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AABBSSTTRRAACCTT  

Polarization-sensitive lidars have proven to be highly effective in discriminating between 

spherical and non-spherical particles in the atmosphere.  These lidars use a linearly polarized 

laser and are equipped with a receiver that can separately measure the components of the return 

signal polarized parallel and perpendicular to the outgoing beam.  In this work we describe a 

technique for calibrating polarization-sensitive lidars that was originally developed at NASA’s 

Langley Research Center (LaRC) and has been used continually over the past fifteen years.  The 

procedure uses a rotatable half-wave plate inserted into the optical path of the lidar receiver to 

introduce controlled amounts of polarization cross-talk into a sequence of atmospheric 

backscatter measurements.  Solving the resulting system of nonlinear equations generates the 

system calibration constants (gain ratio, G, and offset angle, θ) required for deriving calibrated 

measurements of depolarization ratio from the lidar signals.  In addition, this procedure also 

determines the mean depolarization ratio within the region of the atmosphere that is analyzed.  

Simulations and error propagation studies show the method to be both reliable and well behaved.  

Operational details of the technique are illustrated using measurements obtained as part of 

Langley Research Center’s participation in the First ISCCP Regional Experiment (FIRE). 

1. INTRODUCTION 

It is well known that 180-degree backscattering from spherical particles retains the polarization 

state of the incident beam  (Bohren and Huffman, 1983).  The depolarization lidar technique 

makes use of this phenomenon by using a linearly polarized laser transmitter mated to a two-

channel receiver capable of measuring the components of the return signal polarized parallel and 
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perpendicular to the transmitted beam.  The signal separation is typically accomplished using a 

polarizing beam splitter (PBS), which directs the perpendicular-polarized component of the 

backscatter signal to one channel and the parallel to the other (Sassen, 2000).  The calibrated 

ratio of these two components is known as the depolarization ratio.  Depolarization ratio 

measurements provide information about the shape and/or thermodynamic phase of the particles 

in the scattering medium (Sassen, 1991), and for this reason they have been widely used and 

studied within the atmospheric sciences.  The depolarization lidar technique dates back to the 

early 1970s, when the depolarization of backscattered laser light was shown to provide effective 

discrimination between ice clouds and water clouds (Schotland et al., 1971).  Later studies 

augmented the technique by using depolarization signatures to identify regions of horizontally 

aligned hexagonal plates in altostratus clouds (Platt 1977).  Recent analyses of cirrus clouds have 

used lidar-measured depolarization ratios to derive the effective shape ratios of cirrus cloud 

particles (Noel et al., 2002). 

Dual polarization lidars are also used to probe other atmospheric constituents.  Within the 

troposphere, polarization-sensitive lidars are frequently used to detect the presence of dust within 

the planetary boundary layer (Murayama et al., 2001; Gobbi et al., 2000).  In the stratosphere, 

depolarization measurements obtained at 532 nm during the Airborne Arctic Stratospheric 

Experiment (AASE) contributed significantly to the first morphological classifications of polar 

stratospheric clouds (PSCs; see Poole et al., 1990).  Subsequent analyses of multi-wavelength 

lidar measurements obtained during the AASE have further extended the utility of depolarization 

ratio measurements in PSC identification and classification (Toon et al., 2000).  Depolarization 

ratios have also been used to identify and distinguish between volcanic ash and sulfuric acid 

droplets in the stratospheric aerosol plume produced by the eruption of Mt. Pinatubo in 1991 
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(Winker and Osborn, 1992).  In the near future, depolarization measurements are expected to 

play a pivotal role in the fully automated scene classification and feature identification 

algorithms being developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observations (CALIPSO) mission (Winker et al., 2002; Hu et al., 2001; Omar et al., 2003). 

The key to deriving accurate measurements of depolarization ratio lies in obtaining a reliable 

calibration of the receiver channels.  This work presents a technique that determines the system 

depolarization calibration constants while simultaneously retrieving an estimate of the mean 

volume depolarization ratio within the region of the atmosphere over which the calibration 

constants are computed.  In section 2 we derive the basic depolarization equation for an ideal 

lidar system, and introduce the depolarization gain ratio, which quantifies the relative 

magnitudes of the combined optical and electrical gains of the parallel and perpendicular 

receiver channels.  Previously published techniques for retrieving the gain ratio are reviewed in 

section 3.  In section 4 we describe modifications to both the lidar hardware and the 

depolarization equation that form the basis for our calibration technique.  In this section we also 

introduce the transmitter-to-receiver offset angle, which parameterizes cross-talk between the 

two receiver channels, and describe the mechanics of the calibration technique.  Measurement 

accuracy issues and uncertainty analyses are explored in sections 5 and 6.  Practical 

considerations for implementing the technique, illustrated using a real-world example, are given 

in section 7.  Section 8 concludes the paper with a recap of the most important aspects of the 

method. 

JTECH_A-690_rev03.doc Page 5 of 54 Last revision: 2005-09-30 



2. DEVELOPING THE DEPOLARIZATION EQUATION 

Following the development given by Measures (1984), the single-scattering approximation for 

the total optical power backscattered from range r into the receiver of an elastic backscatter lidar 

is given by 

 ( ) ( ) ( ) ( )2L
0 2

c t 1P r P A r r T r
2 r
⋅= ⋅ ⋅ ξ ⋅ ζ ⋅ ⋅ ⋅β ⋅ . (1)

The first five terms in this equation describe design characteristics of the lidar.  P0 is the average 

laser pulse power ( , where E0 is the initial laser pulse energy and tL is the laser pulse 

width).  A is the effective area of the telescope mirror, ζ characterizes the spectral transmission 

efficiencies of the transmitter and receiver at the laser wavelength, and c is the speed of light.  

0 0P E / t= L

( )rξ  is an overlap factor describing the degree to which the laser beam fills the receiver’s field 

of view.  For this work we assume that measurements are made far from the receiver using a 

properly bore-sighted system, so that ( )r 1ξ ≡ .  The final two terms in the equation quantify the 

interaction between the propagating laser energy and the atmosphere through which it travels.  

