NASA’s Decadal Planning Team
Mars Mission Analysis Summary

Bret G. Drake
Editor

National Aeronautics and
Space Administration

Lyndon B. Johnson Space Center
Houston, Texas  77058

Released February 2007
FOREWORD

In June 1999 the NASA Administrator chartered an internal NASA task force, termed the Decadal Planning Team, to create new integrated vision and strategy for space exploration. The efforts of the Decadal Planning Team evolved into the Agency-wide team known as the NASA Exploration Team (NEXT). This team was also instructed to identify technology roadmaps to enable the science-driven exploration vision, established a cross-Enterprise, cross-Center systems engineering team with emphasis focused on revolutionary not evolutionary approaches. The strategy of the DPT and NEXT teams was to “Go Anywhere, Anytime” by conquering key exploration hurdles of space transportation, crew health and safety, human/robotic partnerships, affordable abundant power, and advanced space systems performance. Early emphasis was placed on revolutionary exploration concepts such as rail gun and electromagnetic launchers, propellant depots, retrograde trajectories, nano structures, and gas core nuclear rockets to name a few. Many of these revolutionary concepts turned out to be either not feasible for human exploration missions or well beyond expected technology readiness for near-term implementation. During the DPT and NEXT study cycles, several architectures were analyzed including missions to the Earth-Sun Libration Point (L2), the Earth-Moon Gateway and L1, the lunar surface, Mars (both short and long stays), one-year round trip Mars, and near-Earth asteroids. Common emphasis of these studies included utilization of the Earth-Moon Libration Point (L1) as a staging point for exploration activities, current (Shuttle) and near-term launch capabilities (EELV), advanced propulsion, and robust space power. Although there was much emphasis placed on utilization of existing launch capabilities, the team concluded that missions in near-Earth space are only marginally feasible and human missions to Mars were not feasible without a heavy lift launch capability. In addition, the team concluded that missions in Earth’s neighborhood, such as to the Moon, can serve as stepping-stones toward further deep-space missions in terms of proving systems, technologies, and operational concepts.

The material contained in this presentation was compiled to capture the work performed by the Mars Sub-Team of the DPT NEXT efforts in the late 1999-2001 timeframe.
CONTENTS

1.0  DPT Mars Short-Stay Mission Architecture Status .................................................. 1
2.0  DPT Mars Long-Stay Mission Architecture Status ...................................................... 44
This Page Intentionally Left Blank
DPT Mars Short-Stay Mission

Architecture Status

Mid-Term (2018) Nuclear Thermal Propulsion System Option

Bret G. Drake
NASA/Johnson Space Center

July 11, 2000
Outline

• Ground Rules and Assumptions
• Trajectory Options
• Mission Case Studies
• Systems Overview
  – Transit Habitat
  – Descent / Ascent Vehicle
  – Interplanetary Transportation
• Technology Needs
• Architecture Summary
Guiding Principles

• Go Anywhere - Go Anytime

• Avoid political obstacles - No HLLV

• Limit the total mission duration (goal of one-year)

• Push advanced technologies
  – Advanced space transportation - NTR
  – Advanced materials (factor of 9)
Mars Short-Stay Ground Rules and Assumptions

• Detailed GR&A provided in the “Mars ‘Short-Mission’ Scenario/Architecture GR&A” document dated 4-10-2000

• Primary DPT GR&A which drive this architecture include:
  – “Go Anywhere – Go Anytime” Philosophy
  – Short stay on Mars
  – Short total mission duration – goal of one year round-trip
  – First cargo mission 2016, First human mission 2018
  – Four crew
  – Zero-g transits
  – Technology freeze to TRL 6 by 2011
  – Factor of nine improvement for primary and secondary structures
  – Transportation Assumptions
    • EELV-H for cargo delivery to Earth orbit
    • Bi-Modal Nuclear Thermal Propulsion for interplanetary transits
    • Long-term cryogenic fluids storage
Purpose of Architecture Analysis

• Development of architectures serve as an “Existence Proof” of the various technology options and mission approaches under consideration
  – Feasibility check
  – Plausibility

• Architecture analysis includes detailed end-to-end analysis of
  – Mission goals and objectives
  – Mission sequence
  – Approaches to minimizing risks and maximizing crew safety
  – Vehicles and systems
  – Technology applicability and benefits
  – System drivers
  – Operations concepts
  – Schedules

From Earth – to the destination – back to Earth
Study Process

**Initial Payload Definition**
(JSC)
- Transit Habitat
- Descent/Ascent Vehicle

**Transportation Studies**
(MSFC)
- Abundant Chemical, Tethers, EP, NTR, VASIMR, Pulsed Detonation, M2P2, Beamed MPD, etc.

**Payload / Mission Refinement**
(JSC)
- Trajectory Options
- Advanced Materials
- Trip-time sensitivities
- Vehicle configurations

**Results and Issues**
(Architecture Team)

**NTR Case Study Analysis**
(GRC)
- Feasibility
- Initial Mass in LEO
- Number of Launches

**NTR Concept Initialized**
(Architecture Team)
- Initialization Package
- Case Studies Defined
- System Concepts Refined

Architecture Refinement
**Trajectory Options Under Consideration**

- **One-Year Mission**
  - Missions with short Mars surface stays with total mission duration of one year or less

- **Opposition Class Mission**
  - Variations of missions with short Mars surface stays and may include Venus swing-by

- **Conjunction Class Mission**
  - Variations of missions with long Mars surface stays.

**Diagram Labels:**
- Outbound
- Surface Stay
- Inbound
**Total Mission ΔV vs Earth Departure Date**

**Short-Stay Mars Missions**

**Assumptions**
- All propulsive mission
- Earth parking orbit = 407 km
- Mars parking orbit = 500 km
- 40 day Mars stay
- Figure of merit = Total ΔV (all legs)

**Graph Details**
- **Mission ΔV** (m/s)
- **Earth Departure Date**

**Curves**
- Inbound Venus Swingby
- No Inbound Venus Swingby
- 365 Day Mission No Venus Swby
- Local Min ΔV No Venus
- Local Min ΔV Venus Swby (Return Leg)
- Local Min ΔV One Way Cargo

**Data Points**
- 583, 453, 446, 519, 494, 497, 468, 527, 545, 585, 583, 453, 446, 519, 494, 468, 527, 545, 585

**Legend**
- **275 day**
- **205**
- **206**
- **347**
- **332**
- **312**
- **300**

**Timeline**
- 01-Jan-15 to 27-Dec-32
Minimum Solar Distance vs. Mission Opportunity
Short-Stay Mars Missions

Radiation doses during solar fly-by can increase 2-8 times

Earth Departure Date

Minimum Solar Distance (AU)

Assumptions
- All propulsive mission
- Earth parking orbit = 407 km
- Mars parking orbit = 500 km
- 40 day Mars stay
- Figure of merit = Total ∆V (all legs)
- All minimum solar distances are due to inbound leg(s) unless accompanied by an "O" indicating minimum solar distance due to the outbound leg

Long-Stay Mission with Fast Transits to-from Mars
365 Day Mission No Venus Swby (unless indicated)
Local Min ∆V No Venus Swby
Local Min ∆V Venus Swby (Return Leg Only)

G. Condon/JSC/EG
Mars Short-Stay Initial Case Studies

• Prior to performing detailed architectural analysis a series of focused case studies were conducted

• Primary case study variables included
  – **WORST** versus **BEST** mission opportunity
  – **HIGH** versus **LOW** Mars parking orbit
  – Pre-deploy **LANDER** versus pre-deploy **LANDER & RETURN VEHICLE**

• The results were used to determine the relative benefits and technology needs for the various mission approaches under consideration
## Mars Short-Stay Initial Case Studies

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>Energy Level</th>
<th>Trip Time</th>
<th>Mars Orbit</th>
<th>Pre-Deploy</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Worst (2026)</td>
<td>Minimize $\Delta V$</td>
<td>&lt; 650 days</td>
<td>500 x 500 km</td>
</tr>
<tr>
<td>6.2</td>
<td>Worst (2026)</td>
<td>Minimize $\Delta V$</td>
<td>&lt; 650 days</td>
<td>250 x 33,793 km</td>
</tr>
<tr>
<td>6.3</td>
<td>Worst (2026)</td>
<td>Minimize $\Delta V$</td>
<td>&lt; 650 days</td>
<td>500 x 500 km</td>
</tr>
<tr>
<td>6.4*</td>
<td>Worst (2026)</td>
<td>Minimize $\Delta V$</td>
<td>&lt; 650 days</td>
<td>250 x 33,793 km</td>
</tr>
<tr>
<td>6.5</td>
<td>Best (2018)</td>
<td>Minimize $\Delta V$</td>
<td>&lt; 650 days</td>
<td>500 x 500 km</td>
</tr>
<tr>
<td>6.6*</td>
<td>Best (2018)</td>
<td>Minimize $\Delta V$</td>
<td>&lt; 650 days</td>
<td>250 x 33,793 km</td>
</tr>
<tr>
<td>6.7</td>
<td>Best (2018)</td>
<td>One-Year</td>
<td>&lt; 365 days</td>
<td>500 x 500 km</td>
</tr>
<tr>
<td>6.8</td>
<td>Best (2018)</td>
<td>One-Year</td>
<td>&lt; 365 days</td>
<td>250 x 33,793 km</td>
</tr>
<tr>
<td>6.9</td>
<td>Best (2018)</td>
<td>One-Year</td>
<td>&lt; 365 days</td>
<td>500 x 500 km</td>
</tr>
<tr>
<td>6.10</td>
<td>Best (2018)</td>
<td>One-Year</td>
<td>&lt; 365 days</td>
<td>250 x 33,793 km</td>
</tr>
<tr>
<td>6.11</td>
<td>Best (2018)</td>
<td>Minimize $\Delta V$</td>
<td>&lt; 650 days</td>
<td>500 x 500 km</td>
</tr>
<tr>
<td>6.12</td>
<td>Best (2018)</td>
<td>Minimize $DV$</td>
<td>&lt; 650 days</td>
<td>250 x 33,793 km</td>
</tr>
</tbody>
</table>
**Mars Mission Overview**

*(NTR Option)*

**Cargo Vehicles Delivered to Low-Earth Orbit via EELV-H Launch Vehicles**
- Descent-Ascent Lander
- Descent-Ascent Lander NTR
- Earth Return NTR
- Earth Return Propellant
- TMI/MOI Propellant

**Crew Vehicles Delivered to Low-Earth Orbit via EELV-H Launch Vehicles**
- Transit Habitat
- Transit Habitat NTR
Crew delivered to Mars Vehicle via Shuttle

