High energy, single-mode, all-solid-state and tunable UV laser transmitter

Narasimha S. Prasada, Upendra N. Singha, Floyd Hovisb

aNASA Langley Research Center,
5 N. Dryden St., MS 468, Hampton, VA 23681

bFibertek, Inc.,
510 Herndon Parkway, Herndon, VA 20170

CLEO/Europe-IQEC Conference
June 17-22, 2007
World of Photonics Congress 2007 in the International
Congress Centre Munich, Germany

Paper Session Code: CA5-4-TUE 15:30
Laser Risk Reduction Program (LRRP)

- NASA began Laser Risk Reduction Program (LRRP) in 2002 to develop reliable, robust, and compact laser technologies for lidar applications from space based platforms
 - **Program:** Joint operation of Langley Research Center and Goddard Space Flight Center
 - **Goal:** 1 micron and 2 micron lasers and wavelength conversion technology
 - **Applications:** Four Lidar Techniques-altimetry, Doppler, Differential Absorption Lidar (DIAL), backscatter lidar
 - **Measurements:** 6 priority Earth Science measurements:
 1. Surface and ice mapping, (b) Horizontal vector wind profiles
 2. Carbon-di-oxide (CO₂) profiles
 3. Ozone (O₃) profiles
 4. Aerosol/clouds and (6) River currents
UV Task Objectives

• The objective of the UV Task is to develop an efficient, all-solid-state, diode pumped, conductively cooled, single longitudinal mode and high energy 1-micron to UV wavelength conversion technology

• The emphasis is to generate UV wavelengths of 308 nm and 320 nm for ozone sensing using DIfferential Absorption Lidar (DIAL) technique from space

• Performance Goals:
 – Output energy at UV wavelengths: $\geq 200 \text{ mJ}$
 – Pulsewidth: 10 - 25 ns
 – PRF: 50 Hz

• High pulse energy allows enhanced performance during strong daylight conditions

• UV Task is a collaborative effort among Sandia National Labs, Fibertek, and NASA LaRC
Technical Approach to UV generation

- Basic Scheme comprises of a Nd:YAG laser pumped nonlinear optics based converter comprising of a second harmonic generation (SHG), optical parametric oscillator, (OPO) and sum frequency generation (SFG) processes.
UV Wavelength Conversion
-Experimental Results-

• The nonlinear optics based technology to efficiently generate UV wavelengths has been established using a flash lamp pumped Nd:YAG laser
• The scheme utilizes a novel (Rotated Image Singly Resonant Twisted RectAngle) RISTRA OPO to generate 803 and 731.5 nm wavelengths pumped using a 532 nm pump source
• A type-I BBO crystal is used in the RISTRA OPO and a LBO crystal is used for SFG
• Single mode operation is obtained through pulsed seeding technique with temporally matched pump and idler pulse profile
• Pulse idler seeding is obtained by a tunable laser diode and RISTRA OPO in tandem as seed sources
• For 803 nm
 • A small or low energy RISTRA OPO that is locked by Pound-Drever-Hall (PDH) technique and seeded by New Focus tunable diode laser operating at 803 nm
 • The 1.5x scaled big RISTRA OPO that is pulse seeded at 1576 nm from the small OPO and locked by energy stabilization technique
Latest Results on the UV conversion

- State-of-the-art conversion efficiencies have been demonstrated using a flash lamp pumped Nd:YAG laser with a round top-hat profile

- Greater than 90% pump depletion obtained
- At 320 nm, >200 mJ extra cavity SFG with good beam quality
 - IR to UV efficiency > 21% (27% for 1 mJ seed)
- At 320 nm, up to 160 mJ intra-cavity SFG
 - IR to UV efficiency up to 24%
- Fluence \geq1 J/cm² for most beams

RISTRA OPO Module
For future space applications, an all solid-state, diode pumped Nd:YAG pump laser has been developed in collaboration with Fibertek, Inc.

