AN APPROACH FOR ASSESSING DELAMINATION PROPAGATION CAPABILITIES IN COMMERCIAL FINITE ELEMENT CODES

Ronald Krueger
National Institute of Aerospace
Resident at DDTR-Branch - NASA Langley Research Center

NASA Aviation Safety Technical Conference, St. Louis, Missouri, 2007
OUTLINE

• Overview of research task
• Background and motivation
• Fracture mechanics methodology for delamination onset prediction
• Comparison of computed strain energy release rates in a DCB specimen with results from user written post-processing routines
• Propagation analysis for DCB and SLB specimens using VCCT for ABAQUS
 • Creation of benchmark results based on critical load/displacement conditions
 • Comparison of computed load-displacement behavior with benchmark results for various input parameters
 • Comparison of computed displacement-crack length behavior with benchmark results for various input parameters
 • Assessment of computed delamination front shapes
• Concluding remarks
• Research Task:
 Development of a Delamination Fatigue Methodology for Composite Rotorcraft Structure

• Program Goals:
 Develop Methodologies and Validated Analysis Tools to Predict Fatigue Life and Residual Strength for
 • Improved Safety - Certification by Analysis
 • Improved Durability - Reduced Life Cycle Costs
 • Improved Accept/Reject Criteria

• 5-Year Program Deliverable:
 Incorporate Fatigue Life Prediction Methodology into Composite Materials Handbook 17 (CMH-17)
APPROACH

- Collaborative research between NASA and U.S. Rotorcraft Companies through Space Act Agreement with the Center for Rotorcraft Innovation, CRI (formerly RITA)

- NASA Langley in-house CS and contractors to perform experimental characterization and analytical tool development

- CRI to supply characterization test specimens and identify and manufacture validation test articles for testing by NASA and Industry

- Annual milestones established and progress reviewed through periodic IPT meetings/telecons during course of 5-year period of performance (FY07-11)

- External stake holders invited to participate in IPT meetings (Army, FAA, CMH-17, ASTM, Rotorcraft CoE’s)
• S-92 Helicopter main rotor blade spar subjected to tension/torsion fatigue loading

Airfoil = Spar + Trailing edge

Delamination growth expected at ply drops
• Stiffened wing skin panel, post BVID compression fatigue loading

Bell-Agusta BA-609 Civil Tilt Rotor

Delamination growth expected after impact
• In the past:
 • Fracture mechanics implementations had a focus on J-integral and Virtual Crack Extension
 • Virtual Crack Closure Technique (VCCT) implemented only in specialized finite element codes (FRANC2D) or user written post-processing routines
 • Crack extension or delamination propagation analyses performed manually which was time consuming.

• Today:
 • Boeing's VCCT element (commercialized as VCCT for ABAQUS®)
 • MSC.Nastran™ SOL 600 and MD Nastran SOL 400 include VCCT options
 • Implementation in SAMCEF® is a combination of VCCT and Virtual Crack Extension
 • Other codes … (e.g. GENOA, HyperSizer, ESRD Stress Check)
 • Automatic propagation analysis is possible
• Develop benchmark cases to gain confidence in the software tools used
• Benchmark cases have to be simple
 • Simple geometry and loading \(\rightarrow\) DCB and SLB specimen
 • Independent of analysis software used
 • Independent of experimental anomalies to avoid unnecessary complications (e.g. fiber bridging, appropriate material input data)
• Create a benchmark in a manual delamination propagation analysis
• Repeat propagation analysis using automated propagation feature
• Assessment based on the comparison of manual and automated propagation
• Comparison with experiments and propagation prediction will follow later
VIRTUAL CRACK CLOSURE TECHNIQUE (VCCT)*

- Two and three-dimensional analysis
- Nonlinear analysis
- Arbitrarily shaped delamination front

\[
G_I = \frac{1}{2\Delta ab} \cdot F_{yi} \cdot (v' \ell - v' \ell') \\
G_{II} = \frac{1}{2\Delta ab} \cdot F_{xi} \cdot (u' \ell - u' \ell') \\
G_{III} = \frac{1}{2\Delta ab} \cdot F_{zi} \cdot (w' \ell - w' \ell')
\]

- Establish mixed mode I and II failure criterion (example: T300/914C)

- Calculate mixed mode ratio and total energy release rate

\[G_T = G_I + G_{II} + G_{III} \]

\[G_S = G_{II} + G_{III} \]

