Using Satellite Measurements to Investigate Regional-Scale Chemistry: The Case for Geostationary Observations

Jack Fishman, Amy Wozniak, Jack Creilson
NASA Langley Research Center, Hampton, VA USA

Introduction

One of the recommendations of the Decadal Survey that was recently released by the National Academy of Science was that of a geostationary platform from which to obtain trace gas measurements. The use of such a platform is particularly advantageous when applied to understanding the formation of regional air pollution. This study demonstrates the challenges of trying to utilize information from instruments on satellites in low-earth orbit (LEO). We also demonstrate the advantage gained through a simulation that would provide hourly observations.

In this case study, we take advantage of the high resolution Level-2 orbital data available from the Ozone Monitoring Instrument (OMI), in conjunction with assimilated stratospheric column ozone fields, to evaluate if meaningful tropospheric ozone information can be obtained on a regional scale.

We focus on a period in late June 2005 when a widespread pollution episode enveloped the Houston metropolitan area as well as a large region in southeast Texas.

Method

The tropospheric ozone residual (TOR) product derived for this study uses level-2 OMI total ozone data. A disadvantage of using level-2 data is variable pixel size. The stratospheric product used in the TOR method is primarily the NOAA Global Forecast System (GFS) assimilation of SBUV ozone profiles. The resolution of the assimilated product is 1° x 1° which has superior temporal and spatial resolution compared to satellite measurements alone. An independent measurement from the Microwave Limb Sounder (MLS) instrument shows that the model is within 2 - 4 DU of the integrated MLS ozone profile on June 22, 2005.

Results

The TOR images from June 17, 22, 24, and 28 show the evolution of an air pollution episode over southeastern Texas during June, 2005.

Conclusion

The combination of Level-2 OMI total ozone and assimilated stratospheric ozone fields can be combined to produce a regional TOR product which can then be compared with EPA surface ozone measurements. Combining measurements from several ground-based and satellite products prove to be difficult due to variable temporal and spatial scales. We also demonstrate the advantages of using a geostationary orbit for observing regional scale atmospheric chemistry.

Acknowledgements

The authors thank Jim Szykman for providing the EPA ozone surface measurements, Scott Janz for providing the ACAM photograph and Jerry Ziemke for the OMI/MLS TOR depiction.