Autonomous Formation Flight

Project Overview

Presented by Jennifer Cole
with contributions from
Brent Cobleigh
Ron Ray
Jake Vachon
Kim Ennix

NASA Dryden Flight Research Center
Overview of Experiment

- **Objectives**
 - Map the vortex effects
 - Formation Auto-Pilot Requirements

- **Two NASA F/A-18 aircraft in formation**
 - NASA 845 Systems Research Aircraft
 - NASA 847 Support Aircraft

- **Flight Conditions**
 - $M = 0.56$, 25,000 feet (**Subsonic** condition)
 - $M = 0.86$, 36,000 feet (**Transonic** condition)

- **Nose-To-Tail (N2T) Distances**
 - 20, 55, 110 and 190 feet
• Once on condition and in position,
 – Hold position for 30 sec of stable data
 – Engage auto-throttle velocity hold and maintain position for 20 sec of stable data
 – Laterally slide out of position (away from leader a/c), engage altitude-hold and stabilize outside of vortex for 20 sec

• F404 Engine In-Flight Thrust Instrumentation
 – Flight-test, volumetric fuel-flow meter installed (WF_E)
• Manufacturer’s In-Flight Thrust Model used to calculate thrust
Vortex Influence on Drag

M=0.56, 25,000ft 55’ N2T

M=0.86, 36,000ft 55’ N2T
Drag and Fuel-Flow Change with Longitudinal Spacing

0.56 M, 25,000 feet, Y=-18 to -8%, Z=-10 to 0%

Drag Reduction, %

WFE Reduction, %

Longitudinal Separation, %Span

Predicted CDi

Data Range
• Summary of cruise demonstration data
 – Simulated mission profile with independent chase of similar configuration
 – Estimated 110 nm of range improvement if formation cruise continued
Lessons Learned

- Controllable flight in vortex is possible with pilot feedback (displays)
- Position hold at best C_D, is attainable
- Best drag location is close to max rolling moment
 - Drag reductions demonstrated up to 22% (W_{F_E} up to 20%)
- Induced drag results compare favorably with simple prediction model
 - ‘Sweet Spot’ (lateral & vertical area > 25%) is larger than predicted
- Larger wing overlaps result in sign reversals in roll, yaw
- As predicted, favorable effects degrade gradually with increased nose-to-tail distances after peaking at 3 span lengths aft
- Demonstrated - over 100 N mi (>15%) range improvement and 650 lbs (14%) fuel savings on actual simulated F/A-18 cruise mission
 - Significant results achieved despite problems with speed brake and positioning software
Presentation Outline

• Objectives of AFF Phase 1 Risk Reduction
 – Mitigation of risks associated with flying in the vortex

• Explanation of Test Point Matrix and Procedure

• Description of Data Analysis
 – Drag Model
 – Moment Model

• Drag Results

• Moment Results

• Lessons Learned

• Inquiries
Test Point Matrix

- Overlap
- Separation
- Above
- Below
- Vertical Position (Z)
- Lateral Position (Y)
- Follower aircraft wingtip positions
 - 50% low
 - 38% low
 - 25% high
 - 13% high
 - Level
 - 13% low
 - 25% low
 - 38% low
 - 50% low
- % Wingspan
Basic theory states drag reduction, ΔD, is caused by the rotation of the lift vector due to the upwash effect of the vortex.

- The associated lift increase is very small because $D \ll L$.
• **Rationale for Test Point Procedure**

 – 30 sec of stable data needed to estimate vortex effects on *moment model*

 – 20 sec of stable data (with auto-throttle) taken to improve estimated vortex effects on *fuel-flow*

 • auto-throttle difficult to set properly and hold separation
 • drag data shows little effect of auto-throttle during formation

 – 20 sec of stable data (outside vortex) needed to calculate “*baseline*” (non-formation) *drag* values

 • auto-throttle responds to drag change after slide-out to maintain speed providing an accurate fuel-flow change

 – This technique provides “back-to-back” comparisons of formation and baseline data
Lift and Drag Analysis

Flight Test Database

- **Air Data**
 - Air Data Computations: $\alpha_{est.}$, Gross Weight, V_{inf}, P_o
 - Predicted Performance: C_L, C_D
- **Engine Data**
 - In-Flight Thrust Model: F_G, F_{RAM}, F_{DRAG}
 - Performance Model:
 $$D = \cos(\alpha_{est}) F_G - F_{RAM} - F_{DRAG} - F_{EX}$$
 - C_L, C_D
 - Vortex Effect = Vortex – Baseline
 - $\%\Delta C_D$, $\%\Delta WFT$
- **INS Data**
 - Wind Axis Accelerations: A_{XW}, A_{YW}, A_{ZW}
 - $F_{EX} = GW \times A_{XW}$
Moment Analysis

Flight Test Database

Total Weight, a_Y, p, q, r, q_∞, S, b

Derivative of Rates

F/A-18 Inertial Model

Equations of Motion

Vortex Model

C_l, C_m, C_n, C_Y

Surface deflections, α, M, TAS, p, q, r, q_∞, θ, ψ

β estimation using heading

F/A-18 Aerodynamic Database (look-up tables)

Free Flight Model

C_l, C_m, C_n, C_Y

Vortex Effect = Vortex - Free Flight - SG Correction
Vortex Influence on Fuel-Flow

Percent change in Fuel-Flow versus position at M=0.56, 25,000ft 55’ N2T
Vortex Influence on Induced Drag

Percent Induced drag change, $M=0.56$, 25,000 ft, 55 ft N2T

- Measured induced drag change obtained from flight data
- Predicted induced drag change using horseshoe vortex model*

*Adapted from: Blake, W., and Dieter Multhopp, AIAA-98-4343, August 1998
Vortex Influence on Induced Drag

Percent Induced drag change, $M=0.56$, 25,000 ft, 55 ft N2T

Measured induced drag change obtained from flight data

Predicted induced drag change using horseshoe vortex model*

*Adapted from: Blake, W., and Dieter Multhopp, AIAA-98-4343, August 1998
Vortex Influence on C_l

Incremental Rolling Moment at $M=0.56$, 25000 feet, 55’ N2T
Incremental Yawing Moment at $M=0.56$, 25000 feet, 55’ N2T

Vortex Influence on C_n
Vortex Influence on C_m

Incremental Pitching Moment at $M=0.56$, 25000 feet, 55’ N2T
Pilot Response - Comparison
55’ N2T, Reference Condition

Wingtips Aligned, Level

25% wing Overlap, Level
Vortex Influence on C_Y

Incremental Side Force at $M=0.56$, 25000 feet, 55’ N2T