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A methodology is developed and implemented to mitigate the lengthy software develop-
ment cycle typically associated with constructing a discrete adjoint solver for aerodynamic
simulations. The approach is based on a complex-variable formulation that enables straight-
forward differentiation of complicated real-valued functions. An automated scripting process
is used to create the complex-variable form of the set of discrete equations. An efficient
method for assembling the residual and cost function linearizations is developed. The accu-
racy of the implementation is verified through comparisons with a discrete direct method as
well as a previously developed handcoded discrete adjoint approach. Comparisons are also
shown for a large-scale configuration to establish the computational efficiency of the present
scheme. To ultimately demonstrate the power of the approach, the implementation is
extended to high temperature gas flows in chemical nonequilibrium. Finally, several fruitful
research and development avenues enabled by the current work are suggested.

Nomenclature

D = vector of design variables Q = flowfield dependent variables
Dj; = elements of diagonal subblock q = heat flux

E = total energy per unit volume R = discretized residual vector

e = internal energy per unit mass T = temperature

f = objective function t =time

h = step size u v w = Cartesian velocity components
i = J—il) Y, = local cell volume

I = identity matrix X = computational mesh

K = mesh movement coefficient matrix Y = ratio of specific heats

N = nitrogen A = vector of adjoint variables

n = time level, number of grid points v = turbulence variable

0] = oxygen p = density

I. Introduction

I N the field of gradient-based aerodynamic design optimization, there are a number of options available to obtain
sensitivity information from computational fluid dynamics (CFD) solvers, and the burden associated with implement-
ing these methods varies widely. Moreover, the efficiency and accuracy of the results depend highly on the method
chosen.

Perhaps the most straightforward of these schemes is a simple finite difference afgdtitithis approach, the
solver may be treated as a "black box" and sensitivities are generated by merely differencing neighboring solutions.
The advantage of this technique is its ease of implementation; however, its accuracy can vary widely with the pertur-
bation size. Central differencing is theoretically second-order accurate, but subtractive cancellation error due to finite
precision arithmetic limits the effective step size that can be used. In addition, the cost of the method scales linearly
with the number of design variables.

Direct differentiatiod® and adjoint* > approaches provide alternative, more elaborate means for obtaining sensi-
tivity information. Whether to use a direct or adjoint approach is usually determined by the parameters of the prob-
lem. For cases involving many objectives or constraints and relatively few design variables, the direct approach is ap-
propriate. In this case the solution of an additional linear system of equations for each design variable yields
sensitivity information for all of the dependent variables in the flowfield. Conversely, the adjoint approach yields
sensitivity information for a single function with respect to many design variables at the cost of solving a single linear
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system of equations. For typical aerodynamic design problems where the number of variables is large and there are
relatively few objectives and constraints, the adjoint approach is generally preferred. Moreover, the adjoint approach

may also be used to obtain mathematically rigorous mesh adaptation information that is often nonintuitive and can be
used to efficiently guide output-based computational simulations to grid-converged¥esults.

Both the direct and adjoint techniques may be applied in either a continuous or discrete setting, depending on the
order in which the differentiation and discretization processes are performed; the current work focuses on the discrete
variant of the adjoint approach. One major advantage of the discrete approach is that the system of auxiliary equa-
tions is uniquely determined by the baseline discretization of the governing equations. Although perhaps difficult to
achieve in practice, this property implies that the implementation of the adjoint system can be automated. This is not
true for a continuous approach where changes to the baseline equation set require new derivations of the associated
adjoint operators prior to implementation. These operators may prove prohibitively difficult to obtain for complicated
functions such as turbulence models and finite rate chemistry. Another advantage of the discrete approach is that the
results can be rigorously verified using the baseline code because the linearizations take place at the discrete level. In
a continuous adjoint context, the "correct" answer is generally not known and verification of the adjoint discretization
for even moderately complex problems can be extremely difficult, if not impossible. The linearization of the discrete
system also ensures that the design optimization framework uses gradients that are discretely consistent with the anal-
ysis problem.

Regardless of whether a direct or adjoint method is used, the discrete form of both approaches ultimately requires
an exact linearization of the discrete residual vector and the cost function of interest with respect to both the flowfield
variables and the grid. Obtaining these linearizations by hand is time-consuming and error-prone; manually differen-
tiating a CFD solver for large-scale turbulent flow applications is a monumental undertaking. For example, the dis-
crete adjoint implementation described in Refs. 28-31 has taken more than 5 years to mature into a robust and accu-
rate tool. Furthermore, any changes to the fundamental discretization, boundary conditions, physical models, or
objective function require new linearizations. This lengthy software development cycle has been the primary impedi-
ment to widespread use of either approach in conjunction with Euler- and Navier-Stokes-based simulation tools.
Tools aimed at automating this process have been under development for sohiéi#i@however, these applica-
tions are seldom "hands-off" and frequently fail to produce code that rivals the speed and low storage requirements of
hand-developed implementations.