- Obtain critical energy release rate from failure criterion*

\[G_c = \left(G_{lc} + (G_{IIc} - G_{lc})(G_{II}/G_T) \right)^\eta \]

- Calculate failure index

\[\frac{G_T}{G_c} \geq 1 \]

Benzeggagh, Kenane, 1996
FRACTURE TOUGHNESS SPECIMENS
DCB Specimen - Mode I

UD24: [0]_{24} T300/914C

R. Krueger and D. Goetze,
Influence of Finite Element Software on Energy Release Rates Computed Using the Virtual Crack Closure Technique,
MANUALLY CREATING A BENCHMARK SOLUTION - DCB Specimen

- FE-Model

UD24: [0]_{24} T300/914C
a=30mm-40mm
δ/2= 1 mm

- G\textsubscript{I} distribution

\[G_{Ic} = 170.3 \]

Mixed Mode Ratio \(\frac{G_{II}}{G_{T}} \)

- Mixed mode failure criterion for T300/914C

\[G_{c} = G_{lc} + (G_{lc} - G_{lc})(\frac{G_{II}}{G_{T}})^\eta \]

\(\eta = 1.62 \)
• Load/displacement plots for different delamination lengths

- Mathematical relationship between load and energy release rate

\[
G = \frac{P^2}{2} \cdot \frac{\partial C_P}{\partial A} \quad \Rightarrow \quad \frac{G_T}{G_c} = \frac{P^2}{P_{\text{crit}}^2}
\]

\[
\Rightarrow \quad P_{\text{crit}} = P \sqrt{\frac{G_c}{G_T}}, \quad \delta_{\text{crit}} = \delta \sqrt{\frac{G_c}{G_T}}
\]
• Input data for mixed-mode failure criterion \((G_{lc}, G_{llc}, \eta)\) was kept constant for all analyses performed

• Initial and maximum increment size was selected at 0.001 \(x\) final load

• To overcome convergence problems, four parameters were adjusted
 • If the \textit{release tolerance} (\texttt{relTol}) is exceeded a cutback operation is performed which reduces the time increment. The cutback reduces the degree of overshoot and improves the accuracy of the local solution
 • \textit{Contact stabilization} which is applied across only selected contact pairs and used to control the motion of two contact pairs while they approach each other in multi-body contact.
 • \textit{Global stabilization} which is applied to the motion of the entire model and is commonly used in models that exhibit statically unstable behavior such as buckling.
 • \textit{Viscous regularization} (\texttt{damv}) which is applied only to nodes on contact pairs that have just debonded. The viscous regularization causes the tangent stiffness matrix of the softening material to be positive for sufficiently small time increments.
DELAMINATION PROPAGATION IN DCB SPECIMEN - Global Stabilization

Default settings converge but yield a meaningless solution.

<table>
<thead>
<tr>
<th>case</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>E-5</td>
<td>E-6</td>
<td>E-7</td>
<td>E-8</td>
<td>E-8</td>
<td>E-8</td>
</tr>
<tr>
<td>relTol</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.02</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Graph showing load P, N vs. applied opening displacement δ/2, mm and a, mm vs. applied opening displacement δ/2, mm.
DELAMINATION PROPAGATION IN DCB SPECIMEN

- Contact Stabilization

<table>
<thead>
<tr>
<th>contact</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>E-5</td>
<td>E-6</td>
<td>E-7</td>
<td>E-7</td>
<td>E-7</td>
<td>E-3</td>
</tr>
<tr>
<td>relTol</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.02</td>
<td>0.002</td>
<td>0.002</td>
</tr>
</tbody>
</table>

- Viscous Regularization

<table>
<thead>
<tr>
<th>case</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>damv</td>
<td>E-4</td>
<td>E-4</td>
<td>E-5</td>
<td>E-5</td>
</tr>
<tr>
<td>relTol</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Load P, N

- Applied opening displacement \(\delta / 2 \), mm

Benchmark

- Case 1
- Case 2
- Case 3
- Case 4
- Case 5
- Case 6

177,000 s
DELAMINATION PROPAGATION IN DCB SPECIMEN - Shape of developing delamination front

- Deformed model and contact surface
- Bond state after 1000 increments
- Experimental observation

- Teflon insert
- Propagated fronts
DELAMINATION PROPAGATION
FE Model of SLB Specimen - Mode I/II

D±30: C12K/R6376
a=34-65 mm
w=2.8 mm

46500 C3D8I elements
57528 user defined nodes
789477 variables in the model

D±30: [±30/0/-30/0/30/0_4/30/0/-30/0/-30/30/ -30/30/0/30/0/-30/0_4/-30/0/30/±30]
MANUALLY CREATING A BENCHMARK SOLUTION - SLB Specimen

- **G_T distribution**

 ![Graph showing G_T distribution for various values of a.]