β(r) is the volume backscatter coefficient, and  is the two way transmittance of the 

atmosphere.  Combining terms, we can rewrite the lidar equation in a simplified form as  

( )2T r

 ( ) ( ) ( )2
0 2

CP r E r T r
r

= ⋅ ⋅β ⋅  (2)

where (recalling that ( )r 1ξ ≡ ) 1
2= ⋅ ⋅C A cζ ⋅ . 
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The digitized signal, Q, stored by the lidar data acquisition subsystem is proportional to the 

received optical power, P; that is, Q , where g is parameterizes the electro-optic gain of 

the receiver and includes factors such as transmission optics losses, detector electronics gain, 

electro-optic conversion coefficients (e.g., photo-multiplier quantum efficiencies), and the 

electronic gain of any preamplifiers.  In an ideal system, the processes involved in converting 

backscattered laser light into a series of digitized signals are all linear, and thus the equations 

representing the signals stored in the parallel (  and perpendicular (  channels of the data 

acquisition sub-system can be written as  

P= ⋅g

) )⊥

 ( ) ( ) ( )2
0 2

CQ r E r T r
r

= ⋅ ⋅ ⋅β ⋅g  (3a)

and 

 ( ) ( ) ( )2
0 2

CQ r E r T r
r⊥ ⊥ ⊥= ⋅ ⋅ ⋅β ⋅g . (3b)

Here  and  represent the range-resolved digitized signals and the ( )Q r ( )Q r⊥ g  and ⊥g  terms 

quantify the electro-optic signal gain for each channel incurred after the beam passes through the 

PBS.  The volume backscattering coefficients for the parallel and perpendicular polarizations are 

given by β  and β , respectively.  For typical dual polarization lidars, the digitized 

parallel and perpendicular signals share several factors in common.  In particular, both the r2 

term and the two-way transmittance of the atmosphere, , make identical contributions to 

both signals.  We also explicitly assume that the optical efficiencies of all components before the 

( )r ( )r⊥

( )2T r
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half-wave plate are essentially identical for both polarization orientations, so that the system 

constant term, C, is also identical for both channels.  This requirement should not be unduly 

restrictive, as it is fulfilled by those systems for which the components within the optical path are 

all aligned with a zero-degree angle of incidence.  If we further assume that the polarization 

planes of the transmitter and receiver are in perfect alignment, we can define the measured ratio 

of the two signals as 

 ( ) ( )
( )

( ) ( )
( ) ( )

( )
( ) ( )

2
2 0

2
2 0

C E T r rQ r rrm r G rCQ r rE T r rr

⊥ ⊥⊥ ⊥⊥
⋅ ⋅ ⋅ ⋅β    β

= = = ⋅ = ⋅δ      β⋅ ⋅ ⋅ ⋅β    

g g
gg

, (4)

where G ⊥= g g  is the depolarization gain ratio, and ( ) ( ) ( )r r⊥δ =β β r  is the volume 

depolarization ratio.  In this idealized case, all that is necessary to retrieve the depolarization 

ratios from the measured ratios is an accurate estimate of the depolarization gain ratio, G.     

In closing this section we note that the definition for depolarization ratio adopted in this work is 

not universally employed.  A comprehensive overview of the several different depolarization 

ratio definitions used within the lidar community can be found in Cairo et al., 1999. 

3. EXISTING TECHNIQUES FOR ESTIMATING GAIN RATIO 

Gain ratio calibrations are frequently accomplished by normalizing the measured ratios in a 

region of “clear air” (i.e., a region assumed to consist of purely molecular scatterers) to some 

theoretically appropriate value for the molecular depolarization ratio (e.g., Sauvage et al, 1999; 

Beyerle et al, 2001).  Using this technique, an estimate of the gain ratio, G , is obtained using ˆ
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clear targetĜ m= δ , where clearm  is the mean measured ratio computed over the presumed-to-

be-clear region of the atmosphere, and δtarget is the molecular depolarization ratio that should be 

measured by the system being calibrated.  The exact value of δtarget to be used depends on the 

optical architecture of the system, and, if the filter line-width is broad enough to include the 

rotational Raman bands, the temperature of the atmosphere in the calibration region (Behrendt 

and Nakamura, 2002).  Successful calibration of a dual-polarization lidar via the clear air 

normalization method therefore requires an accurate and precise knowledge of the filter band-

pass characteristics.  For very narrow filters, the contributions to δtarget are restricted to Cabannes 

scattering (δtarget = 0.00365).  If the filter line width is substantially broader, a Rayleigh scattering 

model (Cabannes + rotational Raman contributions) may be required (She, 2001), and in this 

case δtarget is larger by a factor of ~4 (Biehle et al., 2000).  Intermediate line widths will of course 

require intermediate values of δtarget. 

A second method for deriving the gain ratio is exemplified by the procedure described in 

Spinhirne, et al. (1982).  At the cost of some additional hardware, this technique obviates the 

requirement for an exact a priori knowledge of δtarget.  Spinhirne’s procedure uses a half-wave 

plate inserted into the optical path of the transmitter to rotate the polarization plane of the laser 

output by 45º with respect to the polarization axis of the receiver.  Assuming the polarization 

planes of the transmitter and receiver are perfectly aligned, signals of equal backscatter intensity 

will then be measured by each receiver channel, irrespective of the scattering medium being 

sampled.  A modified version of the Spinhirne procedure, one that places the half-wave plate in 

the receiver rather than the transmitter, is used by McGill et al. (2002). 
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The requirement for a priori knowledge of δtarget is also eliminated by the gain ratio calibration 

technique used by Sassen et al. (2001).  In this method, equal input signals are generated by 

placing an unpolarized light source at the minimum telescope focus.  The gain ratio is then 

retrieved from the ratio of the measured outputs. 

A somewhat different approach to the gain ratio calibration issue was taken by Platt (1977).  

Polarization optics installed in the receiver were designed to be rotated fully between successive 

laser pulses, allowing for interleaved acquisition of the parallel and perpendicular signals.  As 

only a single detector and data acquisition channel is used in this scheme, the gain ratio is unity 

by definition, and the requirement for a gain ratio calibration vanishes, albeit at the price of non-

simultaneous measurements of the polarization components.  The single-detector technique has 

also been employed by Eloranta & Piironen (1994), who used a Pockels cell to rotate the 

polarization plane of the laser transmitter by 90° between successive pulses.  The pulse repetition 

frequency of their system is 4 kHz, versus the 1 Hz system used by Platt, and thus the effects of 

non-simultaneous measurements are largely eliminated. 

4. IMPROVED CALIBRATION TECHNIQUE 

4.1. ACCOUNTING FOR INSTRUMENT ALIGNMENT ERRORS 

The development of equation (4) assumes that the polarization planes of the transmitter and 

receiver are in perfect alignment.  In a perfectly aligned system equipped with an ideal linearly 

polarized laser, the polarization plane of the laser is exactly parallel to the parallel axis of the 

PBS.  Given such a system, the measured ratios generated by single scattering from perfectly 
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spherical particles will be zero.  Suppose, however, that the optical axis of the polarizing cube is 

somewhat misaligned with that of the transmitted beam.  This misalignment induces a degree of 

polarization cross-talk into the measured ratios – i.e., some fraction of the parallel signal is 

leaked into the perpendicular channel (and vice versa), thereby contaminating the measurements 

from which the depolarization ratios are ultimately derived.  The effects of this contamination 

are examined in detail below in section 6.  In the current section we describe the physical 

modifications to the lidar that allow us to compensate for potential alignment errors, and develop 

the corresponding physical and mathematical formulations. 