- The pump laser is an upgrade of ~300 mJ/pulse Nd:YAG laser developed under NASA funded ATIP program
- Two amplifiers have been added to the NASA ATIP laser to achieve up to 1.2 J/pulse
Nd:YAG Pump Laser
-Summary of Technical Approach-

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection seeded ring laser</td>
<td>Improves emission brightness (M^2)</td>
</tr>
<tr>
<td>Diode-pumped zigzag slab amplifiers</td>
<td>Robust and efficient design for use in space</td>
</tr>
<tr>
<td>Advanced E-O phase modulator material</td>
<td>Allows high frequency cavity modulation for improved stability injection seeding</td>
</tr>
<tr>
<td>Alignment insensitive / boresight stable 1.0 μm cavity and optical bench</td>
<td>Stable and reliable operation over environment</td>
</tr>
<tr>
<td>Conduction cooled</td>
<td>Eliminates circulating liquids w/in cavity</td>
</tr>
<tr>
<td>Space-qualifiable component designs</td>
<td>Establishes a path to a space-based mission</td>
</tr>
</tbody>
</table>
Single Frequency Laser Ring Laser Design

Optical Schematic

1. Reverse wave suppressor
2. Cube polarizer
3. Odd bounce slab
4. Steering wedge
5. $\lambda/2$ waveplate
6. Mode limiting aperture
7. RTP phase modulator
8. 45° Dove prism
9. Non-imaging telescope
10. RTP q-switch

Final Zerodur Optical Bench (12cm x 32cm)

- Near stable operation allows trading beam quality against output energy by appropriate choice of mode limiting aperture
 - 30 mJ TEM$_{00}$, $M^2 = 1.2$ at 50 Hz
 - 30 mJ TEM$_{00}$, $M^2 = 1.3$ at 100 Hz
 - 50 mJ square supergaussian, $M^2 = 1.4$ at 50 Hz
- Injection seeding using an RTP phase modulator provides reduced sensitivity to high frequency vibration
- PZT stabilization of cavity length reduces sensitivities to thermal fluctuations
- Zerodur optical bench results in high alignment and boresight stability
Amplifier Design Configuration

Dimensions: 6.8 x 13.0 x 75.3 mm³

Incident Angle Near Brewster (57°)

Extraction 100% at full aperture

Aperture: 11.5 x 6.8 mm² (internal)
7.1 x 6.8 mm² (external)

Doping Level: 0.5 ± 0.1 % Nd³⁺

Pump Diodes: 192 ea. 50 watt QCW bars (12 ea. 16 bar arrays)

3 Bounces-Rectangular Shape-2 sided pumping in the TIR axis,
2 sided conduction cooling, Pump faces uncoated (~10% loss)
Diode Bars and slabs are conductively coupled to the heat sink.

For space applications, one can use heat pipes or radiators.
Amplifier Upgrade
2-Sided Pumped & Cooled Amplifier

Model is based on Franz-Nodvic result for a amplifying a square (in time) pulse

Model includes all key parameters explicitly
- Number of pump diodes (192)
- Peak diode power (75 W)
- Diode pulse width
- Input oscillator pulse energy (60 mJ)
- Input beam diameter
- Gain path length in amp
- Slab volume

Accounts for reduced gain for second pass

1 J per pulse output is predicted for 210 µs diode pump pulses

Modeled output of dual 2-sided pumped and cooled amplifiers for 60 mJ input to first stage

Dual 2-sided pumped amplifiers meet the requirements of most space-based direct detection wind lidars designs
Pump Laser Performance

- The laser is now operational at 50 Hz PRF with maximum pulsewidths around 22 ns
- The output beam profile is rectangular super gaussian

Oscillator Configuration
- 100 µs pump pulse
- 55 W/bar
- 100 bars
Oscillator Output
- 50 mJ/pulse
- PRF = 50 Hz
- 0.41 cm x 0.41 cm square beam
- $M^2 = 1.2$

Amplifier Configuration
- Vary pump pulse width
- 55 W/bar
- 112 bars/amp
Peak Dual Amplifier Output
- 350 mJ/pulse
- $M^2 = 1.6$

Input = 280 mJ
First Stage Output > 700 mJ
PRF = 50 Hz
Pulsedwidth = ~16 ns
Spatial Mode = Rect. Super Gaussian
$M^2 = 2$
Optical Eff. >11%
Wall Plug Eff. >7%

