0 0 1 0 0 0 1

0 0 0 1 1 0 0 0 1

0 0 1 0 0 0 1 0 0

0 0 1 1 1 0 0 1 0
Remove_O[Az, 91 =

0 1 0 0 1 0 0 0 0

0 1 0 1 0 1 1 0 0

1 0 0 1 0 1 1 0 0

1 0 1 0 0 0 0 0 0

\ 1 1 1 0 0 0 0 1 1 ,

Given a graph G=(V, E), with the vertices V={v,, v,, . . . ,
v,} and edges E={e,, e,, , e,}, find a minimum size set
of vertices U c V such that for every edge e,EE, at least one

35 of the endpoints belongs to the set U. FIG. 10 illustrates a
graph 1000 and its vertex cover, with the set of black
vertices 1002 being a minimal covering of this graph 1000.

In this problem, the rows of the incidence matrix A are
labeled by the edges e,, e,, . . . , e, and the columns by the

40 vertices v,, v,, . . . , v,. In the row which is labeled by the
edge e], there are exactly two entries equal to 1 and those

=As,

0 0 0 0 1 0 0 0 1

Remove_l[A3, 91 = 0 1 0 1 0 1 1 0 0
1 0 0 1 0 1 1 0 0

For further illustration, FIG. 11 is a graph 1100 showing
the performance of the algorithms of the present invention
(i.e., “new” 1102) contrasted with the traditional one (i.e.,
“old” 1104) for solving this problem. In this example, the

=A6.

US 7,249,003 B2
21

of the problem that enables its mapping onto another well-
known problem, that is, the O i l Integer Programming prob-
lem.

Mapping onto the O i l Integer Programming problem
enables the use of variety of algorithms that can efficiently
solve the problem for up to several thousand components.
Therefore, the algorithm of the present invention provides a
significant improvement over existing ones, enabling the
efficient diagnosis of large, complex systems. In addition,
this mapping enables a priori and fast determination of the
lower and upper bounds on the solution (i.e., the minimum
number of faulty components) before solving the problem.
This is exploited to develop a more powerful algorithm for
the problem. The new algorithm is an improvement of the
well-known Branch-and-Bound method. The results of the
performance of the new algorithm are presented on a set of
test cases. The results show the advantage of the new
algorithm over the traditional Branch-and-Bound algorithm.
More specifically, the algorithm of the present invention has
achieved more than 10 times the speed of standard algo-
rithms.

What is claimed is:
1. A method for calculating a minimal Hitting Set from a

collection of sets, comprising using a computer system to
analyze a system having a collection of sets to derive the
minimal Hitting Set from the collection of sets, the computer
system being configured to perform acts of:

receiving information regarding the collection of sets

creating an incidence matrix of the collection of sets;
creating nodes from the incidence matrix such that each

node is a node in a search tree and has a label that
includes a sub-matrix of the incidence matrix, and two
disjoint subsets of the columns of the incidence matrix;

calculating an upper bound and calculating a lower bound
for each label, where the upper bound and lower bound
define a range of solutions for the minimal Hitting Set;
and

determining whether each label has any child nodes or is
a leaf node without any child nodes;
if the label does not have any child nodes, then stop and

designate the label as a leaf node;
if the label does have a child node, splitting the label to

create two new labels;
repeating acts of calculating and determining until all

labels have been designated as leaf nodes;
determining a solution of the Hitting Set with informa-

tion gathered from leaf nodes; and
providing an indication of the Hitting set to a user.

2. A method for calculating a minimal Hitting Set as set
forth in claim 1, wherein in the act of calculating the
minimal Hitting Set, the minimal Hitting Set is a minimal
diagnosis set and the collection of sets is a collection of
conflict sets, such that the method for calculating a minimal
Hitting Set calculates a solution for a diagnosis problem.

3. A method for calculating a minimal Hitting Set as set
forth in claim 2, wherein in the act of creating an incidence
matrix, the incidence matrix is created as a binary matrix
denoted as mxn binary matrix A having columns and rows,
where the columns of matrix A are labeled by numbers 1,

,n, and where any subset of these columns are denoted
as a subset of { 1,2, . . . ,n}.

4. A method for calculating a minimal Hitting Set as set
forth in claim 3, wherein in the act of creating nodes, each
node has a label (h) in a form of h=(M, T,,, Tout), where M
is a sub-matrix of matrix A, and where T,, and To,, are
disjoint subsets of the columns of matrix A, where T,,

from the system;

22
denotes a set of columns of matrix A considered as part of
the minimal diagnosis set, and where To,, denotes a set of
columns of matrix A that are considered not as part of the
minimal diagnosis set.