**Earth Orbit**

Earth return vehicle propulsively captures into Mars orbit and remains

Ascent/Descent Vehicle aerocaptures and remains in Mars orbit for the crew

Crew travels to Mars. Propulsively captures into Mars orbit

Crew rendezvous with Descent/Ascent Vehicle and Earth Return Vehicle

Earth Return Vehicle remains in Mars orbit

Crew ascends and rendezvous with waiting Earth Return Vehicle

30 day Science mission

Crew returns to Earth with Direct entry at Earth

**Mars Surface**
# Short-Stay Mission Sequence

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cargo</td>
<td></td>
</tr>
<tr>
<td>2 Crew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ahead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Cargo</td>
<td></td>
</tr>
<tr>
<td>4 Crew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ahead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Cargo</td>
<td></td>
<td>Ahead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Crew</td>
<td></td>
<td>Ahead</td>
<td></td>
</tr>
<tr>
<td>7 Cargo</td>
<td></td>
<td>Ahead</td>
</tr>
<tr>
<td>8 Crew</td>
<td></td>
</tr>
</tbody>
</table>
Mars Short-Stay Mission
Initial NTR Case Study Results

Worst Opportunity
(2026 No Swing-by)

Best Opportunity (2018)

Descent / Ascent Vehicle
Piloted Round-Trip
Piloted Earth-Return
Piloted Outbound

Initial Mass in LEO (mt)

ISS at Assembly Complete
(470 t)

6.1 2026 Min \(\Delta V\) LMO
6.2 2026 Min \(\Delta V\) HMO
6.3 2026 Min \(\Delta V\) LMO
6.4 2026 Min \(\Delta V\) HMO
6.5 2018 Min \(\Delta V\) LMO
6.6 2018 Min \(\Delta V\) HMO
6.7 2026 1Year LMO
6.8 2018 1Year HMO
6.9 2018 1Year LMO
6.10 2018 1Year HMO
6.11 2018 Min \(\Delta V\) LMO
6.12 2018 Min \(\Delta V\) HMO

Long Stay Mission

Ref. Glenn Research Center
EELV-H Launch/Assembly Scenario

LANDER AND RETURN PROPELLANT

| 7 | 4 Vehicle |
|   | 3 Propellant Tanks |
| 9 | 2 Vehicle |
|   | 7 Propellant Tanks |

PILOTED VEHICLE

| 4 | 2 Vehicle |
|   | 2 Propellant Tanks |

- Cargo Launches Lander Ascent, Descent Aerobrake assembled in LEO
- STS Crew involvement TBD

- Cargo Launches NTR cargo vehicle & crew return vehicle launched & assembled
- STS Crew involvement TBD

- STS Transit Habitat, Earth Return Capsule
- Cargo Launches NTR piloted vehicle launched & assembled
- STS Crew involvement TBD
- STS Crew Delivery
Mars Short-Stay Launch Strategy
EELV-H Option (Best Opportunity Example)

Assumptions:

- Evolved commercial EELV, heavy lift option, with exploration unique upper stage
- Large shroud assumed (8 x 30 m)
- 35 mt lift capacity due east (assumed performance - no data yet)
- Only mission hardware considered (need for on-orbit infrastructure not yet determined)
- Crew support for on-orbit assembly, outfitting, and checkout not yet addressed
- Launch rate shown does not support continuous exploration (cargo launches must be supported in the 2018 launch opportunity)
- Detailed analysis not yet complete

Best Opportunity (2018) Pre-Deploy Lander and Return Vehicle

<table>
<thead>
<tr>
<th>Launch #</th>
<th>Descent / Ascent Vehicle</th>
<th>Vehicle Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ascent Stage</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>2</td>
<td>Aerobrake / Deorbit Descent Stage</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>3</td>
<td>Propellants</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>4</td>
<td>NTR Core Stage</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>5</td>
<td>NTR Structure Assembly</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>6</td>
<td>NTR Propellant Tank</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>7</td>
<td>NTR Propellant Tank</td>
<td>Delta IV-H</td>
</tr>
</tbody>
</table>

**Earth Return Vehicle**

<table>
<thead>
<tr>
<th>Launch #</th>
<th>Descent / Ascent Vehicle</th>
<th>Vehicle Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>NTR Core Stage</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>9</td>
<td>NTR Structure Assembly</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>10</td>
<td>NTR Propellant Tank</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>11</td>
<td>NTR Propellant Tank</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>12</td>
<td>NTR Propellant Tank</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>13</td>
<td>NTR Propellant Tank</td>
<td>Delta IV-M</td>
</tr>
<tr>
<td>14</td>
<td>NTR Propellant Tank</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>15</td>
<td>NTR Propellant Tank</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>16</td>
<td>NTR Propellant Tank</td>
<td>Delta IV-M</td>
</tr>
</tbody>
</table>

**Transit Habitat**

<table>
<thead>
<tr>
<th>Launch #</th>
<th>Descent / Ascent Vehicle</th>
<th>Vehicle Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Transit Habitat</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>18</td>
<td>Habitat Consumables / ERC / Shadow Shield</td>
<td>Shuttle</td>
</tr>
<tr>
<td>19</td>
<td>NTR Core Stage</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>20</td>
<td>NTR Structure Assembly</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>21</td>
<td>NTR Tank Set 2</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>22</td>
<td>NTR Tank Set 3</td>
<td>Delta IV-H</td>
</tr>
<tr>
<td>23</td>
<td>Checkout Crew</td>
<td>Shuttle</td>
</tr>
<tr>
<td>24</td>
<td>Flight Crew</td>
<td>Shuttle</td>
</tr>
</tbody>
</table>

Cargo launches for next mission
**LANDER AND RETURN PROPELLANT**

<table>
<thead>
<tr>
<th>2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cargo Launches</strong></td>
<td><strong>4 Propellant Tanks</strong></td>
</tr>
<tr>
<td>Descent/ Ascent Vehicle</td>
<td></td>
</tr>
<tr>
<td>STS</td>
<td></td>
</tr>
<tr>
<td>No Crew involvement</td>
<td></td>
</tr>
<tr>
<td>Cargo Launches</td>
<td></td>
</tr>
<tr>
<td>NTR cargo vehicle &amp; crew return vehicle launched &amp; assembled</td>
<td></td>
</tr>
<tr>
<td>STS</td>
<td></td>
</tr>
<tr>
<td>Crew involvement TBD</td>
<td></td>
</tr>
</tbody>
</table>

**PILOTTED VEHICLE**

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1 Vehicle</strong></td>
</tr>
<tr>
<td>STS</td>
</tr>
<tr>
<td>Transit Habitat, Earth Return Capsule</td>
</tr>
<tr>
<td>Cargo Launches</td>
</tr>
<tr>
<td>NTR piloted vehicle launched</td>
</tr>
<tr>
<td>STS</td>
</tr>
<tr>
<td>Crew Delivery</td>
</tr>
</tbody>
</table>
EELV-H Launch/Assembly Scenario
Worst Case (2026) Mission Opportunity

LANDER AND RETURN PROPELLANT

5
Cargo Launches
Assembly platform
Lander, Aerobrake assembled in LEO

STS
Crew involvement
TBD

23
4 Vehicle
19 Propellant Tanks
Cargo Launches
NTR cargo vehicle & crew return vehicle launched & assembled

STS
Crew involvement
TBD

PILOTED VEHICLE

26
2 Vehicle
24 Propellant Tanks
STS
Transit Habitat, Earth Return Capsule

Cargo Launches
NTR piloted vehicle launched & assembled

STS
Crew involvement
TBD

STS
Crew Delivery

Placeholder for NTR Graphic

Placeholder for NTR Graphic
“Shuttle Compatible” Launch/Assembly Scenario
Worst Case (2026) Mission Opportunity

LANDER AND RETURN PROPELLANT

1
Cargo Launches
Descent/ Ascent Vehicle

STS
No Crew involvement

Cargo Launches
NTR cargo vehicle & crew return vehicle launched & assembled

STS
Crew involvement TBD

PILOTED VEHICLE

10
3 Vehicle
7 Propellant Tanks

STS
Crew Delivery

Placeholders for NTR Graphic

11
2 Vehicle
9 Propellant Tanks

STS
Transit Habitat, Earth Return Capsule

Cargo Launches
NTR piloted vehicle launched & assembled

Placeholders for NTR Graphic

STS
Crew involvement TBD
Initial Mars Short-Stay NTR Case Study Findings
Non-Venus Swing-by Option

- It is the consensus of the architecture team that the only way to perform the short-stay, non-Venus swing-by missions in the harder opportunities is to pre-deploy both the lander and return propellant
  - Lowers mission mass by approximately 36% (return propellant pre-deployed on minimum energy transfers)
  - Increases risk: Rendezvous in Mars orbit must be performed for crew survival (return)
  - Increases operating time of crew systems by 114% (as compared to non pre-deploy missions)

- Number of launches required poses a significant challenge
  - # of EELV-H launches = 54 (1 launch every 2 weeks)
  - # of 80 mt Shuttle Compatible launches = 22 (1 launch every 4 weeks)
  - Neither of these launch rates can be sustained
    - No margin for launch failure
    - No margin for launch delay
    - Current production/launch rate for Delta-IV is 14 per year (x 4 current capacity)
  - Probability of mission success significantly decreases with increased launch rate

<table>
<thead>
<tr>
<th>Launch Vehicle Size / Number of Launches</th>
<th>Launch Vehicle Reliability</th>
<th>Probability of Successful Launches</th>
</tr>
</thead>
<tbody>
<tr>
<td>EELV-H / 54</td>
<td>94%</td>
<td>4%</td>
</tr>
<tr>
<td>EELV-H / 54</td>
<td>99%</td>
<td>58%</td>
</tr>
<tr>
<td>“Shuttle Comp.” / 22</td>
<td>94%</td>
<td>26%</td>
</tr>
<tr>
<td>“Shuttle Comp.” / 22</td>
<td>99%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Current Industry Launch Success Rate 94%
Utility of Venus Swing-by Trajectories