As noted earlier, the alignment of the transmitting and receiving polarization axes can be 

adjusted by use of a half-wave plate.  The polarization-sensitive lidars used by our research 

group are therefore equipped with a half-wave plate installed in the optical path of the receiver.  

A simplified schematic showing the relevant design features is presented in  Figure 1.  More 

detailed descriptions of various LaRC systems can be found in Winker and Osborn (1992), 

Winker and Vaughan (1994), and DeCoursey et al. (1996).  With respect to polarization 

calibration, the key component characterizing all of these instruments is a zero-order half-wave 

plate mounted in the receiver optical train immediately upstream of the primary PBS.  Rotation 
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of the half-wave plate is controlled using a motor-driven rotational mount that can be 

commanded to high angular precision via a computerized interface.1 

Also critical, both to calibrating the instrument and to subsequent depolarization ratio 

measurements, is the insertion of a secondary PBS to ensure the polarization purity of the 

perpendicular polarization channel.  Manufacturer specifications for commercially available PBS 

cubes typically quote extinction ratios of better than 1000 to 1, with transmission efficiencies of 

TP > 95%, and reflection efficiencies of RS > 99.9%.2  With respect to measurement accuracy, 

the ~5% transmission loss in the parallel component is of particular concern.  While some of this 

transmission loss occurs through attenuation in the proprietary, multi-layer interface between the 

two halves of the polarizing cube, the remainder of the energy, estimated at 2% to perhaps 3%, is 

erroneously included in the reflected component.  However, the electric field vector of this 

renegade P-channel energy vibrates at right angles to the desired S-component of the signal.  The 

second PBS will therefore transmit ~95% of the desired S-channel signal, and attenuate the P-

channel contamination by a factor of ~1000.  The polarization purity of the signals incident on 

the detectors in this paired-PBS configuration is thus 950:1 or better for both channels.  Recent 

                                                 

1 The polarization sensitive lidar flown as part of the SAGE III Ozone Loss and Validation 

Experiment (SOLVE; Newman et al., 2002), uses a zero-order half-wave plate from VLOC 

(http://www. vloc.com), part number WZH381-0532-2000, and an Oriel (http://www.oriel.com/) 

model 13048 motorized rotator together with an Oriel model 18011 encoder mike controller. 

2 As of July 25, 2005, CVI Lasers quotes these exact specifications for their PBS-532-100 

polarizing beamsplitter cube; see http://www.cvilaser.com. 
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conversations with manufacturers’ representatives of confirm that this method remains the 

preferred way to deal with PBS cross-talk (Hull, 2005). 

Given a properly configured lidar, we define the global polarization frame of reference to 

coincide with the polarization axes of the primary PBS.  Maintaining our assumption of perfect 

optical alignment, the polarization plane of the transmitter is exactly matched to the principle 

axis of the half-wave plate, and the principle axis of the half-wave plate is likewise perfectly 

parallel to the polarization plane of the PBS.  In this case, the orientation of the polarization 

components of the signal backscattered from a non-depolarizing target (e.g., single-scattering 

from perfect spheres) will be as illustrated on the left side of Figure 2.  Because the angle 

between the polarization plane of the backscattered laser light and the principle axis of the half-

wave plate is zero, the intensities of both the parallel and perpendicular components of the 

backscattered light are transmitted without change to the PBS, and the corresponding measured 

ratios will be zero.  

Now consider the more general case, in which the polarization planes of the transmitter and 

receiver are no longer perfectly aligned.  We parameterize the magnitude and direction of the 

misalignment between transmitter and receiver by defining a systematic offset angle, θ.  Under 

these conditions, if we were to remove the half-wave plate from the optical path, the geometry of 

the signal backscattered from a non-depolarizing target would be as illustrated in the center of 

Figure 2.  Reinserting the wave plate with its principal axis co-aligned with the parallel axis of 

the PBS, the polarization state of the light after transmission through the wave plate is now 

rotated with respect to its original state by a factor of 2θ (Hecht, 2002).  This final configuration 
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is shown in the right-hand panel of Figure 2.  The corresponding electric field vectors for the 

parallel and perpendicular components incident on the PBS are given by 

 ( ) ( )t, i, i,cos 2 sin 2⊥= ⋅ θ + ⋅ θE E E  (5a)

 ( ) (t, i, i,cos 2 sin 2⊥ ⊥= ⋅ θ − ⋅E E E )θ  (5b)

where Et represents the field transmitted through the half-wave plate, Ei represents the incident 

field, and θ is the offset angle.  Since the electric fields produced by the scattering process are 

assumed to be uncorrelated, the time-averaged cross products vanish and the powers associated 

with the transmitted fields are 

 ( ) ( )( )2 2 2 2
i, i,

1
2P cos 2 sin⊥= ⋅ ⋅ θ + ⋅ θE E 2  (6a)

 ( ) ( )( )2 2 2 2
i, i,

1
2P sin 2 cos⊥ ⊥= ⋅ ⋅ θ + ⋅ θE E 2  (6b)

Recognizing that ( )2 2
i K C r E T= ⋅ ⋅ ⋅ ⋅2

0 βE , where K is a constant of proportionality, we can 

substitute (6a) and (6b) into (4) and write the expressions for the signals received in the parallel 

and perpendicular channels as 

 ( ) ( )( )2 2 2
02

1
2

CQ K E T cos 2 sin 2
r ⊥

 = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ β ⋅ θ +β ⋅ θ 
 

g  (7a)
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 ( ) ( )( )2 2 2
02

1
2

CQ K E T sin 2 cos 2
r⊥ ⊥ ⊥

 = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ β ⋅ θ +β ⋅ θ 
 

g  (7b)

Using the terms given in (7) we can derive the measured ratios as a function of gain ratio, 

depolarization ratio, and offset angle: 

 
( ) ( )( )
( ) ( )( )

2 2

2 2

sin 2 cos 2Qm
Q cos 2 sin 2

⊥ ⊥⊥

⊥

⋅ β ⋅ θ +β ⋅ θ
= =

⋅ β ⋅ θ +β ⋅ θ

g

g
 (8)

Factoring common terms and making the range dependence explicit yields a revised depolari-

zation equation, which accounts for the effects of a systematic offset angle: 

 ( ) ( ) ( )
( ) ( )

2

2

r tan 2
m r G

1 r tan 2
 δ + θ

= ⋅ + δ ⋅ θ 
 (9)

For a system with an offset angle of zero, equation (9) reduces, as expected, to equation (4).  

