Panasonic Small Cell Testing For AHPS

C. Pearson, P. Blackmore, M. Lain, A. Walpole
(AEA Technology)
Dr. Eric Darcy, NASA JSC
Contents

- Background
 - AHPS Battery
 - Motivation
- Test Overview
- Conclusions
AHPS Battery System Overview

- AEA selected in May 2004 to develop the Lithium-ion battery system for the NASA Space Shuttle Advanced Hydraulic Propulsion (System)
- AEA received contract from NASA JSC in Dec 03 to test the Panasonic CGR18650C cell for the AHPS application
- Battery system to provide high voltage electrical power to the Electro-hydraulic Unit (EHDU)
- Battery system: 3 Battery Assemblies
- Battery Assemblies: 2 Battery Modules (series connected)
AHPS Battery Requirements

- Output Voltage: 360V – 230V
- Discharge Capacity: 28 kWh
- Maximum Load: 130kW (565A @ min V)
- Low cycle life
- High pulse load

DRIVERS
- Safety and reliability
- Mass
- Cost
- Increase hydraulic flow
- Increase redundancy

MODULE CONFIGURATION
- 43s92p – SONY 18650HC
- Assembly 2s modules
Background: AHPS Battery Challenges

- Large range in battery interface temperature
 - Cold temperature <10°C
 - Hot temperature ~60°C
- Cold temperature
 - Increased internal resistance
 - Low EOD voltage for same load
- Hot temperature
 - Internal protection device (PTC) operates ~70°C
 - PTC operation dependent in temperature and cell load
 - Upon PTC operation, cell internal resistance rises significantly
- Battery electrical design driven by understanding both cases
AEA employs Panasonic cell in terrestrial packs

- Test program completed recently
- Test report submitted to NASA
- Main drivers for program
 - Increased performance suggested by capacity
 - Understand Hot case, seen as driving SONY cell battery size
Initial Inspection

Receiving inspection & test (232 cells)
- Mass, volume
- PTC cold resistance
- Stabilisation Cycling

![Graph showing Mass (g) vs. Cell Number]

- TEST 1: Receiving Inspection and Test
- TEST 2: Capacity and Resistance Performance
- TEST 3,4: Cell PTC Trip Time against Temp and Current
- TEST 5,6,7: Mission PTC Trip Temperature Evaluation
- TEST 8: Hot Temperature PTC Trip for Battery Sizing
- TEST 9: Cell PTC withstanding Voltage
- TEST 10: Cell Self Discharge and Crimp Seal Leakage
- TEST 11: Cell Overcharge
- TEST 12: Cell Over Discharge
- TEST 13: Cell Internal Short Circuit
- TEST 14: Cell Destructive Parts Analysis
Capacity under Cycling

- 22°C cycle repeated 30 times
 - 2.59W discharge, 20W pulses (3s/6min)
 - 2.5V voltage limit
 - 1 less pulse cycle 26 onwards

TEST 1: Receiving Inspection and Test

Test 2: Capacity and Resistance Performance

TEST 3,4: Cell PTC Trip Time against Temp and Current

TEST 5,6,7: Mission PTC Trip Temperature Evaluation

TEST 8: Hot Temperature PTC Trip for Battery Sizing

TEST 9: Cell PTC withstanding Voltage

TEST 10: Cell Self Discharge and Crimp Seal Leakage

TEST 11: Cell Overcharge

TEST 12: Cell Over Discharge

TEST 13: Cell Internal Short Circuit

TEST 14: Cell Destructive Parts Analysis
Cycling Comparison

- AEA Internal tests
- 100% DOD
- Ambient temperature
PTC Trip Temperature Evaluation

- Mission profile test – 86s50p
 - 3 cells tested
 - 24°C, 70°C

TEST 1: Receiving Inspection and Test

Test 2: Capacity and Resistance Performance

TEST 3,4: Cell PTC Trip Time against Temp and Current

TEST 5,6,7: Mission PTC Trip Temperature Evaluation

TEST 8: Hot Temperature PTC Trip for Battery Sizing

TEST 9: Cell PTC withstanding Voltage

TEST 10: Cell Self Discharge and Crimp Seal Leakage

TEST 11: Cell Overcharge

TEST 12: Cell Over Discharge

TEST 13: Cell Internal Short Circuit

TEST 14: Cell Destructive Parts Analysis
PTC: Predicting Hot Performance

- PTC characterisation
 - Trip time measured
 - 22 and 70°C
 - PTC trip time is function of current and temperature