- Venus swing-by trajectories can significantly decrease mission mass
- Characterized by one short leg combined with a long Venus swing-by leg
- Swing-by occurs on either outbound or inbound leg
- Desired to constrain the swing-by to the inbound leg
  - Short outbound leg maximizes crew health at Mars
  - Crew will have Earth support at end of mission
  - Can save up to 39% delta-V
- Allowing the Venus swing-by on either leg
  - Outbound legs can be up to 310 days long
  - Can save up to 42% delta-V
- Issues of solar distance during swing-by need to be addressed
  - Radiation dose to the crew
  - Thermal environment
# Trajectory Characteristics Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1-Year</th>
<th>Opposition</th>
<th>Conjunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interplanetary Delta-V (m/s)</td>
<td>21,700-31,200</td>
<td>14,800-25,800</td>
<td>5,600-6,700</td>
</tr>
<tr>
<td>Normalized Mass Ratio (for NTR)</td>
<td>5.9 – 16.8</td>
<td>2.7 – 9.3</td>
<td>1.0 – 1.1</td>
</tr>
<tr>
<td>Mission Duration (months)</td>
<td>12</td>
<td>15-22</td>
<td>30-32</td>
</tr>
<tr>
<td>Surface Stay</td>
<td>1</td>
<td>1</td>
<td>16-21</td>
</tr>
<tr>
<td>One-Way Transits</td>
<td>4-9</td>
<td>6-13</td>
<td>6-7</td>
</tr>
<tr>
<td>Total Transit Time</td>
<td>11</td>
<td>14-21</td>
<td>8-13</td>
</tr>
<tr>
<td>Sun Closest Approach (AU)</td>
<td>0.57-0.72</td>
<td>0.35 -0.72</td>
<td>1.0</td>
</tr>
<tr>
<td>% Time in Zero-g Space</td>
<td>92%</td>
<td>93-96%</td>
<td>38-44%</td>
</tr>
<tr>
<td>% Time on Mars Surface</td>
<td>8%</td>
<td>7-4%</td>
<td>56-62%</td>
</tr>
</tbody>
</table>

## Transit Times (months)
- **Outbound**
- **Surface**
- **Return**

### One-Year Round-Trip
- Outbound: 7
- Surface: 1
- Return: 4

### Typical Opposition
- Outbound: 6
- Surface: 12
- Return: 18

### Typical Conjunction
- Outbound: 6
**Total Mission $\Delta V$ vs Earth Departure Date**

*Short-Stay Mars Missions*

Assumptions:
- All propulsive mission
- Earth parking orbit = 407 km
- Mars parking orbit = 500 km
- 40 day Mars stay
- Figure of merit = Total $\Delta V$ (all legs)

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Mission $\Delta V$ (m/s)</th>
<th>Inbound Venus Swingby</th>
<th>No Inbound Venus Swingby</th>
<th>Local Min $\Delta V$ No Venus</th>
<th>Local Min $\Delta V$ Venus Swingby (Return Leg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Way Cargo</td>
<td>453, 49, 4, 585</td>
<td>475</td>
<td>453</td>
<td>603</td>
<td>612</td>
</tr>
<tr>
<td>365 Day Mission No Venus Swingby</td>
<td>583, 446, 519, 494</td>
<td>468</td>
<td>519</td>
<td>545</td>
<td>527</td>
</tr>
<tr>
<td>Local Min $\Delta V$ Venus Swingby Where Appropriate</td>
<td>497</td>
<td>619</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Min $\Delta V$ One Way Cargo</td>
<td>583, 446, 519, 494</td>
<td>468</td>
<td>519</td>
<td>545</td>
<td>527</td>
</tr>
</tbody>
</table>

Earth Departure Date:
- 01-Jan-15
- 31-Dec-16
- 31-Dec-18
- 30-Dec-20
- 30-Dec-22
- 29-Dec-24
- 29-Dec-26
- 28-Dec-28
- 28-Dec-30
- 27-Dec-32

**Notes:**
- Inbound Venus Swingby
- No Inbound Venus Swingby
- Local Min $\Delta V$ No Venus
- Local Min $\Delta V$ Venus Swingby (Return Leg)
- Local Min $\Delta V$ One Way Cargo
Comparison of Mission Trajectories
Initial Mass and NTR Vehicle Complexity

<table>
<thead>
<tr>
<th>Mission Type</th>
<th>Launch Year</th>
<th>Round-Trip Duration</th>
<th>Mass (kg)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Venus Swing-by</td>
<td>2026 (Worst Case)</td>
<td>460 Days (180-40-240)</td>
<td>1,563</td>
<td></td>
</tr>
<tr>
<td>Pre-Deploy Lander and Return Vehicle</td>
<td></td>
<td></td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>Representative Venus Swing-by</td>
<td>2016 Launch Opportunity</td>
<td>479 Days (179-40-250)</td>
<td>897</td>
<td></td>
</tr>
<tr>
<td>Pre-Deploy Lander and Return Vehicle</td>
<td></td>
<td></td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>One-Year Round-Trip</td>
<td>2018 (only)</td>
<td>365 Days (109-40-216)</td>
<td>1,589</td>
<td></td>
</tr>
<tr>
<td>Pre-Deploy Lander and Return Vehicle</td>
<td></td>
<td></td>
<td>1,302</td>
<td></td>
</tr>
</tbody>
</table>

Note: Vehicles are 50-75% propellant (H₂)

Ref. Glenn Research Center
Technology Driven Capabilities

Advanced Habitation
- Radiation Protection
- Closed-loop Life Support
- Large Volume
- Advanced Health Care

Electric Propulsion

Nuclear Thermal Propulsion

Near Earth Transportation
- Radiation Protection
- Closed-loop Life Support
- Large Volume
- Advanced Health Care
Mars Short-Stay Transit Habitat

- Supports mission crew of four for up to 365-650-days round-trip missions to and from Mars
- Crew consumables and support systems tailored for mission duration
- Zero-g configuration with integrated deep-space radiation protection
- Power generation provided by the bi-modal NTR vehicle
- Closed-loop (air and water) life support system
- Advanced health care systems
- Advanced materials for primary and secondary structures
- Advanced MEMS / wireless avionics for increased reliability and redundancy
- Earth return vehicle for crew return

**TRANSPORT HABITAT**

<table>
<thead>
<tr>
<th>Item</th>
<th>Mass (kg)</th>
<th>Stowed Vol. (M3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Power System</td>
<td>2362.6</td>
<td>0.000</td>
</tr>
<tr>
<td>2.0 Avionics</td>
<td>287.0</td>
<td>0.140</td>
</tr>
<tr>
<td>3.0 Environmental Control &amp; Life Support</td>
<td>3948.9</td>
<td>19.133</td>
</tr>
<tr>
<td>4.0 Thermal Management System</td>
<td>1257.3</td>
<td>5.260</td>
</tr>
<tr>
<td>5.0 Crew Accommodations</td>
<td>3396.1</td>
<td>21.235</td>
</tr>
<tr>
<td>6.0 EVA Systems</td>
<td>879.9</td>
<td>3.653</td>
</tr>
<tr>
<td>7.0 Structure</td>
<td>817.3</td>
<td>0.000</td>
</tr>
<tr>
<td>Margin (20%)</td>
<td>2426.4</td>
<td>9.884</td>
</tr>
<tr>
<td>Crew</td>
<td>372.0</td>
<td>- - - - -</td>
</tr>
<tr>
<td>Food (Return Trip)</td>
<td>2600.0</td>
<td>9.043</td>
</tr>
<tr>
<td>Food (Outbound Trip)</td>
<td>2600.0</td>
<td>9.043</td>
</tr>
<tr>
<td>Food (Contingency)</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td><strong>Total Transit Habitat Mass</strong></td>
<td><strong>20947.5</strong></td>
<td><strong>77.392</strong></td>
</tr>
<tr>
<td><strong>Earth Return Vehicle</strong></td>
<td><strong>4270.6</strong></td>
<td><strong>0.000</strong></td>
</tr>
<tr>
<td><strong>Total Mass</strong></td>
<td><strong>25218.1</strong></td>
<td></td>
</tr>
</tbody>
</table>

Ref. Johnson Space Center
Mars Descent / Ascent Vehicle

- Small shroud of the EELV-H has significant impact on the Descent / Ascent Vehicle
- Vertical lander configuration is not viable for small launch shrouds
  - Packaging and volume problems
  - High center of gravity increases landing stability problems
  - Assembled vehicles have larger c.g. uncertainty – increases aerocapture and aeroentry precision
  - Ingress / Egress difficulties
  - Launch vehicle shroud cannot be used as the Mars aerobrake or aeroentry shield
  - Parachute deployment speeds: Parachutes cannot be used due to high deployment speeds (M=4.5) due to high ballistic coefficient
  - Aerobrake on-orbit assembly and checkout required or other concepts which utilize deployed systems are needed
- Large 8 x 30 m shroud assumed for vehicle elements

![Shroud Diagram]

**Parachute deployment speeds**

- Current Estimate
- Current Mach number parachute deployment limits

6 m Delta-IV H (Not Standard) 8 m Diameter Shroud
Short-Stay Mars Descent / Ascent Vehicle

- Transports four crew from Mars orbit to the surface and return to Mars orbit
- Vehicle supports crew for 30-days
- Two-stage design for high Mars orbit staging
- Regenerative air, open water life support system
- Advanced EVA and mobility
- Crew health and maintenance, including exercise equipment, for adaptation to martian gravity

<table>
<thead>
<tr>
<th>High Mars Orbit Option</th>
<th>Mass (kg)</th>
<th>Stowed Vol. (M³)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Payloads and Systems</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 Power System</td>
<td>4226.0</td>
<td>0.000</td>
</tr>
<tr>
<td>2.0 Avionics</td>
<td>153.0</td>
<td>0.279</td>
</tr>
<tr>
<td>3.0 Environmental Control &amp; Life Support</td>
<td>1037.6</td>
<td>3.983</td>
</tr>
<tr>
<td>4.0 Thermal Management System</td>
<td>527.4</td>
<td>2.350</td>
</tr>
<tr>
<td>5.0 Crew Accommodations</td>
<td>727.7</td>
<td>5.776</td>
</tr>
<tr>
<td>6.0 EVA Systems</td>
<td>1073.9</td>
<td>7.539</td>
</tr>
<tr>
<td>7.0 In-Situ Resource Utilization</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td>8.0 Mobility</td>
<td>1350.4</td>
<td>8.171</td>
</tr>
<tr>
<td>9.0 Science</td>
<td>301.2</td>
<td>1.600</td>
</tr>
<tr>
<td>10.0 Structure</td>
<td>1339.8</td>
<td>0.000</td>
</tr>
<tr>
<td>Margin (20%)</td>
<td>1807.4</td>
<td>5.689</td>
</tr>
<tr>
<td>Food</td>
<td>360.0</td>
<td>1.252</td>
</tr>
<tr>
<td>Crew</td>
<td>372.0</td>
<td>-</td>
</tr>
<tr>
<td><strong>Total Mass</strong></td>
<td>72140.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ascent Stage (Two Stage)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew Module</td>
<td>1617.5</td>
</tr>
<tr>
<td>Stage</td>
<td>161.3</td>
</tr>
<tr>
<td>Propulsion</td>
<td>4675.6</td>
</tr>
<tr>
<td>Propellants</td>
<td>24988.2</td>
</tr>
<tr>
<td><strong>Total Mass</strong></td>
<td>31442.7</td>
</tr>
</tbody>
</table>

| Descent Stage (Payload Down) | 44719.1 |
| Stage                        | 1242.3  |
| Propulsion                   | 4658.9  |
| Propellants                  | 11336.0 |

| Aerobrake                  | 10184.1 |

| Total Mass | 72140.4 |

Ref. Johnson Space Center
“Bimodal” NTR Transfer Vehicles for Mars Cargo and Piloted Missions