In Ref. 40, a technique based on the use of complex variables was introduced that allows derivatives of a real-val-
ued function to be computed with minimal changes to the analysis code. This approach yields sensitivity information
equivalent to a discrete direct method and has been applied in Ref. 41 to a Reynolds-averaged Navier-Stokes solver
for three-dimensional turbulent flow on unstructured grids. Furthermore, an automated form of this capability is de-
scribed in Ref. 42, where a scripting approach is used to automatically convert the entire baseline solver to a com-
plex-variable formulation, including such constructs as the file I/O and parallel communication. Unfortunately, the
cost of the complex-variable approach, like that of direct differentiation, scales with the number of design variables.
However, its automatable implementation, readability, and discrete consistency with the analysis problem are major
advantages of the method.

In the current work, a hybrid approach to sensitivity analysis is developed and implemented. To retain the ability to
scale to large numbers of design variables, the overall scheme is fundamentally equivalent to the discrete adjoint ap-
proach taken in Refs. 28-31. However, an alternative means for forming the residual and cost function linearizations
is utilized where automated complex-variable forms of the discrete residual and cost function routines are used to
compute the required Jacobians for both the dependent variables and the grid. This new approach requires detailed
knowledge of the baseline discretization to achieve efficiency comparable to the previously developed handcoded
implementation, however no manual code differentiation is required. The resulting scheme is discretely consistent
with the baseline solver, provides an adjoint capability for complex equation sets, and requires substantially less code
development effort than previous methods.

The remainder of this paper is divided into the following sections. First, the discrete adjoint approach for aerody-
namic sensitivity analysis is reviewed to motivate the need for a method by which linearizations of complicated algo-
rithms can be obtained with minimal effort. A brief overview of the complex-variable approach to function differen-
tiation is given, including the relevant advantages and disadvantages of the method. Following this, the formulation
of the proposed hybrid complex-variable/adjoint approach is described, which includes an in-depth discussion of the
automated generation of complex-valued source code for the residual and objective function evaluations as well as
important implementation details critical to the efficiency of the new scheme. Verification of the method is shown for
fully turbulent flow by using comparisons with a direct discrete approach as well as the previously developed hand-
coded discrete adjoint capability. A large-scale test case is used to demonstrate the computational efficiency of the
new scheme relative to the handcoded implementation. Finally, the generality of the new method is explored by ap-
plying it to high temperature gas equation sets required for hypersonic aerothermodynamic analysis. Conclusions and
opportunities for future research are given.
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II. The Discrete Adjoint Approach for Aerodynamic Sensitivity Analysis

The governing equations are the compressible and incomprésgibler and Reynolds-averaged Navier-Stokes
equations. The system is closed using the perfect gas equation of state. For turbulent flows, the one-equation turbu-
lence model of Ref. 44 is used. The derivation of the discrete adjoint system is widely available in the literature and is
not repeated here. Using the approach outlined in Ref. 31, the final set of discrete equations takes the following form:

Ov, . 7OR 7'0.n _[0R 7" ,n of
[ e - B 3 :
' lagal £ 7 lagd M Taqm .
with /\?+1 = A{ —AA{ . Here,V andAt are the local cell volume and time step, respectRely, s the dis-
cretized residual vector for the governing equati@is, is the vector of steady-state dependent Vgyiables, is the

vector of flowfield adjoint variables, arfd is the objective function. As discussed in Ref. 31, any convenient linear-
ization of R may be used on the left hand side, provided it is sufficient to converge the problem. However, the linear-
izations of the residual and cost function appearing on the right-hand side must be exact. These terms can be ex-
tremely cumbersome to implement and often involve linearizations of complex algorithms such as reconstruction
operators, flux limiters, boundary conditions, and turbulence models.

Once Eq. 1 has been solved for the flowfield adjoint varia@le , the sensitivity vettor may be computed as

_ of T OR T [oX
Df - E-'-/\f E /\g [ﬁJsurface (2)
where D represents the vector of design variabes,  is the computational megt), and is an additional adjoint
variable which satisfies a grid adjoint equatfén:
T, _ Df [or7 O
K'Ag = _E’pfxﬂﬁ} A¢ (3)
Here, a mesh movement scheme of the f80 = X 1ace such as that adopted in Ref. 30 is used during the design

procedure. Note that in general, the linearizationRof fand with respect to the grid that appear in the right hand
side of Eq. 3 are just as cumbersome to obtain as those for Eq. 1.

lll. Differentiation of Real-Valued Functions by Using Complex Variables

In Ref. 40, a Taylor series with a complex step #ize  has been used to derive an expression for the first derivative
of a real-valued functiorf (x)

+0(h) (4)

F(x) = Im[f(;](+ ih)]

Several observations can be made about Eq. 4. As with real-valued central differencing, the expression is second-
order accurate; however, there is no subtraction of neighboring terms involved. This analytical extension allows true
second-order accuracy to be realized, where two additional digits of accuracy are obtained for each order of magni-
tude reduction in the step sike . Moreover, implementation of the method is straightforward: declare all floating
point variables complex and apply a complex perturbation to the design variable of interest. Execute the simulation,
and upon completion, the imaginary part of the output is the partial derivative with respect to the perturbed variable
multiplied by the step size . The drawbacks to this technique are the need to redompute for each perturbation and
the additional cost of performing complex arithmetic.

