Experimental Design Matrix

Cottonseed Oil/Combitherm

Cheerios/Combitherm

Peanuts/Combitherm

Cheerios/Technipaq

Peanuts/Technipaq

Cottonseed Oil/Technipaq

Peanuts/Tolas

Technipaq/Tolas

Cheerios/Tolas

Cottonseed Oil/Tolas

MATERIALS

- **FOOD SAMPLES**
 - Cottonseed Oil
 - Cheerios
 - Peanuts

Storage:
- 3 variables
 - *72°F & 25%RH
 - *72°F & 50%RH
 - *72°F & 75%RH

Analyses:
- Free Fatty Acid
- Peroxide Value
- Moisture
- Sensory

Hexanal

Rate of Analysis:
- Full testing once every 3 months for 18 months, then quantitative analyses only through 36 months.

PURPOSE

- Evaluate new high barrier food packaging films for use on long duration space missions.
- Determine the effects of:
 - High temperatures during heat sealing
 - Stress cracking from folds in the films caused by vacuum packing
 - Relative humidity during storage

Deliverables

- Quantitatively evaluate each packaging material after final processing for oxygen and water vapor transmission through analysis of ingredients susceptible to moisture uptake and lipid oxidation.
- Qualitatively determine changes in food product attributes through sensory evaluation methods after storage in 3 different packaging films.
- Evaluate the potential of each packaging material based on qualitative and quantitative results.

Food Sample Selection

- Dry cereal is prone to reduced quality from absorption of water vapor.
- Cottonseed oil is susceptible to lipid oxidation in the presence of oxygen.
- Peanuts produce a rancidity marker, hexanal, which can be quantified by analysis of the gas in the headspace of the package.

Permeation Rate Comparison

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>OTR @ 73°F & 100%RH (grams/100in²/day)</th>
<th>WVTR @ 100°F & 100%RH (grams/100in²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combitherm Film</td>
<td><0.0003</td>
<td><0.0030</td>
</tr>
<tr>
<td>Technipaq Film</td>
<td><0.0003</td>
<td><0.0003</td>
</tr>
<tr>
<td>Technipaq/Tolas</td>
<td><0.0003</td>
<td><0.0003</td>
</tr>
<tr>
<td>Tolas Film</td>
<td>0.35</td>
<td>25</td>
</tr>
</tbody>
</table>

Comparative Packaging Study

Michele Perchonok and David Antonini

NASA Advanced Food Technology

Johnson Space Center, Houston

Experimental Design Matrix

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>FOOD SAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combitherm</td>
<td>Cottonseed Oil</td>
</tr>
<tr>
<td>Technipaq</td>
<td>Cheerios</td>
</tr>
<tr>
<td>Tolas</td>
<td>Peanuts in Combitherm</td>
</tr>
<tr>
<td>Oil in Combitherm</td>
<td></td>
</tr>
</tbody>
</table>

Packaging Material Information

Combitherm Film

- Structure: Nylon/EVOH/Nylon/High Ethylene Vinyl Acetate Polyethylene/LLDPE
- PROS: Lightweight and transparent. Microwavable and can be incinerated.
- CONS: Requires an overwrap film due to poor barrier properties. Overwrap causes a major increase in mass for food system.

Technipaq Film

- Structure: A quadlaminate film. PET/Polyethylene/Aluminum/Inomer
- PROS: Best barrier properties available in a film.
- CONS: Film cannot be incinerated or microwaved due to aluminum layer. Film is not clear to allow for food identification.

Tolas Film

- Structure: A PET film coated with a thin layer of aluminum oxide.
- PROS: Very lightweight with excellent barrier properties. Transparent film. Microwavable and can be incinerated.
- CONS: Stress cracking caused by wrinkles during vacuum packaging may reduce the barrier properties.