Cargo Mission 1
Descent / Ascent Lander
IMLEO = 123 - 157 mt

Cargo Mission 2
Crew Return Vehicle
IMLEO = 250 - 612 mt

Piloted Mission
Crew Transfer Vehicle
IMLEO = 104 - 896 mt

Ref. Glenn Research Center
• **Human Support**
  – Advanced health care systems for long periods away from Earth (22 months)

• **Advanced Space Transportation**
  – Advanced interplanetary propulsion: Options include:
    • Bi-Modal Nuclear Thermal Propulsion (925 sec Isp, 15 kWe)
    • High Power Nuclear Electric (Ion, MPD, or VASMIR at multi-MW power levels) ?
  – Large volume / large mass Earth-to-Orbit transportation
  – Very high rate payload and launch vehicle processing land launch capability
  – Advanced LEO automated rendezvous, assembly, checkout, and verification facilities and techniques
  – Long-term storage of hydrogen in space

• **Advanced Space Power**
  – Nuclear power reactor 15-30 kWe for high-latitude scientific investigations

• **Miscellaneous**
  – Integrated vehicle health maintenance for vehicles unattended for long periods (21-22 months)
  – Advanced reliability for long vehicle operations (up to 44 months excluding LEO assembly ops)
## Architecture Comparison Criteria

### Short-Stay Mars Mission

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture Evolution Potential</td>
<td>Focus on short stay limits evolution</td>
</tr>
<tr>
<td>Architecture Commonality</td>
<td>Very little propulsion system commonality</td>
</tr>
<tr>
<td>Initial Mass in Low-Earth Orbit</td>
<td>522-1665 mt</td>
</tr>
<tr>
<td>Mass to Mars Surface</td>
<td>13 mt</td>
</tr>
<tr>
<td>Number of Crew</td>
<td>4</td>
</tr>
<tr>
<td>Number of Cargo Launches</td>
<td>17-55</td>
</tr>
<tr>
<td>On-orbit Assembly Required?</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Crew Launches</td>
<td>tbd</td>
</tr>
<tr>
<td>Architecture Redundancy</td>
<td>No overlapping of resources</td>
</tr>
<tr>
<td>Architecture Complexity</td>
<td>Very complex LEO mission</td>
</tr>
<tr>
<td>Architecture Sensitivity</td>
<td>High</td>
</tr>
<tr>
<td>Crew Hazards</td>
<td>Mars orbit rendezvous, 365-650-day long mission</td>
</tr>
<tr>
<td>Time in Interplanetary Space</td>
<td>620 total days</td>
</tr>
<tr>
<td>Time on Surface</td>
<td>30 total days</td>
</tr>
</tbody>
</table>
**Mars-Short Stay Mission Architecture Summary**

**Strengths**

- One-year mission is possible in some opportunities
- Shorter total mission reduces reliability requirements
- Accomplish mission events quicker allowing crew return phase to begin sooner
- Shorter mission reduces crew time spent beyond Earth orbit (365-650 total days)
- Minimizes surface infrastructure

**Weaknesses**

- Large initial mass in LEO
- Large variation in mass; large sensitivity to mass, level of redundancy, and technology changes
- Science return is local “focus” oriented (10 km)
- No overlap of mission/vehicle resources
- Launch facilities and launch rate impacts as well as on-orbit assembly and checkout issues
- Majority of mission is spent in zero-g radiation environment (95%)
- Close sun passage increases radiation dose to the crew (0.35-0.7 AU)
- Short surface stay allows less time for contingencies and re-planning (30 days)
Architecture Issues and Follow-on Work

- Results are due to the short-stay mission constraints and are not due to the NTR system performance. The trends of these results will be similar for all advanced propulsion options.

- Small launch vehicle constraints force large levels of on-orbit assembly and checkout in low-Earth orbit which significantly increases mission complexity, mission risk, and cost.

- Separating crew from their return vehicle increases risk to the crew (survival)

- Requirements of the short stay mission poses a significant mission, design, assembly, and risk challenge for minimal return

- Additional analysis is required to determine feasibility
  - Finalize trajectory options
  - Update vehicle concepts
  - Launch/assembly impacts
  - Operations concepts
  - Risk analysis
  - Crew health and performance
  - Parking orbit analysis
  - Power strategy
Mars Short-Stay Architecture Analysis
Remaining Work

- **Finalize Mars Short-Stay Mission Trajectory Options**
  - Variation and sensitivity across the entire synodic cycle
  - Vehicle and crew impacts of heliocentric passage
  - Parking orbit arrival/departure constraints for short Mars vicinity stay

- **Launch Vehicle / Assembly Assessments**
  - Launch vehicle impacts
  - On-orbit assembly / checkout concepts
  - Vehicle support concepts (fuel depot?)

- **Probabilistic Risk Assessments for leading architecture concepts**

- **Operations Concepts**
  - Launch operations, vehicle, and payload processing
  - Flight and surface mission
  - Abort concepts

- **Crew Health and Performance Assessments**
  - Radiation and zero-g for various total mission durations
  - Crew health and countermeasures for long-outbound transits

- **Power System Strategy**
  - Strategy to meet high latitude, mobility, and science requirements

- **Update Vehicle Concepts**
  - Mars Descent / Ascent Vehicle
  - NTR Piloted Vehicles
Backup
Short-Stay Mars Mission Implications

- **Large energy requirements increases mission vehicle size dictates need for advanced propulsion technology**

- **Significant variation of propulsion requirements for the Short-Stay mission across synodic cycle (100%)**
  - Significant impacts to vehicle design and certification due to wide variation of vehicle size

- **Short stay in the vicinity of Mars compromises mission return and crew safety**
  - Limited time for gravity-acclimation
  - Limited time for contingencies or dust storms
  - Majority of time spent in deep space (zero-gravity & deep space radiation)

- **Total mission duration for the Short-Stay Mission on the order of 12-22 months**
  - System reliability still critical to crew survival
  - Life support system reliability
  - Short (one-year) missions are possible, but limited to single opportunities over the 15-year synodic cycle (2018)

- **Venus swing-by’s can reduce propulsive requirement (and thus mission mass)**
  - Pass within 0.35-0.72 AU of the sun (increases radiation and thermal load)
  - Longer total mission duration in interplanetary space environment
Normalized Mass Ratio

- Provides a top-level comparison of the relative initial mass in LEO
- Derived from the rocket equation

\[
\frac{M_f}{M_i} = \frac{\Delta V}{g \cdot Isp}
\]

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_f)</td>
<td>Final Mass (kg)</td>
</tr>
<tr>
<td>(M_i)</td>
<td>Initial Mass (kg)</td>
</tr>
<tr>
<td>(\Delta V)</td>
<td>Velocity Change (m/s)</td>
</tr>
<tr>
<td>(g)</td>
<td>Gravitational Acceleration (m/s(^2))</td>
</tr>
<tr>
<td>(Isp)</td>
<td>Specific Impulse (s)</td>
</tr>
</tbody>
</table>

![Normalized Mass Ratio Graph]

- Chemical
- NTR
**Short-Stay Operational Considerations**

- Need to maintain abort gap closure for all interplanetary propulsion options considered
- A separate Earth Return Vehicle (ERV) remains an important safety and mission success asset, and should be retained in this architecture
- Mars orbital operations (capture, rendezvous, phasing for departure, etc.) needs further assessment
- Short-stay surface adaptation story is mixed:
  - Short-stay allows for simpler surface spacecraft, but
  - will generate pressure to get on with the exploration phase early (adaptation issues)
  - Initial operations (g-transition, vehicle safing, appendage deployments) must occur without crew exertion
- Entry, Descent, and Landing (EDL) precision for this mission is primarily for mission success (along with rendezvous with pre-deployed robotic systems)
- 10 km radius has been established as a reasonable traverse radius about the landing zone (walkback). Unpressurized rover(s) is assumed to be used during this mission due to the short-stay
- Surface mission likely similar to an extended and very complex ISS assembly mission
- Shorter exposure window to radiation and dust storm events on the surface, but due to visibility restrictions, the crew may get to Mars and be NO GO to land due to dust storms in the landing zone.
  - Initial timeline assessment: 21 EVAs of 6.5 hour duration are supported:
    - 5 local area (acclimation, area science, rover assembly)
    - 5 rover-assisted traverses
    - 11 Core drills at three different sites (Core A is assumed to take only 3 EVAs, the others require 4 each)
  - This timeline is considered optimistic
Variation in Daylight Hours During a Martian Year for Mid to High (+/- 40, 50, & 60 deg) Latitudes

Mission Date and Landing Site Location Significantly Influence Length of Operational “Day” Science Landing Requirements

5° S to 65° N
Variation in Daylight Hours During a Martian Year for Low (+/- 10, 20, & 30 deg) Latitudes

Arrival (7/18/20)  Departure (8/27/20)
Arrival (9/28/18)  (7/17/22)
Departure (11/17/18)  (8/26/22)
Arrival (7/27/24)  Departure (9/5/24)
Arrival (9/13/26)
Mars Transit Habitat

LEVEL 4
Pressurized Tunnel

LEVEL 3
Crew Health Care Area

LEVEL 2
Crew Quarters & Mech Rm

LEVEL 1:
Galley / Wardroom Area

20” WINDOW (2)

HATCH DOORS
INFLATABLE SHELL
SOFT STOWAGE ARRAY
CENTRAL STRUCTURAL CORE
INFLATABLE OUTFITTING COMPRESSION RING
INTEGRATED WATER TANK / STORM SHELTER

Ref. Johnson Space Center
Modular “Bimodal” NTR Transfer Vehicle Designs Developed for Mars Cargo and Piloted Missions

Bimodal NTR: High thrust, high Isp propulsion system utilizing U\textsuperscript{235} produces thermal energy for propellant heating and electric power generation enhancing vehicle capability

### Bimodal NTR Stage

### Engine Characteristics
- Three 15 klbf tricarbide engines
- Each bimodal NTR produces 25 kW\textsubscript{e}
- Utilizes proven Brayton technology
- Variable thrust & Isp optional with “LOX-afterburner” nozzle (LANTR)

