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Spare Parts for Long Duration Space MissionsSpare Parts for Long Duration Space Missions

• Future long duration human space missions will be 
challenged by mass and volume constraints for 
spare parts

• Use of solid freeform fabrication processes could 
reduce the need for pre-manufactured spares by 
generating parts as needed

• Electron beam deposition using wire feedstock 
offers high energy and feedstock efficiency

• Key issue to be investigated is the effect of 
microgravity on the process
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Electron Beam Freeform Fabrication (EBF3) 
Process Description
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• Layer-additive process to build parts using CNC techniques

• Electron beam melts pool on substrate, metal wire added to build
up part

• Material properties similar to those of annealed wrought products

• ~100% dense, structural metallic parts produced directly from CAD 
file without molds, tooling, or machining

• Secondary processing also possible with reconfigured beam
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Portable Electron Beam Freeform Fabrication 
System at NASA LaRC

Portable Electron Beam Freeform Fabrication 
System at NASA LaRC

Portable EBF3 system design:

– 3-5 kW, focusable EB gun

– 4-axis motion system with 12 in. x 12 
in. x 8 in. build envelope

– 0.03-0.045 in. dia. wire feeder
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Electron Beam Freeform Fabrication in the Space 
Environment

Electron Beam Freeform Fabrication in the Space 
Environment

Objective:

– Demonstrate EBF3 process is possible in 0-g
– Understand EBF3 process kinetics and driving forces in 0-g 

environment for developing control system

Approach:

– Conduct ground based tests and simulated 0-g tests on 
portable EBF3 system

– Vary deposition parameters such as translation directions, 
standoff distance, wire feed rates to

– Compare results from ground-based tests and 0-g tests for 
consistency and differences in bead geometries and 
microstructures
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Effect of Gravity on Surface TensionEffect of Gravity on Surface Tension

Equivalent droplet volumesEquivalent droplet volumes
1-g

surface 
tension

0-g
surface 
tension

• Body forces eliminated – surface tension dominates
– Alteration of bead cross-section may affect surface topography 

of finished part
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Effect of Deposit Height on Cooling PathEffect of Deposit Height on Cooling Path

• Many layers – cooling rate 
dominated by path through prior 
build
– Slower cooling, deposit 

temperature increases causing 
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dominated by path through 
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Microgravity Testing Aboard JSC’s C-9Microgravity Testing Aboard JSC’s C-9

• C-9 Capabilities
– 10-2-g, Lunar-g, Martian-g 

capability
– 15-20 second duration for     

10-2-g, longer for partial-g
– 1.8-g during pullout
– 40 parabolas per flight typical
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Typical Test Flight PlatesTypical Test Flight Plates

1-g plate 0-g plate

• Series of builds 1-4 layers high
• Lines built in different directions (+/- X & Y)
• No difference in deposit height & width 

between 0-g and 1-g
• Cooling paths are dominated by baseplate
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Direction and Height Trials for Process Control
Wire Fed into Leading Edge of Molten Pool

Direction and Height Trials for Process Control
Wire Fed into Leading Edge of Molten Pool

• Wire fed into leading edge is easiest to control
• Standoff distance increasing slightly along length of deposit 
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Direction and Height Trials for Process Control
Wire Fed into Trailing Edge of Molten Pool

Direction and Height Trials for Process Control
Wire Fed into Trailing Edge of Molten Pool

• Wire fed into trailing edge pushes deposit in front of wire tip
• Standoff distance increasing slightly along length of deposit 
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Direction and Height Trials for Process Control
Wire Fed into Side of Molten Pool

Direction and Height Trials for Process Control
Wire Fed into Side of Molten Pool

• Wire fed into side pushes deposit in front of wire tip
• Standoff distance increasing slightly along length of deposit 
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Effect of Wire Entry Direction into Molten PoolEffect of Wire Entry Direction into Molten Pool

• Wire entry direction into molten pool affects bead 
shape more in 0-g than in 1-g

• No clear trend in height with wire entry direction
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Microstructure of Single Layer EBF3 DepositsMicrostructure of Single Layer EBF3 Deposits

• Typical microstructure seen in EBF3 deposits
• Fine grain cast aluminum structure

– Columnar grains nucleating from bottom of molten pool
• No evidence of porosity

1-g deposit0-g deposit
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0-g Deposit with Incorrect Standoff Distance
Chevron, Layer 1

0-g Deposit with Incorrect Standoff Distance
Chevron, Layer 1

• Started too high off substrate, molten ball adheres to wire tip
• Upon contact with plate, wetting forces overcome surface tension



Karen.M.Taminger@nasa.gov 17

0-g Deposit with Incorrect Standoff Distance
Chevron, Layer 2

0-g Deposit with Incorrect Standoff Distance
Chevron, Layer 2

• Manual height correction between layers not large enough 
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0-g Deposit with Incorrect Standoff Distance
Chevron, Layer 6

0-g Deposit with Incorrect Standoff Distance
Chevron, Layer 6

• After several more layers, height errors become cumulative
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0-g Deposit with Incorrect Standoff Distance
Chevron, Layer 7

0-g Deposit with Incorrect Standoff Distance
Chevron, Layer 7

• Balls forming in 0-g are larger than drips in 1-g
• Size of molten balls depends on separation distance between 

plate and wire tip
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0-g Deposit with Incorrect Standoff Distance
Chevron, Layer 8

0-g Deposit with Incorrect Standoff Distance
Chevron, Layer 8

• Attach/detach heights useful for developing height control
• Maintaining correct distance more important to process 

control in 0-g
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Successful Demonstration of EBF3 in 0-g
Circle, Layers 1 & 2

Successful Demonstration of EBF3 in 0-g
Circle, Layers 1 & 2

• Manual height correction helped maintain contiguous deposit 
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Successful Demonstration of EBF3 in 0-g
Circle, Layers 7 & 8

Successful Demonstration of EBF3 in 0-g
Circle, Layers 7 & 8

• Process able to heal surface irregularity from initial ball
• Process works well if correct distance maintained
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• Successfully demonstrated EBF3 deposition of 2219 Al in 0-
g over range of processing conditions
– translation speeds
– wire feed rates
– wire entrance angle with respect to translation direction

• Initial demonstrations showed deposit geometry is 
dominated by surface tension in 0-g and 1-g
– very little difference in height and width between 0-g and 1-g

• Identified distance between wire tip and substrate and 
thermal input as critical variables to control
– when correct, process operates well and heals surface 
irregularities

• Successfully demonstrated EBF3 deposition of 2219 Al in 0-
g over range of processing conditions
– translation speeds
– wire feed rates
– wire entrance angle with respect to translation direction

• Initial demonstrations showed deposit geometry is 
dominated by surface tension in 0-g and 1-g
– very little difference in height and width between 0-g and 1-g

• Identified distance between wire tip and substrate and 
thermal input as critical variables to control
– when correct, process operates well and heals surface 
irregularities

ConclusionsConclusions
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Future PlansFuture Plans

• 2nd and 3rd generation portable systems under development
– Move towards space flight configuration
– Reduce mass, size
– Moveable gun inside vacuum chamber
– Different positioning system configurations
– Potential integration of machining and NDE functions

• Last week of microgravity flights 
(Sept. 2007)

– Welding trials
– Height sensitivity tests
– Closed loop control demo
– Solid block
– Repair strategies