IV. Using Complex Variables to Form Discrete Adjoint Operators

As discussed in Section Il, the exact linearizationRof fand with resp@ctto X and  as required by Egs. 1 and
3 can be very difficult to obtain by hand. To circumvent these difficulties, the current work uses the complex-variable
approach to obtain these linearizations. Because the complex-variable method is a direct mode of differentiation, the
cost scales directly with the number of perturbations and, therefore, must be carefully implemented to be of practical
use. For example, consider a residual computation on an unstructured grid using a node-based scheme. Unlike a
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structured-grid solver, the neighbors contributing to the residual at a node are usually not directly known; rather, an
edge-based data structure is commonly used. In this manner, a residual computation typically involves a series of glo-
bal gather operations to form the discrete residual vector across the entire field. To form the ¢oRpRgE T op-
erator using complex variables, each componer@of  at every grid point in the field must be perturbed indepen-
dently, after which a complex-valued residual must be evaluated to construct the corresponding row of the Jacobian
[0R/3Q]T. If n denotes the number of points in the grid, then this relationship infilies complex residual evalu-
ations to form the complete Jacobian matrix for three-dimensional turbulent perfect gas flows. Clearly, this cost
would be prohibitively expensive if the implementation were performed in an ad hoc manner.

Implementation

References 28, 46, and 47 describe the flow solver used in the current work. The code uses an implicit, upwind, fi-
nite volume discretization in which the dependent variables are stored at the mesh vertices. Scalable parallelization is
achieved through domain decomposition and message passing communication. Inviscid fluxes at cell interfaces are
computed using the upwind schemes of RoeVan Leer*® Viscous fluxes are formed using an approach equivalent
to a central difference Galerkin procedure. For steady-state flows, temporal discretization is performed by using a
backward-Euler time-stepping scheme.

An approximate solution of the linear system of equations formed at each time step is obtained through several iter-
ations of a point-iterative scheme in which the nodes are updated in an even-odd fashion, resulting in a Gauss-Seidel-
type method. For viscous flows, this scheme is augmented with a line-relaxation algorithm in boundary layer regions
as described in Ref. 31.

The turbulence model is integrated all the way to the wall without the use of wall functions and can be solved in a
tightly coupled fashiott or separately from the mean flow equations at each time step with an identical time integra-
tion scheme. The resulting linear system is then solved with the same iterative schemes employed for the flow equa-
tions.

In Refs. 28-31, a discrete adjoint capability has been developed for the solver through hand differentiation, and the
resulting adjoint system of equations is solved using an exact dual algorithm. This solver framework is employed in
the current work; however, the required linearizations are formed using complex variables as described below.

Automated Generation of Complex-Valued Source Code

The capabilities described above have been implemented in a suite of Fortran95 modules that conform to a coding
standarép that facilitates an automated conversion to complex variables. A code written in the Ruby programming
language was developed in Ref. 42 that automates the conversion of the baseline real-valued solver to a complex-
variable formulation. This operation yields a capability equivalent to discrete direct differentiation. Because this pro-
cess is fully automated, the maintenance associated with debugging and synchronizing the complex-valued solver
with the baseline solver is eliminated.

In the current work, a similar automated conversion is developed. However, many of the routines required by the
residual and objective functions are shared by other parts of the adjoint solver. For this reason, it is necessary not only
to create the complex-variable forms of the source code components th& formf and , but also to maintain their
original real-valued counterparts and ensure that they can safely coexist. These pieces include not only subroutines
and functions but also module variables and derived-type definitions.

Many of the basic elements described in Ref. 42 are leveraged for the current work; however, the need to simulta-
neously support real and complex variants of the various components requires considerable additional effort. For ex-
ample, within complex-valued routines, Fortran@® statements importing variables, routines, and type definitions
from other modules must be modified to use the appropriate complex-valued versions. Moreover, to handle layered
call stacks, this capability must be recursive. The full procedure is accomplished in three passes:

1. Read-Only Pass

Find all modules on which the residual and objective functions depend and gather information about
what they contain. Specifically, record: module name, subroutines, functions, derived-type definitions,
and module-level real and derived-type variable declarations.

2. Main Code Generation Pass

* Create complex versions of type definitions that contain real-valued variables

* Insert complex versions of the real and derived-type module variables and their asgpubihted
declarations

* Create complex copies of all functions and subroutines and, within each, change variable references
and calls appropriately
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* Insert a subroutine within each module that can be called to allocate and synchronize the complex- and
real-valued module variables

3. Driver Code Generation Pass

Create a main synchronization routine that calls all of the individual module-based synchronization rou-
tines. This layered approach is necessary to avoid hame—space collisions of module variable names.

The auto-generated complex version of the code is joined to the existing adjoint solver framework by means of a
standard Makefile. The complex version is first generated from the baseline flow solver, appropriate Makefile depen-
dencies are generated, and finally, all code is compiled and linked to form the composite adjoint solver. A similar ap-
proach is taken for the source code used to evaluate the right-hand side of Eq. 3.

Coloring Scheme for Complex Residual Evaluations

Consider the formation of the Jacobian matix [0R/0Q]T using complex variables, where the perturbation
size in Eqg. 4 is taken to be the square root of the Fortran95 intimglc ~ applied to a standard double precision
real variable. After applying the complex perturbatidQ to an eleme@t of  at gridjpoint , the!\gntry can be
determined by performing a complex residual evaluation and mining the imaginary parts of the residudt at node . In
this manner, the rows &  can be constructed in a sequential fashion by successively perturbing the el@ments of
at every grid point in the field. As noted above, this would require a complex residual evaluation for every grid point
and every dependent variable in the field. However, note that upon applying a pertua@tion and evaluating the
complex-valued residual, the imaginary partFof  will be largely zero. The only nonzero terms will lie within the
stencil width of the residual operator. For the discretization used in the current work, these terms correspond to the
nearest and next-nearest neighbors of the perturbed grid point. A significant speedup can be realized by taking advan-
tage of this property.