### Vehicle Characteristics
- Versatile design
- “Bimodal” stage produces 50 kW\textsubscript{e}
- Power supports active refrigeration of LH\textsubscript{2}
- New “saddle” truss design allows easy jettisoning of “in-line” LH\textsubscript{2} tank & contingency consumables
- Propulsive Mars capture and departure on piloted mission
- Fewest mission elements, simple space operations & reduced crew risk

Ref. Glenn Research Center
DPT Mars Long-Stay Mission

Architecture Status

Mid-Term (2018) Nuclear Thermal Propulsion and Solar Electric Propulsion System Options

Bret G. Drake
NASA/Johnson Space Center

July 11, 2000
Outline

• Architecture Overview
• Ground Rules and Assumptions
• Detailed Mission by Phase
• Capability Evolution
• Systems
  – Transit Habitat
  – Surface Habitat
  – Descent / Ascent Vehicle
  – Interplanetary Transportation
  – Launch Vehicle
• Architecture Features
• Technology Needs
• Architecture Summary
Evolution of the Long-Stay Mission Philosophy

1988: Case Studies
- Short Surface Stay
- Chemical / Aerobrake
- Split Sprint Missions

1989: Case Studies
- Short Surface Stay
- Chemical / Aerobrake
- All-up Mission Profile

1990: 90-day Study
- Short Surface Stay
- Split Sprint Missions
- Various propulsion options

1991: Synthesis Group
- Short Surface Stay
- Nuclear Thermal Propulsion
- Heavy lift launch vehicle

1997: DRM 1.0
- Long Surface Stay
- Nuclear Thermal Propulsion
- Heavy lift launch vehicle

1999: Dual Landers
- Long Surface Stay
- NTR or SEP
- Enabled Global Access

- Short-stay missions are energy intensive
- On-orbit assembly increases mission complexity
- Large masses/volumes require large launch vehicle
- "Free-Return trajectories not beneficial"
- Crew acclimation for short stay missions needs further investigation
- Large masses/volumes require large launch vehicle
- NTR propulsion, Aerobraking and ISRU are promising technologies to pursue
- Large masses/volumes require large launch vehicle
- Crew exposure to interplanetary space limited
- Functional redundancy maximized
- Lowest mass approach
- Crew exposure limited
- Science return maximized
- "Shuttle Compatible" launch vehicle
- "Key" Technologies identified
- Large masses/volumes require large launch vehicle
Mars Long-Stay Mission Significant Features

- Balances technical, programmatic, mission, and safety risks
- Lowest number of launches per human mission
- Simple LEO operations – automated rendezvous and docking of two elements
- High scientific return (500+ days on Mars) with continuous collaboration with colleagues on Earth
- Minimizes exposure of crew to interplanetary environment (zero-g and deep-space radiation)
- Maximizes reuse of mission elements: SEP and surface habitat (if desired)
- Vehicle design independent of mission opportunity (Small variation (10%) in vehicle size for every Mars opportunity)
- Enables global surface access if desired
High Earth Orbit Staging Mission Scenarios

- Elliptical Parking Orbit (EPO)
- Earth Station Orbit (LEO)
- Mars Aerocapture
- Near Earth Asteroids
- Libration Points

- Chemical Injection Burn
- Crew Transfer via Crew Taxi
- EP Transfer
- Rendezvous

- Mars Crew Transfer via Crew Taxi
Mars Mission Overview  
(SEP Option)

Habitat Lander and Ascent/Descent Vehicles delivered to Low Earth Orbit with “Shuttle Class” launcher. Solar Electric Propulsion stage spirals cargo to High Earth Orbit. Chemical injection used at perigee. SEP spirals back to LEO for reuse.

Transit Habitat vehicle delivered to LEO with “Shuttle Class” launcher. SEP spirals Transit Habitat to High Earth Orbit. Crew delivered to vehicle via crew taxi. SEP spirals back to LEO for reuse.

Crew travels to Mars in “fast transit” 180-206 day transfer. Aerobrakes into Mars orbit.

Surface Habitat lands and performs initial setup and checkout - Initial outpost established

Crew rendezvous with Descent/Ascent Vehicle in Mars Orbit then lands in vicinity of Habitat Lander.

30 days provided to satisfy “long-stay” criteria.

Crew ascends and rendezvous with waiting Transit Habitat.

Crew returns to Earth on “fast transit” 180-206 day transfer. Direct entry at Earth.
Mars Mission Overview
(NTR Option)

Cargo Vehicles Delivered to Low-Earth Orbit via “Shuttle Compatible” Launch Vehicle
- Surface Habitat/Lander
- Surface Habitat NTR
- Descent-Ascent Lander
- Descent-Ascent Lander NTR

Crew Vehicles Delivered to Low-Earth Orbit via “Shuttle Compatible” Launch Vehicle
- Transit Habitat/Lander
- Transit Habitat NTR
Crew delivered to Mars Vehicle via Shuttle

Surface Habitat and exploration gear aerocaptures into Mars orbit
Ascent/Descent Vehicle aerocaptures and remains in Mars orbit for the crew

Crew travels to Mars in “fast transit” 180-206 day transfer. Propulsively captures into Mars orbit

Crew rendezvous with Descent/Ascent Vehicle in Mars Orbit then lands in vicinity of Habitat Lander

Surface Habitat lands and performs initial setup and checkout - Initial outpost established

Surface Habitat remains in Mars orbit

Habitat remains in Mars orbit

Crew ascends and rendezvous with waiting Transit Habitat

Crew returns to Earth on “fast transit” 180-206 day transfer. Direct entry at Earth

30 days provided to satisfy “long-stay” criteria.

Earth
Long-Stay Mission Sequence

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cargo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descent/Ascent Vehicle</td>
<td>Surface Habitat</td>
<td></td>
</tr>
<tr>
<td>2 Crew</td>
<td>Transit Vehicle</td>
<td>Departure</td>
<td>Arrival</td>
<td>Departure</td>
<td>Arrival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Cargo</td>
<td>Transit Vehicle</td>
<td>Departure</td>
<td>Arrival</td>
<td>Departure</td>
<td>Arrival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descent/Ascent Vehicle</td>
<td>Surface Habitat</td>
<td></td>
</tr>
<tr>
<td>4 Crew</td>
<td>Transit Vehicle</td>
<td>Departure</td>
<td>Arrival</td>
<td>Departure</td>
<td>Arrival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Cargo</td>
<td>Transit Vehicle</td>
<td>Departure</td>
<td>Arrival</td>
<td>Departure</td>
<td>Arrival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descent/Ascent Vehicle</td>
<td>Surface Habitat</td>
<td></td>
</tr>
<tr>
<td>6 Crew</td>
<td>Transit Vehicle</td>
<td>Departure</td>
<td>Arrival</td>
<td>Departure</td>
<td>Arrival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Cargo</td>
<td>Transit Vehicle</td>
<td>Departure</td>
<td>Arrival</td>
<td>Departure</td>
<td>Arrival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descent/Ascent Vehicle</td>
<td>Surface Habitat</td>
<td></td>
</tr>
<tr>
<td>8 Crew</td>
<td>Transit Vehicle</td>
<td>Departure</td>
<td>Arrival</td>
<td>Departure</td>
<td>Arrival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surface Architecture

Outpost Missions (Bite Size Chunks)

- Full Mission and augmented systems
  - Rovers
  - Power (nuke)
  - Science (drills)
  - etc.

Basic Survivability (30 Days)

- Short-stay capability (30 days)
  - Ascent vehicle and propellant (abort-to-orbit)
  - Contingency science
  - Common lander design

Full Mission Capability (18 Months)

- Full surface mission support systems
  - Power
  - Life Support
  - Maintenance
  - Thermal
  - Crew accommodations
  - Science
  - Common lander design
Mars Long-Stay Ground Rules and Assumptions

• Detailed GR&A provided in the “Mars Long-Mission GR&A” document dated 4-20-2000

• Primary DPT GR&A which drive this architecture include:
  – First cargo mission 2016, First human mission 2018
  – Short transits to/from Mars (180-206 days) with long surface stay
  – Six crew
  – Zero-g transits
  – Technology freeze to TRL 6 by 2011
  – Factor of nine improvement for primary and secondary structures
  – Advanced mobility and scientific laboratory capability for enhanced science
  – Transportation Assumptions
    • “Shuttle Compatible” launch vehicle for cargo (80 mt)
    • Both SEP and NTR investigated
    • Aerobraking at Mars
    • Long-term cryogenic fluids storage
**Mission Sequence**

**High Earth Orbit Boost Phase**

### UNPILOTED VEHICLES

1. **Cargo Launch 2**
   - SEV launched to low Earth orbit

2. **Cargo Launch 3**
   - Descent/Ascent vehicle, aerobrake, and TMI stage launched LEO

3. **Cargo Launch 4**
   - Surface Habitat Lander, aerobrake, and TMI stage launched LEO

4. **SEP vehicles boost Descent/Ascent and Surface Hab landers to High Earth Orbit**

5. **STS 4 / Taxi Servicing mission in High Earth Orbit (contingency)**

### PILOTED VEHICLES

1. **Cargo Launch 1**
   - Transit Habitat launched to low Earth orbit

2. **STS 1 & 2**
   - Transit Habitat outfitting missions

3. **Cargo Launch 5**
   - Transit Habitat SEP vehicle launched to low Earth orbit

4. **Cargo Launch 6**
   - Transit Habitat propulsion stages launched to low Earth orbit

5. **SEP vehicle boosts Transit Habitat to High Earth Orbit**

6. **STS 3 / Taxi Transit Habitat servicing mission in High Earth Orbit (contingency)**
**Mission Sequence**  
*Trans-Mars Injection / Mars Arrival Phase*

1. **Surface Habitat Lander**
   - Unpiloted Vehicles injected toward Mars on near minimum energy transfers

2. **Descent/Ascent Vehicle**
   - Unpiloted vehicles aerocapture into Mars orbit prior to the crew

3. **STS 5 / Taxi Flight Crew Delivery to Transit Habitat**
   - Transit Habitat Trans-Mars Injection (180-206 day transfers)

4. **Transit Habitat Trans-Mars Injection**
   - Transit habitat aerocaptures into Mars orbit

5. **Surface Habitat**
   - Performs deorbit, entry, descent, and precision landing on Mars

6. **Transit Habitat**
   - Performs rendezvous with Descent/Ascent vehicle in Low Mars Orbit.
   - Crew transfers to Descent/Ascent Vehicle
### Mission Sequence
**Surface Mission / Mars Ascent / Return Phases**