More importantly, it is clear from equation (9) that if the offset angle is known, the polarization 

components of the system can be brought into alignment by the appropriate rotation of the half-

wave plate. 

4.2. SIMULTANEOUS RETRIEVAL OF GAIN RATIO AND OFFSET ANGLE  

Calibration data is accumulated by acquiring a fixed number of lidar profiles at each of a 

sequence of accurately measured calibration angles.  Calibration angles are measured relative to 

the position of the half-wave plate at the start of the procedure, and obtained by rotating the half 

wave plate.  For the profiles acquired at any angle, the effective offset angle is thus the sum of the 
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actual systematic offset angle, θ, and the current calibration angle, ϕ.  Repeating the rotation 

process for three or more calibration angles generates a set of backscatter profiles into which we 

have introduced controlled amounts of polarization cross-talk.  The amount of cross-talk varies 

from angle to angle, but remains constant within the data acquisition sequence for each separate 

angle.  Hence for the jth calibration angle, ϕj, the equation describing the range-resolved 

measured ratios becomes 

 ( )
( ) ( )( )

( ) ( )( )
2

j
j 2

j

r tan 2
m r G

1 r tan 2

 δ + θ+ ϕ
= ⋅
 + δ ⋅ θ+ ϕ 




 (10)

where mj(r) and ϕj are measured (and thus known) values and δ(r), G, and θ are the parameters to 

be estimated by the calibration procedure.  Because the calibration equation contains three 

unknowns, backscatter data must be acquired at a minimum of three calibration angles.  A 

nonlinear least squares algorithm is then applied to solve the resulting (range-resolved) systems 

of equations over some region of the data for which the measured ratios remain essentially 

constant. 

It is important to reiterate here that, in addition to calculating the gain ratio and the offset angle, 

this procedure also determines the volume depolarization ratios within the selected altitude 

range.  Unlike the clear air normalization technique, we specifically do not require an accurate a 

priori estimate of δtarget, nor in principal do we require a purely molecular calibration region (but 

see section 7 for some practical caveats).  Among published calibration techniques, only the 

method advocated by Sassen et al. (2001) explicitly recognizes and attempts to correct for the 

effects of misalignment between the transmitter and the receiver.  Sassen defines the 
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depolarization ratio using ( ) ( )r G m rδ = ⋅ − χ , where χ “is a correction factor accounting for the 

imprecise alignment between the laser E vector and the orientation plane of the receiver 

polarizing prism, as well as any randomness in the transmitted laser pulse polarization 

properties”.  However, while Sassen’s technique avoids using δtarget in ascertaining the system 

gain ratio (i.e., as in section 3), δtarget is nonetheless required for the practical determination of χ  

(i.e., ( )target G m rδ = ⋅ − χ , where G is known, m(r) is measured, and χ is the only unknown).  

5. ERROR ANALYSIS I: CALIBRATION COEFFICIENT UNCERTAINTIES 

The depolarization calibration coefficients are retrieved by solving a nonlinear least squares 

problem.  While deriving a general error analysis for nonlinear least squares problems can be 

quite difficult, error estimates for any specific solution can be obtained using the final approxi-

mation to the Hessian matrix generated by the nonlinear least squares solver (e.g., Cox, Forbes, 

& Harris, 2004).  However, estimating errors using this technique relies on the assumption that 

the noise in the inputs can be characterized as additive, zero-mean, and Gaussian-distributed, 

with an identical variance for all parameters (Frieden, 2001).  Therefore, a more accurate and 

intuitive understanding of the correlations between input uncertainties and output errors is often 

best obtained by Monte Carlo simulations (Press, et al., 1992; Anita, 2002).  In the sections 

below we describe numerical experiments that benchmark the performance and stability of the 

retrieval technique, and provide heuristics for assessing calibration coefficient uncertainties as a 

function of measured signal-to-noise ratio (SNR) and the number of calibration angles used (Nϕ). 
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5.1. MONTE CARLO SIMULATION DESIGN 

Our investigation of error propagation was conducted using simulation software designed to 

reproduce all relevant characteristics of the depolarization calibration process.  Using equations 

(3a) and (3b), synthetic lidar backscatter signals are generated for both the parallel  and 

perpendicular  channels.  When deriving these signals, the system gain ratio and offset 

angle, the atmospheric depolarization ratio, and the SNR of the laser backscatter are all fully 

configurable for each trial.  User-specified noise levels in the simulated backscatter signals are 

introduced via a Poisson-distributed random number generator.  The number and magnitude of 

the angles used in any calibration are also user-configurable.  Errors in the calibration angle 

measurements due to backlash and/or hysteresis are modeled as normally distributed, with 

distribution parameters obtained from specifications provided by the manufacturer(s) of the 

rotational stage and its associated controller.  Solutions to the non-linear least squares problem 

are generated from the derived measured ratios using an implementation of a damped Gauss-

Newton method adapted from Dennis and Schnabel (1996).  All software was written in Object 

Pascal, using Borland’s Delphi compiler. 

(P )

)(P⊥

Calibration constant errors were characterized using two separate Monte Carlo simulations.  The 

first of these concentrated on SNR and Nϕ effects only, and thus the calibration angles were 

assumed error-free.  In the second, realistic rotator uncertainties were added to the calibration 

angles.  Both studies examined the effects of variability originating in three domains: backscatter 

SNR, which is defined with respect to total optical intensity immediately prior to the PBS cube; 

the number of calibration angles used; and the target (i.e., “truth”) values for gain ratio, offset 

angle, and molecular depolarization ratio.  For each study, calibration constants were derived 
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from 200,000 independently generated sets of simulated measured ratios.  Twenty-five back-

scatter SNR levels were specified, ranging from 10 to 250 in increments of 10.  The number of 

angles used at each SNR level was varied from the required minimum of 3 to a maximum of 10.  

Reasonable, physically meaningful ranges were established for the depolarization calibration 

constants and the clear air depolarization ratio, as follows: 

• 1.0 < G < 4.0 – Gain ratio limits were chosen based on dynamic range considerations.  

For example, for a typical cirrus cloud volume depolarization ratio of 0.50, the optical 

intensity measured in the perpendicular channel is one-half of the intensity measured in 

the parallel channel.  The perpendicular channel gain can therefore be increased 

accordingly, yielding a gain ratio of 2.  As aerosols (excluding larger dust particles) 

generally have much lower depolarization ratios than cirrus clouds, aerosol 

measurements could presumably use gain ratios as high as 4. 

• –2.0° < θ < 2.0° – Experience has shown that the offset angle can be set to within ±2.0° 

via visual inspection of the backscatter signal; that is, by rotating the half wave plate so 

that the magnitude of the perpendicular return is minimized in the target calibration 

region. 