Prior to applying any complex perturbations to the field, the grid is preprocessed to establish node colorings. The
nodes in each color represent nodes that do not lie within a stencil width of another, and, therefore, may be simulta-
neously perturbed and processed by the complex residual routine. In this manner, a much larger number of elements
in A may be computed during a single complex residual evaluation across the domain.

Consider the one-dimensional structured grid shown in Fig. 1 and a five-point discretization. The first node is
placed into the first color, and the neighboring nodes within a stencil width are tagged. The rest of the field is then
searched for nodes which do not depend on any tagged nodes. If a node is found, it is added to the current color and
the neighbors within its stencil are also tagged. This process continues until no more nodes can be found. At that
time, the tags are reset and a new color is initiated. This algorithm is repeated until every node in the field is placed in
a color. For the five-point stencil used in Fig. 1, this results in five colors. Rather than a separate complex residual
evaluation for each dependent variable at each of the 26 grid points, the coloring scheme requires just five complex
residual evaluations for each dependent variable. For a similar discretization on a three-dimensional structured grid,
125 colors would be expected. For the three-dimensional unstructured grids used in the current work, there are typi-
cally between 150 and 200 colors.

bttt ———————— (G i(] //V\/\

e——Di——e——-G——e——-i——e——i——e——n—e Color 1 ,
Co—p——e——pi——e———r—e——ni—+e——+— (Color2 /___
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(——e————e——pf——e—+—pi——e—+—pd——e—+—H- Color 3 N \ 7 \

e —r+er——e+pi——e—+0 Color4 \

e +rpGr+e+DG+e+pa—+eD Color5 -
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Figure 1 Perturbation coloring scheme on one-

dimensional grid, where (¢) indicates a perturbation. Figure 2 Local elements provided to complex-
valued residual routines, where (¢) indicates a
perturbation. Solid edges are needed for
second-order accurate inviscid terms; shaded
elements are necessary for viscous
contributions.
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Parallelizing the coloring scheme described above is straightforward. In the event that candidate points for pertur-
bations on neighboring processors exhibit overlapping stencils at the partition boundaries, the higher-numbered pro-
cessor is allowed to place its candidate into the current color, while the other processor must place its candidate node
into a later color. This strategy is simplistic and by no means optimal; the partitioned color groups are generally not
load-balanced. However, this drawback has not been serious enough to warrant a more elaborate algorithm.

The mesh linearizatiodR/0X  required by Eq. 3 is formed in an analogous fashion by applying complex pertur-
bations to the grid coordinates. Here, a complex evaluation of the grid metrics is required prior to the residual compu-
tation, as these underlying terms are also affected by such perturbations.

Localized Residual Computations

The scheme described above can yield colors containing widely varying numbers of grid points. The initial colors
may contain several hundred grid points; however, the final color groups may each contain only a single grid point.
With fewer grid points per color, evaluating a complex-valued residual across the entire field becomes increasingly
inefficient. To further reduce the overall computational cost, the routines used to efluate  have been modified to
accept an optional list of elements over which to operate. As the nodes in the current color are perturbed, a temporary
collection of edges and cells within their stencils is gathered as shown in Fig. 2. By supplying the residual routines
with only those elements required to compute residuals within a stencil width of the nodes in the current color, the
overall cost is reduced substantially. In the case of a color containing a single grid point, the residual evaluation now
takes place over several dozen edges and cells, as opposed to the millions that may be present in the entire grid.

Strong Boundary Conditions
The backward-Euler time integration strategy used in the flow solver results in a linear system of equations at each
time stepn that takes the following general form:

V. 0R n n
— + = —
[Atnl aQJAQ R(Q) (5)
with Qn+l = Q"+ AQ". For viscous flows, no-slip and prescribed wall temperature boundary conditions are im-

posed using a strong enforcement at solid surf&asile the continuity equation at the boundary is formed and
solved in the same manner as in the interior, the energy at the wall is directly related to the density through the fol-
lowing expression, wherewa  subscript indicates a wall quantity:

Ew = mpw (6)

Along with the no-slip condition, this relationship is used to modify the diagonal block for rows of the linear system
in Eqg. 5 corresponding to grid points on viscous walls (associated off-diagonal entries are set to zero):

Dyy  Dy2 D3 D1g Dis Digl | Ap,, R
0 1 0 0 0 O A(pu),,
0 0 1 0 0 O A(pv)

w

=

0

0 0 01 0 O =0 (7)
T A(pW)y, 0
Y 0 0 0 1 0]|| AE 0
y(y-1) Y 0
0 0 0 0 0 1|L A | L™

Note that the components for the momentum, energy, and turbulence equations in the right-hand side of Eq. 7 are set
to zero at the end of a residual evaluation, whereas the residual at the wall is formally given by:

R1
(pu)y,
(PV)y
Ry = (pw),, (8)
e Tw

w y(~y —1) Pw

VW
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This has important ramifications in forming the Jacobians by using the
complex-variable technique. Evaluating a complex form of the residual PN NN
will result in identically zero elements for the linearizations of the mo- /N 7N 7N

mentum, energy, and turbulence equations at the wall. To remedy this, the ./~ _ _ ./ A A