Input = 700 mJ
Second Stage O/P > 1100 mJ
PRF = 50 Hz
Pulsewidth = 22 ns
Spatial Mode = SG
$M^2 = 2.5$
Optical Eff. = 11%
Wall Plug Eff. = 7%
Nd:YAG Pump Laser
- Typical Output Characteristics -

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Goal</th>
<th>Design/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Energy (mJ)</td>
<td>900</td>
<td>1200</td>
<td>1040</td>
</tr>
<tr>
<td>M^2</td>
<td>NA</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>Laser head package</td>
<td>Single breadboard</td>
<td>NA</td>
<td>Single breadboard in custom enclosure</td>
</tr>
<tr>
<td>Cooling</td>
<td>Conductive to diodes and slabs</td>
<td>NA</td>
<td>Conductive to diodes and slabs</td>
</tr>
<tr>
<td>Seeding</td>
<td>Ramp & fire</td>
<td>NA</td>
<td>Ramp & fire</td>
</tr>
<tr>
<td>Electronics</td>
<td>Separate custom module</td>
<td>NA</td>
<td>Separate custom module</td>
</tr>
</tbody>
</table>

Typical pulsewidth = 22 ns. Max. Pulse Energy achieved = 1.2 J. Electrical to optical efficiency >7% was achieved with only 58 W peak power per diode bar pumping the amplifiers.

Average power at 50 Hz of 51.0 W (1020 mJ/pulse)
Temporal Characteristics

Oscillator Only: 16.5 ns

Oscillator + Preamp 1 + Preamp 2: 19.5 ns

Oscillator + Amp 1 + Amp 2: 20.9 ns

Full System:
Pulsewidth ~ 22 ns
Full System Results Beam Quality

50 Hz, Full Power Beam Quality Measurements

\[M_x^2 = 2.5, \quad M_y^2 = 2.5, \]

M² data
Full Nd:YAG Laser Unit

- The dimensions of this laser unit, including a SHG module, is 34” x 22” x 8”
- With latest diode bars and modified opto-mechanical components, the above package can be reduced to less than a quarter of its size
Custom power supplies and control electronics for the upgrade have been built:

- Control electronics consists of two 19" rack mountable boxes.
- All power supplies are contained in two 19" rack mountable power supply modules.
- Each amplifier can be individually set between high power and low power operation to allow the user to achieve a wide range of output powers at 50 Hz.

Single Power Supply Module

Control electronics
Currently, we are generating a few mJ with limited pump energy of 280 mJ/pulse
 - The elliptical beam allows reduced overlap inside the nonlinear crystal of RISTRA module hence reduces the conversion efficiency
Spatial fluence profile & RISTRA
- RISTRA OPO requires round, top-hat spatial pump profile -

Flat pump profiles have facilitated high pump depletion & hence high OPO conversion efficiency

Results Using refined Flash Lamp pump laser

OPO signal near-field spatial fluence profile, Fresnel Number > 450

Self-seeded oscillation in two-crystal RISTRA ~85% pump depletion

Results Using Diode pumped Nd:YAG laser

Pump Beam at the Big OPO

Reduced Pump Depletion
On-Going Work

• Improve the Beam Quality of the Diode Pumped Nd:YAG Laser
 – The goal is to achieve a Round, Top Hat spatial fluence profile with wavefront aberration less than 0.5

• Refinements to the ring oscillator cavity, pre amplifiers and amplifiers of the diode-pumped Nd:YAG laser to improve beam quality and reduce pulsewidth is nearing completion
Summary and Conclusions

• A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed
• Greater than 1 J/pulse at 50 HZ PRF and pulsewidths around 22 ns have been demonstrated
• Higher energy, greater efficiency may be possible
 – Refinements are known and practical to implement
• Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved
 – Greater than 90% pump depletion is observed
 – 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed)
 – 160 mJ intra-cavity SFG; IR to UV efficiency up to 24%
 – Fluence ≤ 1 J/cm² for most beams
• The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results
• Currently the Nd:YAG pump laser development is a technology demonstration
 – System can be engineered for compact packaging