• 0.0037 < δ < 0.0288 – This range extends from Cabannes depolarization at the lower end 

to twice Rayleigh depolarization at the upper end. 

For each of the 200 combinations of SNR and Nϕ, 1000 sets of simulated measured ratios were 

generated.  Each set of measured ratios was constructed using a separate { }G, ,δ θ  “truth vector” 
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that was produced using a uniform random number generator scaled to the ranges specified 

above for each parameter.  The nonlinear least squares problem was then solved for each set, 

yielding a three-element solution vector, { }G, ,δ θ .  For each vector element and each {SNR, 

Nϕ} pair, we then compute the root-mean-square (RMS) deviation of the retrieved value, X , 

from the simulated target value, X, using 

 ( ) ( )
1000

2

i i
i 1

1RMS X X X
1000 =

= −∑ . (11)

Here X can be either G, δ, or θ.  When computed according to equation (11), the depolarization 

ratio error metric is returned as a percentage, the offset angle error metric has units of degrees, 

and the gain ratio error metric is unitless.   

The values of the calibration angles used for each Nϕ trial are listed in Table 1.  The maximum 

range of angles that can be used is confined to ±22.5º about true zero, as beyond this limit the 

polarization sensitivity of the two receiver channels is effectively swapped.  In practice we have 

found that, due to the low SNR of the measured ratios, a calibration angle of zero is unsuitable 

for daytime calibrations using a molecular region of the atmosphere.  Accordingly, the range of 

calibration angles was chosen to be between ±20°, excluding the subrange of ±4º. 

5.2. MONTE CARLO SIMULATION RESULTS AND DISCUSSION 

In Figure 3 we present contour plots displaying the RMS errors for gain ratio (left side) and 

offset angle (right side) obtained from the Monte Carlo simulation using error-free calibration 

angles.  These plots display contours of constant RMS error as a function of both SNR (log scale, 
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vertical axis) and Nϕ (linear scale, horizontal axis).  Each contour line is labeled with its 

corresponding RMS error value.  The gain ratio errors are seen to depend strongly on backscatter 

SNR, but have only a weak dependence on the number of calibration angles used.  That the gain 

ratio retrieval is relatively insensitive to Nϕ is not surprising, as the calibration equation is linear 

with respect to G.  Nϕ exerts a noticeably larger influence on the RMS errors for the offset angle.  

However, for both gain ratio and offset angle, the error metric decreases exponentially with 

increasing SNR, whereas the decrease with increasing numbers of calibration angles is 

approximately linear.  The actual errors retrieved in the simulation are show using solid red lines.  

The dashed black lines show the predicted errors obtained from two-dimensional linear 

approximating functions of the form 21 C NC
0 SNRy C e ϕ⋅= ⋅ ⋅ , where, as previously defined, SNR is 

the backscatter signal-to-noise ratio and Nϕ represents the number of calibration angles.  The 

RMS error in the gain ratio as a function of SNR and Nϕ can therefore be approximated using 

 ( ) 0.014 N1.026N SNR SNRG , 4.695 e ϕ− ⋅−
ϕ∆ = ⋅ ⋅ . (12)

Similarly, the RMS error in the offset angle is approximated by 

 ( ) 0.057 N1.010N SNR SNR, 13.306 e ϕ− ⋅−
ϕ∆θ = ⋅ ⋅  (13)

where the return value of the ∆θ function has units of degrees. 

For the second phase of the Monte Carlo study, each of the calibration angles was contaminated 

with a normally distributed random error having a mean value of zero and a standard deviation of 

38.3 microradians.  This value is consistent with manufacturer-supplied specifications a motor-
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driven rotational stage.  The increased output error due to this additional uncertainty in the 

calibration input data is approximated using a two-dimensional quadratic of the form 

 ( ) 2 2
Rotator 0 1 2 3 4ln X K K N K SNR K N K SNRϕ ϕ∆ = + + + + . (14)

The quantity denoted by ∆XRotator represents the magnitude of the errors derived in the second 

simulation divided by the corresponding errors obtained in the first simulation (i.e., the “no 

rotator error” case).  Equation (14) therefore represents an error amplification term that is applied 

to the original error estimates derived using equations (12) and (13), so that the composite error 

is given by ( ) ( ) (Total Rotator )N SNR N SNR N SNRX , X , X ,ϕ ϕ∆ = ∆ ⋅ ∆ ϕ

)

.  Contour plots showing the 

actual errors (solid red lines) and the errors predicted using the revised approximation functions 

(dashed black lines) are shown in Figure 4.  Coefficients for the additional error in the gain ratio 

retrieval due to rotator uncertainty are given in equation (15); coefficients for the additional 

offset angle error are given in equation (16). 

 ( ) ( ) (3 2 5 20.038N 0.012 SNR 3.85 10 N 1.858 10 SNR
Total N SNR N SNRG , 0.831 e G ,

− −
ϕ ϕ+ − × − ×

ϕ ϕ∆ = ⋅ ⋅ ∆  (15)

 ( ) ( ) (3 2 5 20.019 N 0.013 SNR 1.711 10 N 1.921 10 SNR
Total N SNR )N SNR, 0.756 e ,

− −
ϕ ϕ+ − × − ×

ϕ ϕ∆θ = ⋅ ⋅ ∆θ  (16)

The Monte Carlo studies reported here have been augmented by numerous additional simulation 

experiments.  In these studies we assigned fixed values for G, δ, and θ, then varied the 

backscatter SNR, the number of angles, and/or the rotator uncertainty in a systematic way, 

deriving a new set of calibration constants for each change in input parameters.  A typical 

example of the results obtained is shown in Figure 5, where we plot the mean retrieved 

parameter values as discrete symbols, and the error envelopes, representing ±1 standard 
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deviation about the respective means, using different line styles.  The exponential decrease in the 

errors associated with all three parameters as a function of increasing SNR is a uniform 

characteristic of the retrieval.  Similarly, within any calibration test, the error envelope for the 

gain ratio is always the smallest, and the error envelope for the depolarization ratios is always the 

largest. 

6. ERROR ANALYSIS II: DEPOLARIZATION MEASUREMENTS 

Because they are essential for the derivation of important geophysical information (i.e., volume 

depolarization ratios) from subsequent lidar measurements, the primary outputs from the 

calibration are the two system constants, G and θ.  In this section we characterize the effects that 

uncertainties in these constants will have on the retrieved depolarization ratios.  For comparison 

purposes, we also demonstrate the nature and magnitude of the errors incurred when the offset 

angle term is ignored (e.g., when the lidar is calibrated using molecular normalization). 