Jacobian elements corresponding to these equations are explicitly set act N REN

cording to Eq. 7 once the entire matrix has been assembled. Although this '« / \

extra step is straightforward, it would not be necessary if the residual v&777 77 STV

tor was formed according to Eq. 8. This detail will be addressed again in a

subsequent section. Figure 3 Local boundary elements
provided to complex-valued force

Cost Function Linearizations routines, where (*) indicates a

Unlike a residual computation where the output is a vector of quantitiggrturbation.
associated with each grid point, the cost functions used in the current
work are composed of boundary integrals that yield scalar quantities such as lift and drag. This implies that only a
single contribution t@f/0Q 08f/9X may be determined by a complex force evaluation. For this reason, multiple
perturbations cannot be performed simultaneously as with the residual contributions. However, similar to the strategy
used for residual computations, the complex-valued force routines are restricted to a subset of boundary elements that
are affected by a perturbation as shown in Fig. 3. The need to perform boundary perturbations in a sequential fashion
does not have a considerable impact on the overall efficiency of the scheme, as the boundary integrals are generally
inexpensive and the boundaries are typically much smaller than the domain as a whole.

For parallel computations, the grid is partitioned without knowledge of surface information. For this reason, the
surfaces contributing to the cost function are in general not evenly distributed across processors and the construction
of the cost function linearizations is not load-balanced. This has not been found to cause a serious performance pen-
alty.

Distance Function Linearizations

For turbulent flows, the one-equation model used in the current work contains a source term that depends on the
distance to the nearest solid wall. This dependency enters the lineardftidX and is the only quantity in the en-
tire solver that depends on values outside the next-nearest neighbor stencil. For this reason, the coloring scheme de-
scribed earlier cannot be used for simultaneous perturbations of grid coordinates to construct the distance function
contribution todR/ 90X . Moreover, coloring the stencil pattern associated with the distance function would be cum-
bersome and likely result in a very inefficient scheme.

Similar to the cost function linearizations, the derivatives of the residual contributions involving the distance func-
tion were initially constructed by applying perturbations in a sequential fashion. However, unlike the cost function,
which depends at most on the surface values and their nearest neighbors, the distance function linearizations depend
on every grid point in the field. For large-scale problems, it has been found that constructing these contributions in a
sequential manner is prohibitively expensive. For this reason, the handcoded implementation of these terms devel-
oped in Refs. 28-31 is used, wherein the nearest element on the surface is stored for every grid point in the field, so
that the distance function at each grid point can be differentiated very efficiently. A similar scheme could certainly be
constructed for the complex-variable approach; however, this has not been pursued. Other limitations of large stencil
widths will be discussed in a subsequent section.

Computing the Adjoint Residual

SinceQ s fixed for the adjoint problem, the terpd&/ Q] ™ andoQ are formed and stored at the start of a
computation using the strategies outlined above. As a consequence, the adjoint residual on the right hand side of Eq.
1 becomes an explicit matrix—vector product at each time step. This is in contrast to the handcoded method presented
in Refs. 28-31, where only the nearest-neighbor terms were stored and the higher order pieces were recomputed at
each time step in order to save memory. A similar strategy could be used for the complex-variable implementation;
however, the computational cost associated with recomputing terms at each time step would be prohibitive. As com-
pared to the handcoded implementation, the current approach requires considerably more CPU time and memory to
form and store the linearizations required for Eq. 1; however, the subsequent performance of the adjoint residual
computation yields an overall computational savings that will be demonstrated below.

Consistency of Linearization

To verify the accuracy of the implementation, a comparison is made using three discrete methods for obtaining sen-
sitivity derivatives as listed in Table 1. The first method is a direct form of differentiation obtained by converting the
entire flow solver to a complex-variable formulation. This process has also been fully automated and is described in
Refs. 41 and 42. The second approach used to compute the linearizations is the handcoded discrete adjoint technique
of Refs. 28-31. Finally, the third method is the hybrid approach of the current work where a complex-variable formu-
lation is used to form the discrete adjoint system. All equation sets have been converged to machine precision.
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Table 1 Schemes used to obtain sensitivities.

Method Linearization Algorithm
1 Direct differentiation via automated complex variables
2 Handcoded discrete adjoint
3 Automated complex-variable discrete adjoint

Sensitivity derivatives of the lift and drag coefficients for the ONERA M6 Hisigown in Fig. 4 are computed for
fully turbulent flow using each of the methods described above. The mesh contains 16,391 nodes and 90,892 tetrahe-
dra. The freestream Mach number is 0.84, the angle of attack is 3.06 degrees, and the Reynolds number is 1 million
based on the mean aerodynamic chord. The surface grid has been parameterized using the method of Ref. 51. All of
the computations have been performed using 12 processors.

Sensitivity derivatives of the lift and drag coefficients for several shape parameters located at the midspan of the
wing are listed in Table 2. The results of the three approaches are in excellent agreement, with discrepancies present
in only the eleventh decimal place or better. For turbulent flows, it should be noted that the last several digits are
often still fluctuating despite machine precision convergence.