![Graph showing PTC trip time against current at 70°C and 22°C](image)

TEST 1: Receiving Inspection and Test

TEST 2: Capacity and Resistance Performance

TEST 3,4: Cell PTC Trip Time against Temp and Current

TEST 5,6,7: Mission PTC Trip Temperature Evaluation

TEST 8: Hot Temperature PTC Trip for Battery Sizing

TEST 9: Cell PTC withstanding Voltage

TEST 10: Cell Self Discharge and Crimp Seal Leakage

TEST 11: Cell Overcharge

TEST 12: Cell Over Discharge

TEST 13: Cell Internal Short Circuit

TEST 14: Cell Destructive Parts Analysis
AHPS Performance Prediction: SONY

- Success modelling SONY 18650HC for AHPS profile
- Key factor for AHPS selection
- Iterative tests to find minimum configuration with Panasonic cell
 - Time consuming tests finding minimum configuration PTC trips
- AEA attempted to modify basic BEAST algorithm for Panasonic cell
Panasonic measured electrical parameters entered into model

Performance predictions indicated cold case would drive battery sizing
Mission Profile Tests: Hot Case

- Scaled 86s50p mission tests performed:
 - 75°C, 80°C, 85°C, 90°C
- All tests performed on 3 cells
- PTC only begins to activate at 90°C, way above expected AHPS max temp

Heating power of PTC measured using voltage and current measurement

Activation

| TEST 1: Receiving Inspection and Test |
| Test 2: Capacity and Resistance Performance |
| TEST 3,4: Cell PTC Trip Time against Temp and Current |
| TEST 5,6,7: Mission PTC Trip Temperature Evaluation |
| TEST 8: Hot Temperature PTC Trip for Battery Sizing |
| TEST 9: Cell PTC withstanding Voltage |
| TEST 10: Cell Self Discharge and Crimp Seal Leakage |
| TEST 11: Cell Overcharge |
| TEST 12: Cell Over Discharge |
| TEST 13: Cell Internal Short Circuit |
| TEST 14: Cell Destructive Parts Analysis |
Mission Profile Tests: Cold Case

- **20degC test**
 - 86s: 50p, 54p, 58p, 60p
- Confirmed 54p limit at cold temperature

TEST 1: Receiving Inspection and Test

TEST 2: Capacity and Resistance Performance

TEST 3,4: Cell PTC Trip Time against Temp and Current

TEST 5,6,7: Mission PTC Trip Temperature Evaluation

TEST 8: Hot Temperature PTC Trip for Battery Sizing

TEST 9: Cell PTC withstanding Voltage

TEST 10: Cell Self Discharge and Crimp Seal Leakage

TEST 11: Cell Overcharge

TEST 12: Cell Over Discharge

TEST 13: Cell Internal Short Circuit

TEST 14: Cell Destructive Parts Analysis

- **HOT CASE:** 86s 50p, 90degC limit
- **COLD CASE:** 86s 54p, 20degC limit

\[\downarrow \]

COLD CASE IS DRIVER
PTC Withstanding Voltage

- Attempt to measure robustness of PTC to failure under high voltage
- 22degC, placed in series with 15A DC supply
- Results indicated maximum voltage was around 38V – similar to SONY cell
- More representative testing performed at string level on SONY 18650HC
 - Thermal effects from other cells
Self Discharge and Leakage Test

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>100% SOC</th>
<th>80% SOC</th>
<th>40% SOC</th>
<th>10% SOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NP 097, 98, 99</td>
</tr>
<tr>
<td>22°C</td>
<td>NP085</td>
<td>NP088</td>
<td>NP089</td>
<td>NP090</td>
</tr>
<tr>
<td>40°C</td>
<td>NP086</td>
<td>NP091</td>
<td>NP092</td>
<td>NP093</td>
</tr>
<tr>
<td>70°C</td>
<td>NP087</td>
<td>NP094</td>
<td>NP095</td>
<td>NP096</td>
</tr>
</tbody>
</table>