6.1. PROPAGATION OF ERROR FOR UNCERTAIN CALIBRATION CONSTANTS 

We begin by rearranging (9) to express the volume depolarization ratios in terms of the offset 

angle, the gain ratio, and the measured ratios, as shown in equation (17): 

 ( ) ( ) ( )
( ) ( )

2

2

m r G tan 2
r

G m r tan 2
− θ

δ =
− θ

. (17)

Applying a standard propagation of errors (Bevington & Robinson, 1992) to (17) yields 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
2

22 2 2 2
2 2

Var tan 2
F G Var m m Var G 16 m G Var

tan 2 1

  δ θ = θ + + − θ  δ θ  
−

, (18)

where 

 ( ) ( )
( )( ) ( )( )

( )( )
( )( )

2 424

22 2 2 4 4

1 tan 2tan 2 1
F

m tan 2 G m G tan 2 G tan 2 1

  + δ θθ −
θ = = 

 θ − − θ δ θ  −
 (19)

and  represents the variance of the random variable x, so that the uncertainty or relative 

error ascribed to x is given by 

( )Var x

( ) 2Var x x .  For an offset angle of 0, ( ) 2 2
1F 0 m G=  and (as 

expected) ( ) ( ) ( )
2 2

0

Var Var m Var G
m G

θ=

δ
= +

δ 2 . Uncertainties in the depolarization ratio 

measurements are therefore minimized by maintaining a near zero offset angle, minimizing 

uncertainties in the gain ratio, and maximizing the signal-to-noise ratio of the measured ratios.  

These relationships are illustrated in Figure 6, which shows the relative error in the derived 

depolarization ratio as a function of uncertainties in offset angle and gain ratio for offset angles 

of 0.1°, 1.0°, and 2.5°.  On the assumption that signal averaging can reduce the random error in 

the measured ratios to an arbitrary level, the SNR for the measured ratios was fixed at 50 for all 

plots.  The gain ratio was fixed at 2.0, and the depolarization ratio at 0.0144.  Comparing the 

plots clearly reveals the deleterious effects of a non-zero offset angle for low depolarization ratio 

measurements.  Given a gain ratio uncertainty of 5% and an offset angle uncertainty of 10%, an 

offset angle of 2.5° yields a depolarization ratio uncertainty that is more than a factor of 2 higher 

than what would be measured using an offset angle of 0.1° (13% relative error vs. 5.4% relative 

JTECH_A-690_rev03.doc Page 24 of 54 Last revision: 2005-09-30 



error).  However, as the depolarization ratio of the target increases, the disparity between the 

errors as a function of offset angle decreases. 

6.2. EFFECTS OF NEGLECTING OFFSET ANGLE 

In addition to the errors described above, calibrations and calculations that neglect the effects of 

receiver-transmitter misalignment can also incur errors via the gain ratio calibration process.  

Figure 7(a) shows the gain ratios that would be computed using the molecular normalization 

technique for an ideal system having a narrow band filter (dashed line, δtheory = 0.00365) and a 

second ideal system having a broad band filter (solid line, δtheory = 0.0144).  For each offset angle 

shown, the appropriate measured ratios were computed using equation (9).  The corresponding 

gain ratios were then derived using the molecular normalization technique (i.e., via equation (4)).  

While offset angles close to zero have little effect on the gain ratio retrieval, larger angles lead to 

substantial errors.  The sensitivity of the gain ratio retrieval to offset angle errors is also shown to 

be a function of the filter line width, which governs the appropriate choice for δtheory.  When 

using the molecular normalization technique to determine the depolarization gain ratio, an offset 

angle of  1° induces a gain ratio error of ~9% for a system having a filter width for which 

Rayleigh scattering is the appropriate model.  For narrow band filters using a Cabannes 

scattering model, the error at 1° rises to ~33%. 

Even if the gain ratio could be determined exactly, failure to consider the offset angle can still 

introduce errors whenever equation (4) is used to compute depolarization ratios from the 

measured ratios.  We illustrate this in Figure 7(b).  The dashed line shows the relative error in 

depolarization ratios, ( )retrieved t arget t arget= δ − δ δe , for  obtained using equation (4) applied retrievedδ
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to a system having an offset angle of  1°.  The measured ratios were computed using equation 

(9); a gain ratio of 1.0 was used both to compute the measured ratios and to derive .  The 

relative errors in this case are especially acute for lower values of depolarization, but asymptote 

to very small values as the particulate depolarization grows larger.  The more likely error 

scenario is shown by the solid line in Figure 7(b).  Once again, the measured ratios were 

computed using equation (9) and a gain ratio of 1.0.  However, for this calculation,  was 

calculated using the gain ratio that would be obtained via the molecular normalization technique: 

i.e., G = 1.085.  In this case, the retrieved depolarization ratios are seen to asymptote to values 

that are ~8.5% lower than the true values. 

retrievedδ

retrievedδ

7. PRACTICAL CONSIDERATIONS ILLUSTRATED WITH A REAL-WORLD EXAMPLE 

CALIBRATION 

In this section we describe the sequence of procedures required to successfully calibrate a 

polarization-sensitive lidar.  Practical considerations involved in these procedures are illustrated 

using data acquired by the LaRC dual polarization cloud lidar during the First ISCCP Regional 

Experiment (FIRE) in Parsons, Kansas (Starr et al, 1990). 

7.1. SELECTING THE CALIBRATION REGION 

When initiating the calibration, we first identify a region of the atmosphere where the scatterers 

remain both spatially homogenous and temporally invariant throughout the calibration sequence.  

Because this condition is rarely, if ever, met in cloud or aerosol layers, calibrations are almost 

always done in those regions that most resemble ‘clear air’.  This clear air region need not be 
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purely molecular; however, any background aerosol present must be uniformly distributed, both 

spatially and temporally.  Using clear air also eliminates possible contamination of the 

calibration data by multiple scattering. 

Figure 8 shows the measured ratios as a function of altitude for a 10-angle calibration acquired 

on 12 November 1991.  The observer log for this date remarks on the exceptionally clear and 

stable air mass present at the time, conditions borne out by the consistently flat slopes (with 

respect to altitude) of the measured ratios.  The calibration was conducted in full daylight, 

beginning at approximately 3:05 PM local time.  For each calibration angle, the measured ratios 

shown represent an average accumulated over a one minute sampling interval (600 laser pulses).  

Following the data acquisition sequence, the parallel and perpendicular channel data were time-

averaged to form a single pair of profiles for each calibration angle,  and .  The 

data shown in Figure 8 are computed by forming the ratio of these two profiles; that is, 

( jP , rθ ) )( jP , r⊥ θ

( ) ( ) ( )j jm r P , r P , r⊥= θ θj . 

The upper and lower altitudes that define the altitude regime over which the calibration will be 

computed are chosen based on a single selection criterion: for all angles, the measured ratios 

within the region must be constant (to within the expectation of the SNR of the measurements).  