- **Crew performs deorbit, entry, descent, and precision landing on Mars in Descent / Ascent Vehicle**
- **Low-Mars Orbit Wait**
  Transit Habitat remains in low-Mars Orbit during surface mission (unmanned)
- **Ascent & Rendezvous**
  Ascent from Mars surface and rendezvous with Transit Habitat in low-Mars orbit
- **Earth Return**
  Direct Earth entry at end of mission

- **Initial Operations**
  30 days for systems checkout and crew acclimation. Contingency abort-to-orbit capability
- **Initial Habitat Operations**
  Safe vehicle, habitat inflation, power system deployment, habitat outfitting and systems checkout.
- **Surface Exploration**
  Concentrates on the search for life, drilling, geology, and microbiology investigations (up to 18 months long)
Solar Electric Vehicle Transportation Concept

2016

Cargo Boost
SEP-1 vehicle boosts cargo vehicles to high Earth departure orbit

1

2018

Piloted/Cargo Boost
Both cargo and piloted vehicles are boosted to high Earth departure orbit

1

2

2020

Return
SEP-2 vehicle returns to LEO for new propulsion module and mission payload

1

2
“Bimodal” NTR Crew Transfer Vehicle (CTV) Mission Scenario

CTV Flys-by Earth

Crew Re-entry

Crew Ascends & Docks with CTV, Contingency Consumables left in Mars Orbit, Trans-Earth Injection

Crew Transfer from CTV to Hab Lander in Mars Orbit

NTR Propulsive Capture at Mars

CTV Rotation Provides Artificial Gravity to and from Mars (optional)

Trans-Mars Injection, Empty In-Line Tank Jettisoned

2 Magnums used for CTV Assembly
1 STS used for Crew & TransHab Delivery
Technology Driven Capabilities

Advanced Habitation
- Radiation Protection
- Closed-loop Life Support
- Large Volume
- Advanced Health Care

Electric Propulsion

Nuclear Thermal Propulsion

Near Earth Transportation
- Radiation Protection
- Closed-loop Life Support
- Large Volume
- Advanced Health Care
**Mars Transit Habitat**

- Supports mission crew of six for up to 200-day transits to and from Mars
- Provides zero-g countermeasures and deep-space radiation protection
- Return propulsion stage integrated with transit system
- Provides return-to Earth abort capability for up to 30 hours post-TMI

### Mars Transit Habitat

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (kg)</th>
<th>Stowed Vol. (M3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Power System</td>
<td>5834.6</td>
<td>0.000</td>
</tr>
<tr>
<td>2.0 Avionics</td>
<td>287.0</td>
<td>0.140</td>
</tr>
<tr>
<td>3.0 Environmental Control &amp; Life Support</td>
<td>3948.9</td>
<td>19.133</td>
</tr>
<tr>
<td>4.0 Thermal Management System</td>
<td>1257.3</td>
<td>5.260</td>
</tr>
<tr>
<td>5.0 Crew Accommodations</td>
<td>4309.9</td>
<td>30.719</td>
</tr>
<tr>
<td>6.0 EVA Systems</td>
<td>868.7</td>
<td>2.922</td>
</tr>
<tr>
<td>7.0 Structure</td>
<td>896.9</td>
<td>0.000</td>
</tr>
<tr>
<td>Margin (15%)</td>
<td>2475.9</td>
<td>8.726</td>
</tr>
<tr>
<td>Crew</td>
<td>558.0</td>
<td></td>
</tr>
<tr>
<td>Food (Return Trip)</td>
<td>2436.0</td>
<td>8.473</td>
</tr>
<tr>
<td>Food (Outbound Trip)</td>
<td>2436.0</td>
<td>8.473</td>
</tr>
<tr>
<td>Food (Contingency)</td>
<td>7320.0</td>
<td>25.461</td>
</tr>
<tr>
<td><strong>Total Transit Habitat Mass</strong></td>
<td>32629.1</td>
<td>109.306</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (kg)</th>
<th>Stowed Vol. (M3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew Taxi/Earth Return Capsule</td>
<td>3246.5</td>
<td>0.000</td>
</tr>
<tr>
<td>Circ Stage</td>
<td>14770.6</td>
<td>0.000</td>
</tr>
<tr>
<td>Stage</td>
<td>567.7</td>
<td>0.000</td>
</tr>
<tr>
<td>Propulsion</td>
<td>1301.6</td>
<td>0.000</td>
</tr>
<tr>
<td>Propellants</td>
<td>12901.3</td>
<td>0.000</td>
</tr>
<tr>
<td>Aerobrake</td>
<td>4848.5</td>
<td>0.000</td>
</tr>
<tr>
<td>TEI Stage</td>
<td>51429.8</td>
<td>0.000</td>
</tr>
<tr>
<td>Stage</td>
<td>1286.0</td>
<td>0.000</td>
</tr>
<tr>
<td>Propulsion</td>
<td>2363.1</td>
<td>0.000</td>
</tr>
<tr>
<td>Propellants</td>
<td>47780.7</td>
<td>0.000</td>
</tr>
<tr>
<td>TMI Stage</td>
<td>66583.9</td>
<td>0.000</td>
</tr>
<tr>
<td>Stage</td>
<td>1455.1</td>
<td>0.000</td>
</tr>
<tr>
<td>Propulsion</td>
<td>2518.5</td>
<td>0.000</td>
</tr>
<tr>
<td>Propellants</td>
<td>62610.3</td>
<td>0.000</td>
</tr>
</tbody>
</table>

**INITIAL MASS IN HIGH EARTH ORBIT**: 173508.4

---

Ref. Johnson Space Center
**Mars Habitat Lander**

- Vehicle supports mission crew of six for up to 18 months on the surface of Mars
- Provides robust exploration and science capabilities
- Descent vehicle capable of landing 36,000 kg

<table>
<thead>
<tr>
<th>Payloads and Systems</th>
<th>Mass (kg)</th>
<th>Stowed Vol. (M³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Power System</td>
<td>30325.2</td>
<td>99.996</td>
</tr>
<tr>
<td>2.0 Avionics</td>
<td>5988.0</td>
<td>0.000</td>
</tr>
<tr>
<td>3.0 Environmental Control &amp; Life Support</td>
<td>153.0</td>
<td>0.279</td>
</tr>
<tr>
<td>4.0 Thermal Management System</td>
<td>3948.9</td>
<td>19.133</td>
</tr>
<tr>
<td>5.0 Crew Accommodations</td>
<td>2912.1</td>
<td>9.020</td>
</tr>
<tr>
<td>6.0 EVA Systems</td>
<td>3502.9</td>
<td>26.369</td>
</tr>
<tr>
<td>7.0 In-Situ Resource Utilization</td>
<td>1174.4</td>
<td>10.124</td>
</tr>
<tr>
<td>8.0 Mobility</td>
<td>165.0</td>
<td>0.227</td>
</tr>
<tr>
<td>9.0 Science</td>
<td>829.9</td>
<td>4.215</td>
</tr>
<tr>
<td>10.0 Structure</td>
<td>1861.3</td>
<td>6.837</td>
</tr>
<tr>
<td>Margin (15%)</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td>Food</td>
<td>6840.0</td>
<td>23.791</td>
</tr>
<tr>
<td>Crew</td>
<td>0.0</td>
<td>-</td>
</tr>
</tbody>
</table>

| Ascent Stage         | 243.1     | 0.000            |
| Crew Module          | 110.0     | 0.000            |
| Stage                | 133.1     | 0.000            |
| Propulsion           | 0.0       | 0.000            |
| Propellants          | 0.0       | 0.000            |

| Descent Stage        | 12636.3   | 0.000            |
| (Payload Down)       | 30568.3   | -                |
| Stage                | 1002.1    | 0.000            |
| Propulsion           | 3436.0    | 0.000            |
| Propellants          | 8198.2    | 0.000            |

| Aerobrake            | 4656.2    | 0.000            |

| Circ/Deorbit Stage   | 9494.0    | 0.000            |
| Stage                | 365.0     | 0.000            |
| Propulsion           | 1339.5    | 0.000            |
| Propellants          | 7789.5    | 0.000            |

| TMI Stage            | 24357.3   | 0.000            |
| (TMI Payload)        | 57354.8   | -                |
| Stage                | 868.4     | 0.000            |
| Propulsion           | 2045.9    | 0.000            |
| Propellants          | 21625.1   | 0.000            |

**INITIAL MASS IN HIGH EARTH ORBIT** 81712.1

Ref. Johnson Space Center
**Mars Descent / Ascent Vehicle**

**LEO Configuration**

- Transports six crew from Mars orbit to the surface and return to Mars orbit
- Provides contingency abort-to-orbit capability
- Vehicle supports crew for 30-days
- Vehicle capable of utilizing locally produced propellants

**Payloads and Systems**

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Stowed Vol. (M$^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13467.2</td>
<td>30.095</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Mass (kg)</th>
<th>Stowed Vol. (M$^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Power System</td>
<td>4762.0</td>
<td>0.000</td>
</tr>
<tr>
<td>2.0 Avionics</td>
<td>153.0</td>
<td>0.279</td>
</tr>
<tr>
<td>3.0 Environmental Control &amp; Life Support</td>
<td>1037.6</td>
<td>3.983</td>
</tr>
<tr>
<td>4.0 Thermal Management System</td>
<td>527.4</td>
<td>2.350</td>
</tr>
<tr>
<td>5.0 Crew Accommodations</td>
<td>727.7</td>
<td>5.776</td>
</tr>
<tr>
<td>6.0 EVA Systems</td>
<td>1085.0</td>
<td>3.084</td>
</tr>
<tr>
<td>7.0 In-Situ Resource Utilization</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td>8.0 Mobility</td>
<td>1200.4</td>
<td>8.171</td>
</tr>
<tr>
<td>9.0 Science</td>
<td>301.2</td>
<td>1.600</td>
</tr>
<tr>
<td>10.0 Structure</td>
<td>1339.8</td>
<td>0.000</td>
</tr>
<tr>
<td>Margin (15%)</td>
<td>1415.1</td>
<td>3.599</td>
</tr>
<tr>
<td>Food</td>
<td>360.0</td>
<td>1.252</td>
</tr>
<tr>
<td>Crew</td>
<td>558.0</td>
<td>- - - - - -</td>
</tr>
</tbody>
</table>

**Ascent Stage**

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Stowed Vol. (M$^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17779.2</td>
<td>1.000</td>
</tr>
</tbody>
</table>

**Descent Stage**

(Payload Down)

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Stowed Vol. (M$^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12876.5</td>
<td>0.000</td>
</tr>
</tbody>
</table>