- **TEST 1:** Receiving Inspection and Test
- **Test 2:** Capacity and Resistance Performance
- **TEST 3,4:** Cell PTC Trip Time against Temp and Current
- **TEST 5,6,7:** Mission PTC Trip Temperature Evaluation
- **TEST 8:** Hot Temperature PTC Trip for Battery Sizing
- **TEST 9:** Cell PTC withstanding Voltage
- **TEST 10:** Cell Self Discharge and Crimp Seal Leakage
- **TEST 11:** Cell Overcharge
- **TEST 12:** Cell Over Discharge
- **TEST 13:** Cell Internal Short Circuit
- **TEST 14:** Cell Destructive Parts Analysis

Note: Thermal cycle + Vibration
- Cell NP087 damaged during removal from vibe jig
- Thought leakage in NP085 and 086 could be due to similar problem
- High temp mass loss thought to be due from chemical dissociation and gas release

Self Discharge and Leakage Test

TEST 1: Receiving Inspection and Test
TEST 2: Capacity and Resistance Performance
TEST 3,4: Cell PTC Trip Time against Temp and Current
TEST 5,6,7: Mission PTC Trip Temperature Evaluation
TEST 8: Hot Temperature PTC Trip for Battery Sizing
TEST 9: Cell PTC withstanding Voltage
TEST 10: Cell Self Discharge and Crimp Seal Leakage
TEST 11: Cell Overcharge
TEST 12: Cell Over Discharge
TEST 13: Cell Internal Short Circuit
TEST 14: Cell Destructive Parts Analysis

Storage in days

<table>
<thead>
<tr>
<th>Storage in days</th>
<th>Decrease in mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP085 100% SoC, 22 deg C & vibed</td>
<td>-0.01</td>
</tr>
<tr>
<td>NP090 10% SoC 22deg C</td>
<td>0</td>
</tr>
<tr>
<td>NP092 40% SoC at 40 deg C</td>
<td>0.01</td>
</tr>
<tr>
<td>NP094 80% SoC at 70 deg C</td>
<td>0.02</td>
</tr>
<tr>
<td>NP097 at 10% SoC at 0 deg C</td>
<td>0.03</td>
</tr>
<tr>
<td>NP088 80% SoC, 22 deg C</td>
<td>0.04</td>
</tr>
<tr>
<td>NP088 100% SoC at 40 deg C & vibed</td>
<td>0.05</td>
</tr>
<tr>
<td>NP093 10% SoC at 40 deg C</td>
<td>0.06</td>
</tr>
<tr>
<td>NP095 40% SoC at 70 deg C</td>
<td>0.07</td>
</tr>
<tr>
<td>NP098 at 10% SoC at 0 deg C</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Self Discharge and Leakage Test

- Low voltage drop due to self-discharge
- Self discharge increase with temperature evident in 10%SOC plot
- Test error meant capacity loss from self-discharge could not be differentiated from irreversible capacity loss

TEST 1: Receiving Inspection and Test

TEST 2: Capacity and Resistance Performance

TEST 3,4: Cell PTC Trip Time against Temp and Current

TEST 5,6,7: Mission PTC Trip Temperature Evaluation

TEST 8: Hot Temperature PTC Trip for Battery Sizing

TEST 9: Cell PTC withstanding Voltage

TEST 10: Cell Self Discharge and Crimp Seal Leakage

TEST 11: Cell Overcharge

TEST 12: Cell Over Discharge

TEST 13: Cell Internal Short Circuit

TEST 14: Cell Destructive Parts Analysis

<table>
<thead>
<tr>
<th>No.of.days on Test</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>3.9</td>
</tr>
<tr>
<td>10</td>
<td>3.8</td>
</tr>
<tr>
<td>15</td>
<td>3.7</td>
</tr>
<tr>
<td>20</td>
<td>3.6</td>
</tr>
<tr>
<td>25</td>
<td>3.5</td>
</tr>
<tr>
<td>30</td>
<td>3.4</td>
</tr>
<tr>
<td>35</td>
<td>3.3</td>
</tr>
<tr>
<td>40</td>
<td>3.2</td>
</tr>
<tr>
<td>45</td>
<td>3.1</td>
</tr>
<tr>
<td>50</td>
<td>3.0</td>
</tr>
<tr>
<td>55</td>
<td>2.9</td>
</tr>
<tr>
<td>60</td>
<td>2.8</td>
</tr>
<tr>
<td>65</td>
<td>2.7</td>
</tr>
<tr>
<td>70</td>
<td>2.6</td>
</tr>
<tr>
<td>75</td>
<td>2.5</td>
</tr>
<tr>
<td>80</td>
<td>2.4</td>
</tr>
<tr>
<td>85</td>
<td>2.3</td>
</tr>
<tr>
<td>90</td>
<td>2.2</td>
</tr>
<tr>
<td>95</td>
<td>2.1</td>
</tr>
</tbody>
</table>

