CARBONATE IN COMETS: A COMPARISON OF COMETS 1P/HALLEY, 9P/TEMPLE 1, AND 81P/WILD 2. G. J. Flynn², H. Leroux², K. Tomeoka¹, N. Tomioka¹, I. Ohnishi², T. Mikouchi², S. Wirick¹, L. P. Keller¹, C. Jacobsen¹ and S. A. Sandford², ¹Dept. of Physics, SUNY-Plattsburgh, 101 Broad St., Plattsburgh, NY 12901 (george.flynn@plattsburgh.edu), ²Laboratoire de Structure et Propriétés de l’Etat Solide, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France, ³Dept. Earth & Planetary Science, Kobe University, Nada, Kobe 657-8501 Japan, ⁴Dept. Earth & Planetary Science, University Tokyo, Tokyo, Japan, ⁵Dept. of Physics, SUNY-Stony Brook, Stony Brook, NY 11794, ⁶NASA Ames Research Center, Moffett Field, CA 94035.

Introduction: Comets are generally believed to have formed in a cold region, trapping in the cometary ices the original low-temperature condensate grains of our Solar System. These grains would have been preserved in cold-storage, at a temperature below the freezing point of CO₂, for the last 4.5+ billion years.

Carbonates are common in hydrous meteorites and hydrous interplanetary dust particles (IDPs), where they are believed to have formed by parent-body aqueous processing. Since simple models of cometary evolution involve no aqueous processing, carbonates were generally presumed not to occur in comets. However, Toppanni et al. [1] have performed experiments that indicate carbonate can be formed by non-equilibrium condensation in circumstellar environments where water is present as a vapor, not as a liquid. This suggests carbonate might have condensed in cold regions of the Solar Nebula, and might be present in comets.

Carbonate in Comets: The two VEGA spacecraft and the Giotto spacecraft that flew through the coma of Comet 1P/Halley in 1986 determined the elemental composition of Halley dust particles using impact ionization mass spectrometers. The dust particles were separated into groups based on their element abundance patterns. One group consisted of particles with high Mg but relatively low Si. Many of these grains also had high C/S ratios, indicating they were not Mg-sulfides, causing Fomenkova et al. [2] to identify this group as Mg-carbonate grains. A weak infrared emission feature at 6.8 µm, attributed to carbonate, was also observed in Comet Halley [3].

A projectile from the Deep Impact spacecraft struck Comet 9P/Tempel 1, producing a dust plume that was examined using the infrared spectrograph on the Spitzer Space Telescope. Lisse et al. [4] associated a strong emission between 6.5 and 7.2 µm with carbonate. After subtraction of strong silicate features, they identified weak features suggesting that both Mg- and Fe-carbonate were present [4].

The Stardust spacecraft collected dust from Comet 81P/Wild 2 and delivered that material to Earth in January 2006. Because carbonate has a strong absorption feature at ~290 eV (see Figure 1), the Scanning Transmission X-Ray Microscope (STXM) is an efficient tool to search for carbonate grains in ultramicrotome sections. Rare carbonate grains were identified in fragments extracted from five Wild 2 tracks using X-Ray Absorption Near-Edge Structure (XANES) spectroscopy and Transmission Electron Microscopy (TEM) [5]. Thus far, three large calcite grains, 700, 500, and 400 nm in size, two 500 nm dolomite grains, seven 200 nm sized calcite grains, two 100 nm sized calcite grains, and <20 nm sized ferroan magnesite grains have been identified in Wild 2 samples. Many more smaller (<20 nm in size) carbonates have been tentatively identified in two of the tracks. The identification is tentative because these small crystals fall apart in the electron beam and because of their size they are below the spatial resolution of the STXM. But, Cluster Analysis of STXM stack data identifies a large area that likely contains <20 nm in size carbonate grains and this area is similar to the area where TEM data tentatively identifies small calcite crystals (Fig. 1).

Size Distribution of Carbonate in Comets: Of the 2368 spectra considered by Fomenkova et al. [2], 15% of those smaller than 10⁰⁵ grams were identified as Mg-carbonate while only 8% of those >10⁵ grams were identified as Mg-carbonate. Among the mineral grains identified in the Wild 2 samples, carbonates were generally very small, ranging from 20 nm in size (~2x10⁻⁷ grams) to ~700 nm (~5x10⁻¹³ grams) [5], while much larger silicate grains, up to ~10 µm (~3x10⁻⁹ grams), were identified [6].

Abundance of Carbonate in Comets: The abundance of grains in the group identified as Mg-carbonate varied significantly from the VEGA-1 to the VEGA-2 analyses, with Mg-carbonate constituting about 7% of the total mass of particles measured by VEGA 1 but only 1% of the total mass measured by VEGA 2. The VEGA instruments only measured particles over the range from 5x10⁻¹⁷ grams to 5x10⁻¹² grams – about 20 nm to 1 µm. The abundance of carbonate at larger sizes was not determined, but the data indicated a decrease in carbonate abundance with increasing mass [2].

Carbonate was rare among the grains extracted from the Wild 2 tracks. However, many of the non-carbonate grains extracted from Wild 2 tracks were significantly larger than the carbonate grains analyzed at Halley.

Estimating the total amount of carbonate in the Wild 2 samples is difficult, partly because of their small size but also because many carbonates may have decomposed during the high-temperature regime of the
Origin of Carbonate in Comets: There are two obvious possibilities for the origin of carbonate in comets. The first, aqueous processing, might occur in pockets of fluid produced by the heat and shock of large collisions. Farinella and Davis [7] modeled the collision rate in the Kuiper Belt, and concluded that most 1 to 10 km Kuiper Belt objects are collision fragments from larger bodies. Thus an aqueous origin for cometary carbonate is possible. If so, other aqueous minerals are likely to be found in association with these carbonates.

A second possibility is that the carbonate in comets is a direct nebular condensate. Rietmeijer [8] reported a Mg-carbonate grain in an anhydrous chondritic porous IDP, and Flynn et al. [9] have found carbonate, including Mg-carbonate, in a few anhydrous IDPs. All of the carbonates reported in anhydrous IDPs are sub-micron in size. Carbonates have also been detected in the dust shell around evolved stars and in protostars, where liquid water is not expected [10].

Conclusions: There is evidence suggesting that carbonate is present in the three comets studied in sufficient detail to determine minor mineral components -- Halley, Temple 1, and Wild 2. For Halley and Wild 2, the measurements indicate this carbonate is very small (typically <20 nm to several hundred nm). A direct comparison of the carbonate abundances in Temple 1 and Wild 2 requires a detailed knowledge of the carbonate size-frequency distribution. An effort to determine the size frequency distribution in Wild 2, using the STXM to identify and the TEM to characterize the carbonate, is underway. Mineral associations, particularly the search for hydrous silicates associated with carbonate, may aid in determining the origin of carbonate in these comets. However, the presence of carbonates in anhydrous IDPs may indicate that carbonate also forms by processes other than aqueous alteration in the Solar System.

Acknowledgements: This work was supported by a NASA Discovery Data Analysis Program grant NNX07AM85G.