**Aerobrake**

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Stowed Vol. (M$^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4656.2</td>
<td>0.000</td>
</tr>
</tbody>
</table>

**Circ/Deorbit Stage**

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Stowed Vol. (M$^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9494.0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

**TMI Stage**

(TMI Payload)

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Stowed Vol. (M$^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24357.3</td>
<td>0.000</td>
</tr>
</tbody>
</table>

**Initial Mass in High Earth Orbit**

82630.4

Ref. Johnson Space Center
SETV Deployed with Mars Payload Element

**SEP Transfer Vehicle**

<table>
<thead>
<tr>
<th>SEP Transfer Vehicle</th>
<th>Total Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reusable SEP Power Module</td>
<td></td>
</tr>
<tr>
<td>Central Bus</td>
<td>27,935</td>
</tr>
<tr>
<td>Power System</td>
<td>3,770</td>
</tr>
<tr>
<td>Manipulator Arm</td>
<td>12,370</td>
</tr>
<tr>
<td>Manipulator Arm</td>
<td>11,795</td>
</tr>
<tr>
<td>SEP Propulsion Module</td>
<td></td>
</tr>
<tr>
<td>Propulsion Platform</td>
<td>7,730</td>
</tr>
<tr>
<td>Propellant Feed System</td>
<td>3,900</td>
</tr>
<tr>
<td>Propellant Feed System</td>
<td>3,830</td>
</tr>
<tr>
<td>Maximum Propellant Load</td>
<td>64,335</td>
</tr>
</tbody>
</table>

Ref. Glenn Research Center
“Bimodal” NTR Transfer Vehicles for Mars Cargo and Piloted Missions

(6 Shuttle Compatible Launch Vehicles plus Shuttle for Crew and TransHab Delivery)

2016 Cargo Mission 1
Habitat Lander
IMLEO = 131.5 mt

Optional “In-Line” LH$_2$ Tank (if needed)

2016 Cargo Mission 2
Cargo Lander
IMLEO = 132.5 mt

2016 Piloted Mission
Crew Transfer Vehicle
IMLEO = 168.5 mt

Ref. Glenn Research Center
Launch Vehicle

- Cost effective delivery of large mass and large payload
- Maximizes the cost effective use of common Shuttle boosters and launch facilities
- Shuttle compatible
  - Core equal to the diameter of the External Tank (27.6 mt)
  - Common Pad Hold Down System
  - Common Use of ET Handling & Manufacturing Hardware
  - Same mobile launch platform (modified flame trenches)
- Common Boosters
- Similar GLOW: Use of Shuttle Crawlers & MLPs

Ref. Marshall Space Flight Center
"Shuttle Compatible" Launch Vehicle
RFS Configuration

- 220 NMI/ 28.5 Degrees
- P/L: 80 mt
- P/L: 25 ft Dia X 92 ft

Payload Fairing
92 ft cyl x 25 ft I.D.

Circularization Stage
LO2 Tank

Liquid Flyback Booster (2)
LH2 Tank

Fwd Booster Attach
Aft Booster Attach
Thrust Structure
RS 68 Engines (2)

Booster Separation
Launch Pad (Shuttle)

Ref. Marshall Space Flight Center
Baseline Processing Option

MARS PROCESSING FLOW

- LFBB PROCESSING FACILITY
- MAGNUM CORE DELIVERY
- MAGNUM CORE VEHICLE
- MARS ENCAPSULATED PAYLOAD
- SSPF
- KICKSTAGE
- TMI STAGE TO LOW BAY
- VPF
- KICKSTAGE DELIVERY
- MARS PAYLOAD ELEMENTS
- MARS PAYLOAD ELEMENTS
- TMI DELIVERY
- LC-39A OR B (MODIFIED)
- MLT (NEW)
- VAB
- LCC

Ref. Kennedy Space Center
Baseline Payload Processing Option

MARS PAYLOAD PROCESSING

- TEI STAGE
- MARS CARGO DESCENT
- MARS TRANSHAB DESCENT
- NPP
- PHSF
- MARS TRANSHAB DESCENT
- MARS STAGE
- SSPF
- CARGO VEHICLE
- MARS ASCENT STAGE
- RETURN HAB
- LOGISTICS ITEMS
- ECRV
- TRANS HAB
- INFLATABLE HAB
- ISPP
- MPPF
- INFLATABLE HAB
- VAB

Ref. Kennedy Space Center
The KSC Operations Assessment team has developed a processing concept that requires an additional Mobile Launcher Platform but does not require construction of new facilities.

- Minor modifications to existing infrastructure can adequately accommodate the processing of the maximum inventory of flight hardware to support the launch campaign.

**Mobile Launch Platform**
- Two Mobile Launcher Platforms (MLPs) will be required to support the “Shuttle Compatible” and not interfere with the Space Shuttle Program.
- New MLP
- Modify existing MLP 1

**Pad Modifications**
- One pad will require modifications for both Shuttle and “Shuttle-Compatible” Launches
- New crawlerway

**Operations and Checkout Building**
- No modifications required

**Vehicle Assembly Building**
- Only platform modifications are required

Ref. Kennedy Space Center
Low-Earth Orbit Rendezvous and Docking

- Utilizing a large volume, large mass launch vehicle requires only automated rendezvous and docking

- Both Earth surface and LEO based navigation and control infrastructure utilized to enable LEO operations

- Dual launch sequence:
  - Mars payload launched first to LEO
  - Injection stage launched second
  - Mars payload acts as primary control vehicle during rendezvous and docking maneuver

- Vehicles remotely checked out in LEO prior to initiating Trans-Mars Injection maneuver
The Forward Deployment Strategy

Cargo Missions

Crew Mission

Primary Use

Depart Earth
Arrive Mars
Depart Mars
Arrive Earth

Architectural/Functional Backup

Architectural Backup for Crew #1

Forward Deployment Provides the Crew Dual Abort Paths
Example Power System Redundancy

First Human Mission Elements

Primary Power
- Nuclear
- Spare Engine
- Spare Radiator

Emergency Backup
- Solar/Regenerative Fuel Cell

Emergency Backup
- ISRU Fuel Cell Reactants

Emergency Backup
- Surface Mobile Power Systems

Abort to Orbit

Second Human Mission Elements

Primary Power
- Nuclear
- Spare Engine
- Spare Radiator

Emergency Backup
- Solar/Regenerative Fuel Cell

Emergency Backup
- Surface Mobile Power Systems
Example Life Support System Redundancy

First Human Mission Elements

Life Support System
• Bioregenerative

Emergency Backup
• Physical/Chemical

Long-Term Backup
• ISRU Water/ O₂ Cache

Abort to Orbit

Second Human Mission Elements

Life Support System
• Bioregenerative

Emergency Backup
• Physical/Chemical

Long-Term Backup
• ISRU Water/ O₂ Cache

Abort to Orbit
Post-Trans-Mars Injection Abort Scenarios
(SEP Architecture)

Post-Trans-Mars Injection Abort Scenarios: Trans-Earth Injection stage can be used to return the crew from an off-nominal TMI burn

Post-Trans-Mars Injection Abort Options

① Long Return Option (within 8 hrs of TMI)
   • Crew lives in Transit Habitat after abort declaration
   • Crew returned to Earth in the Earth Return Vehicle up to 30 days later

② Quick Return Option (within 30 hrs of TMI)
   • Crew returned in the Earth Return Vehicle
   • Return transit time 1-2 days

③ Heliocentric Aborts (1-2 months after TMI)
   • Return transit times range from 360-570 days
   • Crew lives in the Transit Habitat during return - direct Earth entry via Earth Return Vehicle
   • Can perform this abort only for some (3 of 7) opportunities (2014, 2016, 2018) with the current TEI size (33% increase to cover all opportunities)
**Mars Vicinity Abort Options**

### System Pre-Deployment
- Surface habitat pre-deployed prior to crew landing.
- Initial habitat safing, checkout, and verification
- Risk to crew is reduced since crew does not commit to the landing phase until all habitat systems are operational.

### Initial Operations (30 days)
- Crew lands in separate vehicle
- 30-day initial operations for crew acclimation, initial science
- Once acclimated, crew performs habitat system initialization, checkout and verification.
- Contingency abort-to-orbit capability provided

### Full Surface Mission (600 days)
- Crew transition to surface habitat complete
- Long-stay criteria met
- Ascent Vehicle placed in stand-by mode
- Contingency abort-to-orbit in Ascent Vehicle if required. Must wait in Mars orbit until Trans-Earth Injection window opens.

**Habitat Pre-Deployment**
Assumptions:

- Cargo launch concept based on Shuttle compatible systems
- 80 mt lift capacity due east
- Shroud 8 x 30 m
- Rendezvous and docking of two exploration elements
- Launch rate shown does not support continuous exploration (cargo launches must be supported in the 2018 launch opportunity)
- Detailed analysis of payload processing, payload and vehicle flows, facility impacts and modifications, schedule impacts, and cost assessments complete.

<table>
<thead>
<tr>
<th>Launch #</th>
<th>Descent / Ascent Vehicle</th>
<th>Vehicle Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wet Descent / Ascent Vehicle</td>
<td>Shuttle Compatible</td>
</tr>
<tr>
<td>2</td>
<td>Wet NTR Stage</td>
<td>Shuttle Compatible</td>
</tr>
<tr>
<td></td>
<td><strong>Habitat Lander</strong></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wet Habitat Lander</td>
<td>Shuttle Compatible</td>
</tr>
<tr>
<td>4</td>
<td>Wet NTR Stage</td>
<td>Shuttle Compatible</td>
</tr>
<tr>
<td></td>
<td><strong>Transit Habitat</strong></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Transit Habitat</td>
<td>Shuttle</td>
</tr>
<tr>
<td>6</td>
<td>Habitat Consumables / NTR Core</td>
<td>Shuttle Compatible</td>
</tr>
<tr>
<td>7</td>
<td>NTR Tank Set</td>
<td>Shuttle Compatible</td>
</tr>
<tr>
<td>8</td>
<td>Checkout Crew</td>
<td>Shuttle</td>
</tr>
<tr>
<td>9</td>
<td>Flight Crew</td>
<td>Shuttle</td>
</tr>
</tbody>
</table>

Cargo launches for next mission
Assumptions:
- Evolved commercial EELV
- Heavy lift option with exploration unique upper stage
- 35 mt lift capacity due east (assumed performance - no data yet)
- Non-standard large shroud (8 x 30 m)
- Only hardware and volume launch considered thus far
- Crew support for on-orbit assembly, outfitting, and checkout not yet taken into account.
- Launch rate shown does not support continuous exploration (cargo launches must be supported in the 2018 launch opportunity)
- Detailed analysis not yet complete