5. A method for calculating a minimal Hitting Set as set
forth in claim 4, wherein the act of calculating an upper
bound further comprises acts of calculating a value for the
upper bound of h=(M, T,,, Tout) and a calculating an upper
bound set, by performing the following acts:

initializing the value of the upper bound as U=size of T,,
and initializing the upper bound set as the set T,,, where
the size of T,, is the number of elements in Tz,;

choosing a column a, of M with a maximum weight,
where the column with the maximum weight is the
column of M with the largest number of 1's;

increasing the value of U by 1 and adding the column a,
to the upper bound set;

constructing the matrix M, from M by deleting the col-
umn a, and all rows of M that correspond with non-zero
components of the column a,, where if the matrix M,
is empty then the current value of U is the upper bound
and a solution for the Hitting Set is the upper bound set;
otherwise

repeating the acts of choosing through repeating on the

6. A method for calculating a minimal Hitting Set as set
forth in claim 5, wherein in the act of calculating a lower
bound, a value for the lower bound of h=(M, T,,, Tout) is
equal to the size of T,, plus WL, where k is the number of

30 rows of the matrix M and L is the maximum weight of the
columns of M.

7. A method for calculating a minimal Hitting Set as set
forth in claim 6, wherein in the act of determining whether
each label has any child nodes or is a leaf node without any

35 child nodes, a label is determined to be a leaf node if any of
the following are true:

if T,,UT,,,={ 1,2, . . . ,n}, where U denotes the union of

if the value for the lower bound of h2 the current value

if the columns of T,, form a solution such that if the
columns in T,, are added together to form a resulting
vector, then the resulting vector has no zero compo-
nent; or

5

i o

15

20

25 matrix M,.

two sets;

40 for the upper bound;

45 if M contains an all-zero row.
8. A method for calculating a minimal Hitting Set as set

forth in claim 7, wherein the act of splitting the label to
create two new labels further comprises an act of splitting
label h=(M, T,,, Tout) into label h, and label h,;

50 where label h, is defined as:

&=(Remove,, 0 [M, J J , T,,, T,,,U{JI),

where j denotes a column of M with a maximum weight and
j is the corresponding column in the original matrix, and

55 where Remove0 [M, j] denotes a sub-matrix of M obtained
by deleting the j" column of M; and

where label h, is defined as:

h,=(Removecl [M, J I , T,,UW, To,,),

60 where j denotes a column of M with a maximum weight and
j is the corresponding column in the original matrix, and
Remove-1 [M, j] denotes a sub-matrix of M obtained by
deleting the j" column of M and deleting all rows of M that
correspond with non-zero components of that column.

9. A method for calculating a minimal Hitting Set as set
forth in claim 8, wherein the act of splitting a label further
comprises acts of:

6 5

US 7,249,003 B2
23

on label h=(M, T,,, Tout), if the j" column of the matrix
M is an all-one column, then changing the label h to the
label ({ }, T,,U{j}, Tout), where U denotes the union of
two sets, { } is an empty matrix andj is a corresponding
column in the original matrix;

on label h=(M, T,,, Tout), if the matrix M has a row of
weight one, with 1 as its j" component, then changing
the label h to the label (Remove-1 [M, j], T,,U{j},
Tout) where U denotes the union of two sets, j is the
corresponding column in the original matrix, and
Remove-1 [M, j] denotes a sub-matrix of M obtained
by deleting the j" column of M and deleting all rows of
M that correspond with non-zero components of that
column;

on label h=(M, T,,, Tout), if the matrix M has an all-one
row, then deleting that row;

on label h=(M, T,,, Tout), ifjth column of the matrix M is
an all-zero column, then changing the label h to the
label (Remove0 [M, j], T,,, T,,,U{j}), where U
denotes the union of two sets, j is the corresponding
column in the original matrix, and Remove-0 [M, j]
denotes a sub-matrix of M obtained by deleting the j"
column of M;

on label h=(M, T,,, Tout), if the matrix M has two equal
rows, then deleting one of them; and

repeating the acts of claim 9 until all of the acts of claim
9 are exhausted.