- **Mixed mode ratio G_S/G_T**

 ![Graph showing the mixed mode ratio G_S/G_T for different a values.]

- **Mixed mode failure criterion for C12K/R6376**

 ![Graph illustrating the mixed mode failure criterion with G_c as the y-axis and G/G_T as the x-axis. The graph includes a curve fit equation: $G_c = G_{lc} + (G_{lc} - G_{IC}) (G/G_T)^\eta$. The constants are $G_{lc} = 340.5$ and $\eta = 3.39$. The specimen types include DCB, Mode I, MMB, Mode I and II, and ENF, Mode II. The critical value $G_{lc} = 1285.9$. The mixed mode ratio G/G_T is shown for mean values and mean values.](image)
• Failure index and load/displacement for different a

\[\frac{G}{G_c} \]

\[y/B \]

\[a = 34\text{mm} \]
\[a = 35\text{mm} \]
\[a = 36\text{mm} \]
\[a = 37\text{mm} \]
\[a = 38\text{mm} \]
\[a = 39\text{mm} \]
\[a = 40\text{mm} \]
\[a = 45\text{mm} \]
\[a = 50\text{mm} \]
\[a = 55\text{mm} \]
\[a = 60\text{mm} \]
\[a = 65\text{mm} \]

• Benchmark

\[\text{load } P, \text{ N} \]

\[\text{applied center deflection } w, \text{ mm} \]

\[a = 34\text{mm} \]
\[a = 35\text{mm} \]
\[a = 36\text{mm} \]
\[a = 37\text{mm} \]
\[a = 38\text{mm} \]
\[a = 39\text{mm} \]
\[a = 40\text{mm} \]
\[a = 45\text{mm} \]
\[a = 50\text{mm} \]
\[a = 55\text{mm} \]
\[a = 60\text{mm} \]
\[a = 65\text{mm} \]

load P, N

applied center deflection w, mm

critical

benchmark
DELAMINATION PROPAGATION IN SLB SPECIMEN

- **Global Stabilization**

<table>
<thead>
<tr>
<th>case</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>E-5</td>
<td>E-6</td>
</tr>
<tr>
<td>relTol</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- **Contact Stabilization**

<table>
<thead>
<tr>
<th>case</th>
<th>1</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>E-6</td>
<td>E-3</td>
<td>E-4</td>
</tr>
<tr>
<td>relTol</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Default settings converge but yield a meaningless solution.

Graphs showing load P, N vs. applied center deflection w, mm for different cases.
• Viscous Regularization

<table>
<thead>
<tr>
<th>case</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>damv</td>
<td>E-5</td>
<td>E-4</td>
<td>E-6</td>
<td>E-2</td>
<td>0.1</td>
</tr>
<tr>
<td>relTol</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Increased release tolerance required to obtain converged solution but leads to overshoot.

• Crack length plot

<table>
<thead>
<tr>
<th>case</th>
<th>8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>E-6</td>
<td>E-6</td>
</tr>
<tr>
<td>relTol</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Increased release tolerance required to obtain converged solution but leads to overshoot.
• Deformed model and contact surface

• Bond state after 76 increments

• Bond state after 1000 increments

• Accurately computing the delamination front shape requires fine meshes
CONCLUDING REMARKS

• Mixed-mode energy release rates computed from VCCT for ABAQUS® were in good agreement with results from a post-processing routine

• After testing the automated propagation capability in VCCT for ABAQUS® it is concluded that
 • Selecting the appropriate input parameters to obtain good results requires an iterative procedure
 • Results may converge but yield a meaningless solution
 • The default settings for global stabilization yielded unsatisfactory results
 • Best results were obtained when contact stabilization and viscous regularization were used
 • Accurately computing the delamination front shape requires fine meshes
 • Additional assessment of the propagation capabilities in more complex specimens and on a structural level is required