Satisfying this requirement is essential for assuring the spatial homogeneity of the calibration 

region.  In selecting the calibration altitude range, practitioners should also be cognizant of the 

temperature dependence of the molecular volume depolarization ratio, as described in Behrendt 

and Nakamura (2002).  For certain filter line widths, selecting too broad a temperature range can 

encompass a natural variation in molecular depolarization of several percent, and thus violate the 

assumption of constant depolarization ratios within the calibration region.  For the example 
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shown here, the calibration region was chosen to be between 4.0 km (273 K) and 6.5 km (256 

K), as indicated by the vertical lines in Figure 8.  The mean values of the measured ratios within 

the calibration region are plotted for each angle in Figure 9. 

7.2. DERIVING THE CALIBRATION CONSTANTS 

Solutions for the calibration constants and the mean depolarization ratio were derived from these 

measurements using the same nonlinear least squares code that is used in the simulation software 

described in section 5.1.  Results are presented in Table 2.  The “Average of the solutions” 

column gives the means and standard deviations computed for all parameters when solving the 

calibration equation for each of the 167 sets of range-resolved measured ratios located between 

4.0-km to 6.5-km.  The “Solution of the averages” column gives the results obtained when the 

calibration equation is applied to the mean measured ratios; that is, a single application of the 

calibration equation for which the input data has been averaged in both time and space (i.e., as 

shown in Figure 9).  The uncertainties reported in this second column are estimated using the 

technique recommended by Cox et al. (2004), as described in Section 5.  The parenthetical 

numbers provided for the gain ratio and offset angle give the uncertainties estimated by 

equations (15) and (16). 

7.3. DEVELOPING AN INITIAL APPROXIMATION 

Numerical solutions for nonlinear least squares problems require an initial guess for each of the 

parameters to be derived.  We have therefore developed a set of quick and easily implemented 

procedures that provide an excellent first approximation, {G0, δ0, θ0}, to the desired solution 

vector.  As illustrated in Figure 9, the relationship between the mean measured ratios and the 
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calibration angles can be approximated quite well using a second order polynomial.  Therefore, 

given a quadratic approximation of measured ratios as a function of calibration angle, 

( ) 2
0 1 2m C C Cϕ = + ϕ + ϕ , an excellent first estimate of the offset angle is obtained by computing 

the negative of the minimum value of ( )m ϕ  with respect to ϕ; i.e., 1
0

2

C
2Cθ = .  (Note that the 

sign of the minimum value of the ( )m ϕ  parabola will be opposite that of the offset angle.)  

Having computed θ0, a gain ratio estimate, G0, can then be generated by assuming an initial 

value of the depolarization ratio, δ0, that is consistent with either prior measurements or an a 

priori estimate of δtarget (i.e., as in section 3).  No great accuracy is required when estimating δ0, 

as the convergence properties of the depolarization equation are quite good.  We compute G0 by 

solving equation (10) for gain ratio, setting θ = θ0, δ = δ0, then averaging over the N calibration 

angles; that is 

 
( )( )

( )( )
2N

0 0
0 j 2

j 1 0 0

1 tan 21G m
N tan 2=

 + δ ⋅ θ + ϕ
= ⋅
 δ + θ + ϕ 

∑ j

j




. (20)

Here jm  is the mean measured ratio derived from the jth calibration angle, ϕj. 

7.4. SELECTION OF CALIBRATION ANGLES 

Unlike G and θ, the depolarization ratio within the calibration region, δtarget, is not an instrument-

specific constant, nor does its value or accuracy have any effect on subsequent retrievals of 

geophysical information.  It does, however, have great intrinsic interest.  Furthermore, an 

examination of the Monte Carlo results for δtarget provides useful insight into the sensitivity of the 
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calibration procedure to the magnitudes of the specific calibration angles chosen.  In Figure 10(a) 

we present a contour plot showing the errors in δtarget as a function of SNR and Nϕ, for the set of 

calibration angles shown in Table 1.  While the depolarization ratio error decreases with 

increasing SNR, in a manner similar to the gain ratio and offset angle cases, the behavior with 

respect to an increase in Nϕ is different.  As evidenced by the sharp dip in the contours in Figure 

10(a), relative errors in δtarget are clearly minimized when using only four calibration angles.  

Subsequent testing reveals that this behavior is a function of the particular combination of 

calibration angles used.  The angles used for the four-angle test were ±20° and ±4°; i.e., the 

maximum and minimum magnitudes, placed symmetrically about zero.  However, as shown in 

Figure 10(b), changing Table 1 and repeating the test yields very different results for errors in 

δtarget.  In this trial, the calibration angles used for the three-angle test were -20°, 8°, and 16°, and 

the angles for the four-angle test were -20°, -12°, 12° and 16°.  Errors in the retrieved 

depolarization ratios now fall sharply for the six-angle test, and thereafter remain relatively 

constant.  Interestingly, the six-angle test is now the first that contains both ±20° and ±4°.  Errors 

for G and θ in this revised test are essentially identical to those shown in Figure 3.  We conclude 

therefore that errors in δtarget are sensitive to the exact combination of angles used, and that 

obtaining the optimum depolarization ratio results depends more on the distance spanned 

between the smallest and largest calibration angles (i.e., span = ( ) (jmax min )jϕ − ϕ ) than on 

the number of angles used.  This is in contrast to the behavior exhibited by the G and θ errors, 

for which angular span (e.g., the 4-angle case in Figure 3) was less important than total number 

of angles. 
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Additional investigations into the influence of angular span support the conclusion above, and 

provide addition insight into the accuracy of the gain ratio retrieval.  To determine the optimum 

span we assumed a symmetric placement of the calibration angles, similar in all cases to the 

selection shown in Table 1.  We then performed a series of Monte Carlo simulations for 

maximum magnitudes of ±9º, ±12º, ±15º, ±18º, and ±20º.  A representative set of results for the 

four-angle case is shown in Figure 11.  The RMS offset angle error is seen to remain relatively 

constant at ~0.3º irrespective of the angular span.  As expected, the RMS depolarization ratio 

errors show a downward trend with increasing maximum magnitude.  A linear fit to the data 

shown generates a slope of approximately -0.01% per degree, meaning that at an SNR of 50 we 

can expect to reduce the (absolute) RMS depolarization ratio error by 0.1% when using an 

angular span of ±20º versus a span of ±9º.  Gain ratio RMS errors are also seen to decrease 

monotonically, by a factor of ~2, over the same 9º to 20º range. 