Large-Scale Performance

To evaluate the current scheme on a large-scale problem, fully turbulent flow over the transport wing-body shown
in Fig. 5 is computed using 64 processors. The grid for this case contains 1,731,262 nodes and 10,197,838 tetrahedra.
The freestream Mach number is 0.84, the angle of attack is 2.25 degrees, and the Reynolds number is 3 million based
on the mean aerodynamic chord. For this test, the objective function is the drag coefficient. Although this case was
previously shown in Ref. 31, the performance trends shown here cannot be directly compared with the prior results,
as the mean flow and turbulence equations have been solved in a loosely coupled fashion in the current work, as op-
posed to the tightly coupled solution procedure utilized in Ref. 31. The extra Jacobian terms required for a tightly
coupled flow solution can have a considerable impact on the relative performance of the flow and adjoint solvers.

The iterative convergence of the flow solver as well as the handcoded and complex-variable adjoint solvers is
shown in Fig. 6. After 3,000 time steps, the two histories exhibit similar asymptotic convergence rates for the density
and turbulence equations and their adjoint counterparts, as guaranteed by the exact dual nature of the iterative algo-
rithms. Note that the complex-variable adjoint scheme lies exactly on top of the handcoded implementation as would
be expected; any discrepancy would indicate an error in the implementation.

On a per processor basis for the current test case, the flow solver uses 92 MB of memory, the handcoded adjoint
solver requires 220 MB, and the complex-variable adjoint solver uses 630 MB. The discrepancy between the two ad-
joint implementations is due to the linearization storage strategies described earlier and is consistent with the discus-
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Table 2 Sensitivity derivatives for lift and drag coefficients using various approaches.

Design Variable

Objective
Function Method . .
Thickness Shear Camber Twist
1 -0.584383430968430 -0.073891855284066 1.843734584180741 -0.022010251214990
C,_ 2 -0.584383430968115 -0.073891855283921 1.843734584180955 -0.022010251214989
3 -0.584383430968976 -0.073891855294895 1.843734584179641 -0.022010251215037
1 0.058894900355748 -0.006835640271421 0.064393773359690 -0.001817294278046
CD 2 0.058894900355780 -0.006835640271392 0.064393773359720 -0.001817294278046
3 0.058894900355586 -0.006835640272820 0.064393773359577 -0.001817294278054

sion in Ref. 31. The benefit of storing the entire linearization can be seen in Fig. 7, where the convergence is plotted
versus CPU time for each solution. The handcoded adjoint solver requires approximately twice as long as the flow
solver to perform 3,000 time steps. However, since the matrix—vector product required by the residual in Eq. 1 is per-
formed explicitly in the current approach, the complex-variable adjoint solver requires 60% less CPU time than the

handcoded implementation. A subtle feature in Fig. 7 is the y-axis offset for the complex-variable adjoint results (eas-
iest to see for the turbulence equation). This is the initial setup time required to construct the exact linearizations of
the residual and cost function using complex variables.

V. Extension to High-Temperature Gas Equation Sets

There has been a significant effort recently within the CFD community to provide accurate and robust hypersonic
aerodynamic and aerothermodynamic capabilities within unstructured grid frameworks, and progress to date has re-
sulted in significantly more elaborate flow solution algorithms. In addition to the nonlinear limiter functions neces-
sary for supersonic flows, high-energy flow solvers typically contain curve fits for transport properties, eigenvalue
limiters, a variable number of species and energy equations, and may employ embedded Newton iterations to deter-
mine thermodynamic properties or to implement boundary conditions.

Consider the handcoded discrete adjoint implementation of Refs. 28-31 for the perfect gas Reynolds-averaged
Navier-Stokes equations. This capability has taken over 5 years to evolve into a mature capability for large-scale
problems. Any extension to its basic functionality remains an extremely sobering undertaking, and manually extend-
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Figure 6 Residuals versus iteration for modern
transport configuration.

Figure 7 Residuals versus CPU time for modern
transport configuration.
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ing it to include the additional complexities required for thermochemical nonequilibrium flows is simply untenable.
This issue has instead served as the primary motivation for the current work, wherein an automatable, more efficient,
and less error-prone procedure for developing a discrete adjoint solver for increasingly complex sets of governing
equations has been sought.

Although obtaining reliable stagnation-point heating on purely tetrahedral grids is proving an elusive goal, the cur-
rent adjoint formulation has been extended to include the high temperature gas effects that have been recently added
to the baseline solvé#5253 This has been done to demonstrate the power of the current approach to forming discrete
adjoint systems for more algorithmically complex equation sets. It is understood that any subsequent adjoint-based
design optimization or solution adaptation would only be as accurate as the underlying discretization; however, the
ultimate value of the current approach lies in its ability to provide a discrete adjoint capability in a timely manner for
a given discretization.

A detailed overview of the underlying hypersonic algorithms is presented in Ref. 53. An extensive suite of turbu-
lence models has been implemented in the baseline solver; however, the adjoint formulation has not yet been tested in
this regime. Only some basic implementation issues are discussed here and a simple test case is shown to verify the
accuracy of the approach and demonstrate its potential for future hypersonic applications. Areas requiring additional
research are also identified.