10. A method for calculating a minimal Hitting Set as set
forth in claim 9, further comprising an act of applying a
Branch-and-Bound technique to the incidence matrix A to
find an optimal solution for the problem, comprising acts of:

initializing a label h, as h,=Rules*[{A, { }, { }}I, where
Rules" denotes applying and repeating the acts of claim
9 until all of the acts of claim 9 are exhausted;

initializing a set of labels as {h,};
initializing a value of the upper bound U as the upper

initializing a solution set as the upper bound set of h,;
choosing a label h from the set of labels;
deleting h from the set of labels;
computing U, as the upper bound of h and its correspond-

ing upper bound set;
if U,<U, then changing the value of U to U, and the value

of the solution set to the upper bound set;
if the label h is not a leaf, then splitting h to labels h, and

h, and adding the new labels h, and h, to the set of
labels;

if the set of labels is not empty, repeating the acts of
choosing a label h through the act of repeating the acts;

if the set of labels is empty, then the outputting is the
solution set and stopping.

11. A computer program product for calculating a minimal
Hitting Set from a collection of sets, the computer program
product comprising computer-readable instruction means
stored on a computer-readable medium for causing a com-
puter to:

receive information regarding the collection of sets from

create an incidence matrix of the collection of sets;
create nodes from the incidence matrix such that each

node is a node in a search tree and has a label that
includes a sub-matrix of the incidence matrix, and two
disjoint subsets of the columns of the incidence matrix;

calculate an upper bound and calculating a lower bound
for each label, where the upper bound and lower bound
define a range of solutions for the minimal Hitting Set;
and

bound of h,;

the system;

24
determine whether each label has any child nodes or is a

leaf node without any child nodes;
if the label does not have any child nodes, then stop and

designate the label as a leaf node;
if the label does have a child node, splitting the label to

create two new labels;
repeating operations of calculating and determining

until all labels have been designated as leaf nodes;
determining a solution of the Hitting Set with informa-

tion gathered from leaf nodes; and
providing an indication of the Hitting set to a user.

12. A computer program product for calculating a mini-
mal Hitting Set as set forth in claim 11, wherein when
calculating the minimal Hitting Set, the minimal Hitting Set

l5 is a minimal diagnosis set and the collection of sets is a
collection of conflict sets, such that the computer program
product is configured to calculate a solution for a diagnosis
problem.

13. A computer program product for calculating a mini-
2o mal Hitting Set as set forth in claim 12, wherein when

creating an incidence matrix, the incidence matrix is created
as a binary matrix denoted as mxn binary matrix A having
columns and rows, where the columns of matrix A are
labeled by numbers 1,2, . . . ,n, and where any subset ofthese

wherein when creating nodes, each node has a label (h) in
a form of h=(M, T,,, Tout), where M is a sub-matrix of
matrix A, and where T,, and To,, are disjoint subsets of
the columns of matrix A, where T,, denotes a set of
columns of matrix A considered as part of the minimal
diagnosis set, and where To,, denotes a set of columns
of matrix A that are considered not as part of the
minimal diagnosis set.

14. A computer program product for calculating a mini-
35 mal Hitting Set as set forth in claim 13, wherein when

calculating an upper bound, the computer program product
is further configured to cause a computer to perform opera-
tions of calculating a value for the upper bound of h=(M, T,,,
Tout) and a calculating an upper bound set, by performing

initializing the value of the upper bound as U=size of T,,
and initializing the upper bound set as the set T,,, where
the size of T,, is the number of elements in Tz,;

choosing a column a, of M with a maximum weight,
where the column with the maximum weight is the
column of M with the largest number of 1's;

increasing the value of U by 1 and adding the column a,
to the upper bound set;

constructing the matrix M, from M by deleting the col-
umn a, and all rows of M that correspond with non-zero
components of the column a,, where if the matrix M,
is empty then the current value of U is the upper bound
and a solution for the Hitting Set is the upper bound set;

repeating the operations of choosing through repeating on

15. A computer program product for calculating a mini-
mal Hitting Set as set forth in claim 14, wherein when

60 calculating a lower bound, a value for the lower bound of
h=(M, T,,, Tout) is equal to the size of T,, plus WL, where
k is the number of rows of the matrix M and L is the
maximum weight of the columns of M.

16. A computer program product for calculating a mini-
65 mal Hitting Set as set forth in claim 15, wherein when

determining whether each label has any child nodes or is a
leaf node without any child nodes, the computer program

5

10

25 columns are denoted as a subset of {1,2, . . . ,n}, and

30

40 the following operations:

45

5o

55 otherwise

the matrix M,.