### Launch # | Descent / Ascent Vehicle | Vehicle Type
--- | --- | ---
1 | Ascent Stage | Delta IV-H
2 | Aerobrake / Deorbit Descent Stage | Delta IV-H
3 | NTR Core Stage | Delta IV-H
4 | NTR Propellant Tank | Delta IV-H
5 | NTR Propellant Tank | Delta IV-M

### Habitat Lander
6 | Ascent Stage | Delta IV-H
7 | Aerobrake / Deorbit Descent Stage | Delta IV-H
8 | NTR Core Stage | Delta IV-H
9 | NTR Propellant Tank | Delta IV-H
10 | NTR Propellant Tank | Delta IV-M

### Transit Habitat
11 | Transit Habitat | Delta IV-H
12 | Habitat Consumables / ERC / Shadow Shield | Shuttle
13 | NTR Core Stage | Delta IV-H
14 | NTR Tank Set 1 | Delta IV-H
15 | NTR Tank Set 2 | Delta IV-H
16 | NTR Tank Set 3 | Delta IV-H
17 | Checkout Crew | Shuttle
18 | Flight Crew | Shuttle

Cargo launches for next mission
**Human Exploration of Mars**

**Evolution of Common Capabilities**

**L1/L2 Gateways**
- Long duration support of mission crew in interplanetary environment with limited resupply capabilities

**Mars Habitats**
- Transports mission payloads from low-Earth orbit to mission destination and return

**L1/L2 SEP**
- Transports mission crew from low-Earth orbit to mission destinations and high-Earth staging orbits

**L1/L2 Transfer Vehicle**
- Enables routine access to the planetary surface and expands the range of access for exploration

**Mars SEP Taxi**
- Enables routine access to the planetary surface and expands the range of access for exploration

**Mars SEP**
- Enables routine access to the planetary surface and expands the range of access for exploration
Human Support
- Advanced surface mobility and EVA: suitable for robust surface exploration (dexterity, mobility, maintainability)
- Advanced health care systems for long periods away from Earth (30 months)

Advanced Space Transportation
- Advanced interplanetary propulsion: Options include:
  - Solar Electric Propulsion (1.7 Mwe, 18% efficiency thin film solar)
  - Bi-Modal Nuclear Thermal Propulsion (925 sec Isp, 25 kWe)
- Large volume / large mass Earth-to-Orbit transportation
- In-situ consumable production for EVA system breathing oxygen and ECLSS backup
- Automated rendezvous and docking of exploration payloads (2) in Earth orbit

Advanced Space Power
- Nuclear power reactor 15-30 kWe for high latitude science investigations

Miscellaneous
- Integrated vehicle health maintenance for vehicles unattended for long periods (22-42 months)
- Advanced reliability for long vehicle operations (up to 32-51 months)
## Architecture Comparison Criteria
### Long-Stay Mars Mission

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture Evolution Potential</td>
<td>Long-stay human expansion</td>
</tr>
<tr>
<td>Architecture Commonality</td>
<td>High propulsion system commonality (SEP)</td>
</tr>
<tr>
<td>Initial Mass in Low-Earth Orbit</td>
<td>430 mt</td>
</tr>
<tr>
<td>Mass to Mars Surface</td>
<td>33 mt</td>
</tr>
<tr>
<td>Number of Crew</td>
<td>6</td>
</tr>
<tr>
<td>Number of Cargo Launches</td>
<td>6</td>
</tr>
<tr>
<td>Number of Crew Launches</td>
<td>1</td>
</tr>
<tr>
<td>On-Orbit Assembly Required?</td>
<td>No</td>
</tr>
<tr>
<td>Architecture Redundancy</td>
<td>Full architectural redundancy (vehicle overlap)</td>
</tr>
<tr>
<td>Architecture Complexity</td>
<td>Long surface mission</td>
</tr>
<tr>
<td>Architecture Sensitivity</td>
<td>Low</td>
</tr>
<tr>
<td>Crew Hazards</td>
<td>Surface mission, 900-day long mission</td>
</tr>
<tr>
<td>Time in Interplanetary Space</td>
<td>360-380 total days</td>
</tr>
<tr>
<td>Time on Surface</td>
<td>540 total days</td>
</tr>
</tbody>
</table>
Mars-Long Stay Mission
Architecture Summary

**Strengths**

- Low initial mass in LEO (430 mt)
- Small variation in mass; less sensitive to mass, level of redundancy, and technology changes
- Science return is regional “discovery” oriented
- Crew time spent in free space zero-g/radiation environment is minimized (360 days total)
- Potential for reuse of surface mission assets
- Functional overlap of mission resources
- Paced architecture allows for contingencies and re-planning
- Rendezvous and docking of two elements in low-Earth orbit

**Weaknesses**

- Long mission requires high reliability (30 months)
- Long surface mission (18 months)
- Many unknowns and crew health issues of long surface mission and surface environment (radiation, dust, gravity, etc.)
- Long-range roving capabilities for regional science (1000 km desired)
- Development of new 80-mt launch vehicle
- Crew productivity and challenges during long mission
Backup
Mars Long-Stay Mission Objectives

- Balance technical, programmatic, mission, and safety risks
- Provide an operationally simple mission approach emphasizing the judicious use of common systems
- Provide a flexible implementation strategy
- Limit the length of time that the crew is continuously exposed to the interplanetary space environment
- Define a robust planetary surface exploration capacity capable of safely and productively supporting crews on the surface of Mars for 500-600 days each mission
- Enable the capability to live off of the land
- Design systems capable of performing in each launch opportunity
- Examine at least three human mission to Mars
**Mars Transit Habitat**

- **Level 4**: Pressurized Tunnel
- **Level 3**: Crew Health Care Area
- **Level 2**: Crew Quarters & Mech Rm
- **Level 1**: Galley / Wardroom Area

- Hatch Doors
- Inflatable Shell
- Soft Stowage Array
- Central Structural Core
- Inflatable Outfitting Compression Ring
- Integrated Water Tank / Storm Shelter

- 20" Window (2)
• “Requirements”
  – Launch and recovery in Space Shuttle or Based at ISS
  – Utilizes space storable propellants
  – Crew of 6 with ΔV capability of >3100 m/s
  – Ten day upper limit for orbit phasing, rendezvous, and missed rendezvous
  – Aerocapture maneuvers at lunar return speeds to ISS orbit

• Preliminary Concept
  – Lifting body for crew g reduction
  – Integral LOX/CH₄ propulsion system
  – Lightweight docking system
Dual Lander Configurations

Surface Habitat

Descent / Ascent Vehicle

Ellipsled Aerobrake

Hab Lander (Deflated)

Circ. Stage

TMI Stage

Descent / Ascent Vehicle

Circ. Stage

TMI Stage

Ref. Johnson Space Center
SETV Baseline 3.4B Rev 1

SETV Resupply Proximity Operations

- Inflatable Ribs
- Folded Articulated Thruster Boom
- PV Array Sectors
- HET Thruster Platform
- SETV Bus Module
- Xenon Tank
- Electric Propulsion Module
- Payload Docking Interface
- EPM Docking Interface
- TMI Stage
- Mars Payload
- Ref. Glenn Research Center
Emerging Solar Array Technology

- Current SEP concept assumes thin film arrays
- Loose pointing requirements
- Requires 14,700 m²

- In the near term, lab demonstrations of 300 W/m² for flexible concentrators
- Tight pointing requirements
- Area reduced to 6700 m²
Modular “Bimodal” NTR Transfer Vehicle Designs Developed for Mars Cargo and Piloted Missions

Bimodal NTR: High thrust, high Isp propulsion system utilizing U²³⁵ produces thermal energy for propellant heating and electric power generation enhancing vehicle capability

Vehicle Characteristics
- Versatile design
- “Bimodal” stage produces 50 kWₑ
- Power supports active refrigeration of LH₂
- New “saddle” truss design allows easy jettisoning of “in-line” LH₂ tank & contingency consumables
- Vehicle rotation (w ≤ 4 rpm) can provide Mars gravity to crew outbound and inbound (available option)
- Propulsive Mars capture and departure on piloted mission
- Fewest mission elements, simple space operations & reduced crew risk
- Bimodal NTR vehicles easily adapted to Moon & NEA missions

Engine Characteristics
- Three 15 klbf tricarbide engines
- Each bimodal NTR produces 25 kWₑ
- Utilizes proven Brayton technology
- Variable thrust & Isp optional with “LOX-afterburner” nozzle (LANTR)

Ref. Glenn Research Center
“Shuttle Compatible” Launch Vehicle Configurations

Large Payload Missions to LEO
(HMM w/ Expendable Shroud)

Payload = 188 klb
(to 220 nmi circ @ 28.5°)

HMM with Integrated Shroud/Aerobrake

Payload = 197 klb
(to 220 nmi circ @ 28.5°)

Space Based Laser (SBL) Delivery

Payload = 139 klb
(to 700 nmi circ @ 40°)

Ref. Marshall Space Flight Center
• **Reliability and survivability of critical systems will be a major challenge for all Mars missions**
  – Long-duration missions
  – No capability for resupply
  – Limited abort capabilities

• **Risk reduction achieved by several techniques**
  – Architectural redundancies through mission design
  – Functional redundancy by dis-similar means to accomplish same end result
  – Early development and implementation of systems (time on systems)
  – Proper systems designs

• **Selection of proper technique(s) requires cost/benefit analysis**
Hierarchy Process

① Mission Design
- Forward deployment (overlapping of mission resources)
- Verification and checkout prior to crew departure
- Mission mission approaches

② Resource Sharing and Technologies
- Advanced technologies (unique products and robust capabilities) provides cross-strapping of resources between systems

③ Operational Concepts
- Conservation of resources (power, consumables, etc.)
- Modularity of systems
- In-flight maintenance and sparing
- “Hanger Queen”
- Procedures and concepts

④ Systems Designs
- Flexibility of designs (unanticipated uses)
- Experience of previous and current programs
- Reliability
- Robustness of mission elements and capabilities
- Dual paths, isolation, interlinking, crossfeeding, etc.
Resource Sharing
Example: Power and Consumables

- **In-Situ Resource Utilization**
  - H$_2$O, O$_2$ (Makeup & Backup)
  - RFC Reactants (Backup)
  - Recharge (Backup)
  - O$_2$ Generation

- **Main Power**
  - PV/RFC (Backup)

- **Advanced Life Support**
  - H$_2$O

- **Extra Vehicular Activity**
  - CO$_2$ Removal (Backup)
  - Rovers