Implementation Issues

Extension of the current automated adjoint formulation to include high temperature gas effects is largely straight-
forward, since the discretization stencil for the various terms is identical to those in the perfect gas implementation.
Therefore, the infrastructure developed to assemble the various linearizations using complex variables can be readily
applied without modification. The additional thermodynamic and transport routines, as well as the source terms re-
quired for chemically reacting flows, have been modified to optionally operate on a localized subset of elements in
the same manner as the basic flux and force routines, so that computations are performed only for contributions with
nonzero imaginary parts. Strong boundary conditions are handled automatically, as the residual computation on
boundaries for the hypersonic portion of the solver is implemented in a general manner analogous to Eqg. 8.

The flow solver includes options to use temperature or energy as a fundamental variable. The use of energy (as in
the perfect gas case) requires a Newton subiteration to eval(atg,) . When a complex perturbation is applied to
an element of) and this iterative strategy is invoked, the convergence criterion for this procedure is identically sat-
isfied, since the real part of the temperature has not changed from its baseline value, which presumably corresponds
to the current value of the energy. However, the imaginary part of the temperature will be incorrect, as the iterations
required to determine this component have been terminated immediately. Therefore, when this procedure is invoked
in a complex-valued context, the Newton algorithm is forced to perform ten iterations — the maximum allowed for
the real-valued case — to allow the imaginary part of the temperature to develop correctly.

7~
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NN
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Nitrogen Oxygen

Figure 8 Surface grid and Mach number contours Figure 9 Atomic nitrogen and oxygen species
for cylinder computation. Darker shades indicate concentrations for cylinder computation. Darker
lower Mach numbers. shades indicate higher concentrations.
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Demonstration Case

A 5-species air laminar flow cylinder test case is performed. Shown in Fig. 8, the grid used for this case contains
4,040 nodes and 11,520 tetrahedra and has been derived from a structured grid similar to those used in Refs. 52 and
53. The grid contains a single layer of cells in the spanwise direction. Note that the structured grid cells have been di-
agonalized in a uniform manner so that a severe spanwise bias is present in the computation. This grid topology is
being heavily relied upon in related work for "stress-testing" the accuracy of various discretization schemes on tetra-
hedra.

For this test, the freestream velocity is 5,000 m/s, the freestream density is 0.08)lakg/the temperature is 200
K. These conditions give a Reynolds number of approximately 425,000 based on the cylinder diameter and a
freestream Mach number of 17.6. The flowfield is governed by nine conservation equations: five species equations
(N5, O,, N, O, and NO) and the usual momentum and energy equations. It should be noted that the convective terms
are only first-order accurate for this demonstration; a more detailed discussion on the reasons for this limitation will
follow in a subsequent section. The computation has been performed on eight processors and contours of the Mach
number are shown in Fig. 8, where a strong bow shock can be seen upstream of the cylinder. The jagged shock cap-
ture is typical of a first-order scheme and is exacerbated by the lack of grid alignment in these regions. The tempera-
ture downstream of the shock in the leading edge region exceeds 6,300 K, causing the freestream molecules to disso-
ciate; contours of atomic nitrogen and oxygen are shown in Fig. 9.

The convergence history of the nine flow equations and their adjoint counterparts for a drag-based objective func-
tion is plotted in Fig. 10. No attempt has been made to optimize the solution parameters; a constant CFL number of 1
is used with two point-implicit sweeps through the linearized problem at each timestep. The equations exhibit similar
asymptotic convergence rates as guaranteed by the exact dual implementation outlined in Ref. 31. The residual that
seems to stall slightly earlier than the other equations corresponds to the adjoint variable for the species conservation
of atomic nitrogen. The reason for this is unknown. Figure 11 shows contours of the streamwise momentum adjoint
solution for drag, as well as the adjoint variable for thes@ecies conservation equation for an objective function
based on the net heat flux to the cylinder surface.

To quantify the accuracy of the discrete adjoint implementation, sensitivity derivatives of the lift, drag, and surface
heating with respect to the streamwise coordinates of three randomly chosen grid points on the cylinder surface are
computed and shown in Table 3. Similar to the perfect gas test case shown earlier, these derivatives are computed
using two discrete methods previously outlined in Table 1. The first method is the direct differentiation approach at-
tained by converting the entire baseline solver to a complex-variable formulation. The second is the current discrete
adjoint approach, using complex variables to obtain the required linearizations. The agreement is similar to that ob-
tained for the perfect gas results.

Further Research and Development Areas

One issue associated with using the complex-variable approach to form the discrete adjoint system for hypersonic
flowfields is the memory required to store the complete linearization of the residual. For the next-nearest neighbor

Flow Equations
— — — — Adjoint Equations

Residual
(=
o

108

108

107

107

Iteration

Figure 10 Iterative convergence history of the flow Figure 11 Contours of the streamwise momentum
and adjoint equations for cylinder computation. adjoint variable for drag (left) and O, species
conservation adjoint variable for heating (right).
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Table 3 Sensitivity derivatives for lift, drag, and heating using various approaches.