US 7,249,003 B2
25

product is configured to cause a computer to determine a
label to be a leaf node if any of the following are true:

if T,,UTout={ 1,2, . . . ,n}, where U denotes the union of
two sets;

if the value for the lower bound of h2 the current value
for the upper bound;

if the columns of T,, form a solution such that if the
columns in T,, are added together to form a resulting
vector, then the resulting vector has no zero compo-
nent; or

if M contains an all-zero row.
17. A computer program product for calculating a mini-

mal Hitting Set as set forth in claim 16, wherein when
splitting the label to create two new labels, the computer
program product is further configured to cause a computer to
perform an operation of splitting label h=(M, T,,, Tout) into
label h, and label h,;

where label h, is defined as:

&=(Remove-O [M, J I , T,,, T,,,U{J}),

where j denotes a column of M with a maximum weight and
j is the corresponding column in the original matrix, and
where Remove0 [M, j] denotes a sub-matrix of M obtained
by deleting the j" column of M; and

where label h, is defined as:

h,=(Remove-l [M, J I , T,,UW, To,,),

where j denotes a column of M with a maximum weight and
j is the corresponding column in the original matrix, and
Remove-1 [M, j] denotes a sub-matrix of M obtained by
deleting the j" column of M and deleting all rows of M that
correspond with non-zero components of that column.

18. A computer program product for calculating a mini-
mal Hitting Set as set forth in claim 17, wherein when
splitting a label, the computer program product further
comprises instruction means for causing a computer to
perform operations of:

on label h=(M, T,,, Tout), if the j" column of the matrix
M is an all-one column, then changing the label h to the
label ({ }, T,,U{j}, Tout), where U denotes the union of
two sets, { } is an empty matrix andj is a corresponding
column in the original matrix;

on label h=(M, T,,, Tout), if the matrix M has a row of
weight one, with 1 as its j" component, then changing
the label h to the label (Remove-1 [M, j], T,,U{j},
Tout) where U denotes the union of two sets, j is the
corresponding column in the original matrix, and
Remove-1 [M, j] denotes a sub-matrix of M obtained
by deleting the j" column of M and deleting all rows of
M that correspond with non-zero components of that
column;

on label h=(M, T,,, Tout), if the matrix M has an all-one
row, then deleting that row;

on label h=(M, T,,, Tout), ifjth column of the matrix M is
an all-zero column, then changing the label h to the
label (Remove0 [M, j], T,,, T,,,U{j}), where U
denotes the union of two sets, j is the corresponding
column in the original matrix, and Remove-0 [M, j]
denotes a sub-matrix of M obtained by deleting j"
column of M;

26
on label h=(M, T,,, Tout), if the matrix M has two equal

repeating operations of claim 19 until all of the operations

19. A computer program product for calculating a mini-
mal Hitting Set as set forth in claim 18, further comprising
instruction means for causing a computer to perform an
operation of applying a Branch-and-Bound technique to the
incidence matrix A to find an optimal solution for the

rows, then deleting one of them; and

of claim 19 are exhausted.
5

10 problem, comprising operations of:

35 diagnosis set from a collection of conflict sets, the computer
system being configured to perform operations of:

initializing a label h, as h,=Rules*[{A, { }, { }}I, where
Rules" denotes applying and repeating the operations
of claim 19 until all of the operations of claim 19 are
exhausted;

initializing a set of labels as {h,};
initializing a value of the upper bound U as the upper

initializing a solution set as the upper bound set of h,;
choosing a label h from the set of labels;
deleting h from the set of labels;
computing U, as the upper bound of h and its correspond-

ing upper bound set;
if U,<U, then changing the value of U to U, and the value

of the solution set to the upper bound set;
if the label h is not a leaf, then splitting h to labels h, and

h, and adding the new labels h, and h, to the set of
labels;

if the set of labels is not empty, repeating the operations
of choosing a label h through the operation of repeating
the operations;

if the set of labels is empty, then the outputting is the
solution set and stopping.

20. A computer program system for calculating a minimal

bound of h,;

- -
creating an incidence matrix of the collection of sets;
creating nodes from the incidence matrix such that each

node is a node in a search tree and has a label that
includes a sub-matrix of the incidence matrix, and two
disjoint subsets of the columns of the incidence matrix;

calculating an upper bound and calculating a lower bound
for each label, where the upper bound and lower bound
define a range of solutions for the minimal Hitting Set;
and

determining whether each label has any child nodes or is
a leaf node without any child nodes;

if the label does not have any child nodes, then stop and
designate the label as a leaf node;

if the label does have a child node, splitting the label to
create two new labels;

repeating acts of calculating and determining until all
labels have been designated as leaf nodes;

determining a solution of the Hitting Set with information
gathered from leaf nodes; and

providing an indication of the Hitting set to a user.

* * * * *