8. SUMMARY AND CONCLUSIONS 

In this work we have described a technique for obtaining the coefficients required to derive fully 

calibrated volume depolarization ratios from measurements made by polarization-sensitive 

backscatter lidars.  The lidar hardware modifications necessary for implementing the calibration 

procedure have also been presented.  While quantifying any misalignment between the 

polarization planes of the transmitter and receiver, this method simultaneously retrieves an 

accurate estimate of the system gain ratio.  In contrast to previously published calibration 

strategies, no a priori knowledge of the molecular depolarization in the calibration region is 

required.  Quite to the contrary, one major advantage of this new technique is that an estimate of 

JTECH_A-690_rev03.doc Page 31 of 54 Last revision: 2005-09-30 



δtarget is returned as an integral part of the solution of the calibration equations.  As a 

consequence, gain ratio calibration errors due to imprecise knowledge of the filter line width 

and/or other optical characteristics of the system are largely eliminated, as are errors due to 

aerosol contamination of assumed-to-be-clear calibration regions.  Errors in subsequently 

derived depolarization ratios are shown to be minimized when the system offset angle is zero.  

The sensitivity and stability of the calibration technique has been investigated using a number of 

numerical simulations.  High SNR measurements taken for a large number of calibration angles 

(e.g., Nϕ ≥ 8) are shown to produce the most accurate calibration coefficients.  Errors in the 

retrieval of gain ratio and of δtarget are minimized when the angular distance spanned by the 

calibration angles is maximized.  A discussion of practical considerations has been included to 

assist field practitioners in the efficacious implementation of the method.  
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FIGURE CAPTIONS 

Figure 1: Schematic diagram of a dual polarization backscatter lidar (components not 

drawn to scale).  The design shown here is for the LaRC 8” Cloud Lidar, originally built 

in 1987, and used continuously through 1994 for cirrus cloud measurements as part of 

the FIRE program.  Additional detail can be found in Winker and Vaughan (1994) and in 

Decoursey et al. (1996) 

 

Figure 2: Aligned and misaligned receiver geometries; the left-hand panel shows a 

perfectly aligned configuration; the center panel shows the position of the laser 

polarization vector for transmitter-receiver misalignment angle of θ in a receiver with no 

half-wave plate; the right-hand panel shows the position of the laser polarization vector 

for the misalignment angle in a receiver having a half-wave plate with its principal axis 

co-aligned with the parallel axis of the PBS.  Note that if the half-wave plate axis were 

rotated counter-clockwise by an angle of θ/2, the laser polarization vector would be in 

alignment with the parallel axis of the PBS. 
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Figure 3: Gain ratio (left) and offset angle (right, in degrees) RMS errors as functions of 

signal-to-noise ratio and the number of calibration angles used derived assuming error-

free calibration angles.  The SNR axis is plotted on a log scale, while the Nϕ axis uses a 

linear scale.  Errors retrieved from the simulation were computed using equation (11), 

and are shown using solid lines.  The dashed lines represent error estimates computed 

using equations (12) (gain ratio) and (13) (offset angle). 

 

Figure 4: Gain ratio (left) and offset angle (right, in degrees) RMS errors as functions of 

signal-to-noise ratio and the number of calibration angles used derived for calibration 

angles having an uncertainty of 38.3 µrad.  The SNR axis is plotted on a log scale, while 

the Nϕ axis uses a linear scale.  Errors retrieved from the simulation were computed 

using equation (11), and are shown using solid lines.  The dashed lines represent error 

estimates computed using equations (15) (gain ratio) and (16) (offset angle). 

 

Figure 5: Four-angle simulation results; G=2.5, δ=1.44%; θ=0.2º  
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Figure 6: Relative error in depolarization ratio as a function of uncertainties in offset 

angle and gain ratio for θ = 0.1° (left), θ = 1.0° (center), and θ = 2.5° (right).  For all 

plots, the measured ratio SNR was maintained at a fixed value of 50.  

 

Figure 7: (a) Gain ratios determined by the normalization technique (see section 3) for 

a nominal gain ratio of 1.00 and a range of offset angles spanning ±2° for both narrow 

band (Cabannes scattering only) and broad band (Rayleigh scattering) filters; (b) 

relative error in the depolarization ratios retrieved using equation (4) for a system with 

a broad band filter and an offset angle of 1°; the dashed line indicates errors incurred 

when the correct gain ratio (G = 1) is used; the solid line indicates errors incurred when 

the gain ratio that would be derived via the normalization technique (G = 1.085) is 

used. 

 

Figure 8: Measured ratios acquired by the LaRC 8” Cloud Lidar on 12 November 1991.  

The lowest values for the measured ratios are acquired at the smallest calibration 

angles.  Data acquired for negative calibration angles is plotted using dashed lines; data 

acquired using positive calibration angles is plotted with solid lines. 
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Figure 9: Mean value of the measured ratios, jm , at each calibration angle, ϕj, 

computed over the calibration region indicated in Figure 8 (4.0-km to 6.5km). Error bars 

in this figure represent ±3 standard deviations about the mean.  The dotted line 

represents the quadratic approximation used to generate an initial guess for the offset 

angle.  The minimum of this quadratic provides the initial guess for offset angle 

required by the nonlinear least squares algorithm.  The solid curve is computed using 

equation (9) and the retrieved calibration coefficients specified in Table 2. 

 

Figure 10: (a) Depolarization ratio RMS errors (i.e., as in equation (11)) as functions of 

SNR and Nϕ for the calibration angles given in Table 1; (b)  as in (a), but using 

calibration angles of -20°, 8°, and 16° for the three-angle test, and -20°, -12°, 12° and 

16° for the four-angle test. 

 

Figure 11: RMS errors for gain ratio, depolarization ratio, and offset angle as functions 

of increasing angular span.  All calibrations were conducted using 4 calibration angles 

and a uniform backscatter SNR of 50. 
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Table 1: Calibration angles, ϕ, used in the Monte-Carlo study; the actual angles used in 

each phase of the study is indicated with an “x” in the appropriate columns of the table 

Nϕ -20º -16º -12º -8º -4º 4º 8º 12º 16º 20º 
n = 3 x    x     x 
n = 4 x    x x    x 
n = 5 x  x  x x    x 
n = 6 x  x  x x  x  x 
n = 7 x x x  x x  x  x 
n = 8 x x x  x x x x  x 
n = 9 x x x x x x x x  x 
n = 10 x x x x x x x x x x 
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Table 2: Calibration constants derived for the LaRC 8” Cloud Lidar measurements 

obtained on 12 November 1991 

 Average of the solutions Solution of the averages 
Gain Ratio 1.262 ± 0.019 1.262 ± 0.007 (0.084) 
Offset Angle (degrees) 0.006 ± 0.031 0.006 ± 0.016 (0.171) 
Depolarization Ratio (%) 0.820 ± 0.172 0.818 ± 0.089 
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