o Design Variable
Objective

Function Method 1 5 3
c 1 0.079063607430172 0.040542677709286 0.036254858359808
L 3 0.079063607430244 0.040542677709607 0.036254858359736
c 1 -0.090184472046108 0.052986957502726 0.048939766511917
D 3 -0.090184472039446 0.052986957503082 0.048939766511939
1 0.092618219139863 0.052427889309767 -0.144725668575523
q 3 0.092618219167176 0.052427889311309 -0.144725668580864

stencil used in the current implementation, the residual at a grid point generally depends on information from roughly
50 neighboring points. A typical hypersonic computation might be performed on a grid consisting of 10 million
points; therefore, approximately 500 million nonzero subblocks will be present in the Jacobian matrix. For 5-species
air with a single energy equation model, nine governing equations are required, so that each subblock in the Jacobian
matrix will contain 81 entries. If standard 8-byte double-precision variables are used to store each of these values, ap-
proximately 320 GB of memory will be required to store the complete linearization. This represents a substantial
amount of memory, even on the largest computing systems currently available, and opportunities to alleviate this
memory requirement should be investigated. Moreover, this issue lends further motivation to the pursuit of adjoint-
based grid adaptatich®’ where grid points are concentrated only in areas that have the highest impact on the output
of interest, thereby avoiding unnecessary grid resolution in irrelevant regions of the flowfield.

Another concern in applying the adjoint technique is the requirement that the flowfield solution be linearly stable.
At the conclusion of a flowfield computation, the solution may appear satisfactory in an engineering sense; forces
have converged to some tolerance, and the residuals of the nonlinear system have been reduced to some acceptable
level. However, the flowfield may, in fact, contain some linearly unstable modes. These modes can often be bounded
or stabilized by nonlinearities present in the flowfield computation; however, the adjoint system has no such control
mechanisms and any instabilities will amplify and cause the solution to diverge. The need for flux-limiting strategies
in second-order accurate hypersonic computations may contribute to this problem; it is for this reason that no second-
order accurate results have been presented here for hypersonic flows. An ability to monitor diagnostics of the linear-
ized system of equations and address such instabilities would be a valuable capability and should be a focus of future
work. This requirement for linear stability has occasionally been a problem for turbulent perfect gas flows, and simi-
lar issues have also been reported in Refs. 54 and 55.

The presence of trace species has been found to cause sporadic problems in solving the adjoint system of equations.
For example, in a 5-species air computation, the freestream concentrations of N, O, and NO ard 8et to in the
current implementation. Adjoint computations for such flowfields have occasionally shown a tendency to diverge,
and increasing the species concentrations in the freestream has been found to overcome this difficulty. The exact
cause of this breakdown has not yet been investigated in detail.

Finally, the efficiency problems associated with linearizing the distance function due to its inherently large stencil
may foreshadow similar difficulties to be encountered in forming discrete adjoint systems for problems governed by
integro-differential equations such as magnetohydrodynamic applications and flowfields involving radiation. Discret-
izations of these types of systems generally involve noncompact stencils and, therefore, their linearizations may also
be prohibitively expensive to construct using a complex-variable formulation.

Despite these technical challenges, the current approach is an enabling technology for pursuing rigorous design op-
timization and adaptation for high energy flows. The perfect gas implementation has proved invaluable for a wide
range of vehicle concepts. Aerodynamic optimizations for full aircraft configurations using large numbers of design
variables have been performed with minimal expéhaad adjoint-based mesh adaptation and error estimation has
been used to efficiently obtain grid-converged solutions for high Reynolds number, geometrically complex flow-
fields 3637 Furthermore, ongoing work is aimed at coupling these capabilities to enable simultaneous design and adap-
tation. This coupling will not only drastically reduce design cycle time but, perhaps more importantly, provide error
bounds on the result. The extension of these technologies to high temperature gas equation sets will allow these com-
putations to span the speed range, eventually encompassing scramjets, interplanetary probes, and manned space ex-
ploration vehicles.
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VI. Summary and Conclusions

A new technique for obtaining exact linearizations of complicated real-valued residual operators and cost functions
necessary for discrete adjoint computations has been described. The method has been implemented for turbulent
flows within a three-dimensional unstructured grid framework, where the complex-valued source code is generated
using an automated scripting procedure. A number of efficiency issues have been addressed as well as implementa-
tion details. Sensitivity derivatives computed using the new scheme are in excellent agreement with results from a
discrete direct approach as well as a previous handcoded discrete adjoint implementation. Since the new scheme
stores the complete linearization of the residual, the method requires considerably more memory than the existing
handcoded approach. However, this reduces the adjoint residual computation to an explicit matrix—vector product so
that the overall computational cost for large-scale problems is reduced.

To demonstrate the power of the new approach, the method has also been extended to include finite rate chemistry
models necessary for hypersonic flows. Sensitivity derivatives for 5-species reacting air have been computed using
the new scheme and agreement with a discrete direct approach has been demonstrated.

The impact of the new approach on the software development cycle necessary to achieve a discrete adjoint capabil-
ity is difficult to overstate. The previous handcoded implementation required on the ordeyan$t® mature into a
robust tool suitable for everyday large-scale perfect gas turbulent flow applications. By using the new complex-vari-
able approach to achieve the required linearizations, an equivalent capability for turbulent flows was achieved with
only 6 weeksof development effort. The experience and software infrastructure gained through the lengthy hand dif-
ferentiation process certainly provided an excellent foundation for the new effort; however, despite this headstart, the
new method has the potential to reduce the software development cycle by an order of magnitude or more. Although
a number of issues warrant further research, the current scheme has opened the door to rigorous adjoint-based hyper-
sonic aerodynamic and aerothermodynamic design optimization and solution adaptation, which up until recently
were mere visions.
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