- **NP085** 100%(22°C) vibed
- **NP086** 100%(40°C) vibed
- **NP087** 100%(70°C)
- **NP088** 80%(22°C)
- **NP089** 80%(40°C)
- **NP090** 80%(70°C)
- **NP091** 40%(22°C)
- **NP092** 40%(40°C)
- **NP093** 40%(70°C)
- **NP094** 10%(22°C)
- **NP095** 10%(40°C)
- **NP096** 10%(70°C)
- **NP097** 10%(0°C)
- **NP098** 10%(0°C)
Cell Overcharge

- Charged to 12V, fixed currents
 - 0.6A, 1.2A, 4.8A
- All 6 cells disconnect close to 5V
- Matched other dedicated testing at 1.2A

TEST 11: Cell Overcharge

![Graph showing cell overcharge behavior with different capacities and voltages.](image)
Cell Overdischarge

- Fully charged cells discharged
 - to 2.5V held for 60mins (@XAmps)
 - to 2.0V held for 60mins (@XAmps)
 - to 1.0V held for 60mins (@XAmps)
 - Charged back to 4.2V (@0.43A)
 - Discharged to 2.8V (@0.43A)
 - Discharged to 0V (@XAmps)
 - Discharged at 1.2A to 150% of 1C
- 3 cells each at X=1.2A, 2.4A, 4.8A
- At negative voltages, all cells soft short and act as resistors

TEST 1: Receiving Inspection and Test
Test 2: Capacity and Resistance Performance
TEST 3,4: Cell PTC Trip Time against Temp and Current
TEST 5,6,7: Mission PTC Trip Temperature Evaluation
TEST 8: Hot Temperature PTC Trip for Battery Sizing
TEST 9: Cell PTC withstanding Voltage
TEST 10: Cell Self Discharge and Crimp Seal Leakage
TEST 11: Cell Overcharge
TEST 12: Cell Over Discharge
TEST 13: Cell Internal Short Circuit
TEST 14: Cell Destructive Parts Analysis
Cell Internal Short Circuit

- 3 fully charged cells
- 25°C±5°C
- Non-metallic crush rod through cell centre
- Voltage, temperature monitored

<table>
<thead>
<tr>
<th>TEST 1: Receiving Inspection and Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 2: Capacity and Resistance Performance</td>
</tr>
<tr>
<td>TEST 3,4: Cell PTC Trip Time against Temp and Current</td>
</tr>
<tr>
<td>TEST 5,6,7: Mission PTC Trip Temperature Evaluation</td>
</tr>
<tr>
<td>TEST 8: Hot Temperature PTC Trip for Battery Sizing</td>
</tr>
<tr>
<td>TEST 9: Cell PTC withstanding Voltage</td>
</tr>
<tr>
<td>TEST 10: Cell Self Discharge and Crimp Seal Leakage</td>
</tr>
<tr>
<td>TEST 11: Cell Overcharge</td>
</tr>
<tr>
<td>TEST 12: Cell Over Discharge</td>
</tr>
<tr>
<td>TEST 13: Cell Internal Short Circuit</td>
</tr>
<tr>
<td>TEST 14: Cell Destructive Parts Analysis</td>
</tr>
</tbody>
</table>
Cell Internal Short Circuit

- All 3 cells caught fire as cells cleave in 2
- Screw action test may leave soft short

No temperature data over 500°C
Cell DPA

- 2 cells disassembled, chemical composition analysed
- Electrolyte extracted with anhydrous methanol
 - Organic analysis
 - Inorganic analysis
 - Karl Fischer test (water content)
- SEM and EDAX examination
 - Anode
 - Cathode
- Separator analysis
 - IR spectroscopy
- Cell Construction inspection
 - Similar to all other 18650s encountered
- Cell burst and vent pressure measured
 - Burst ~47bar max Vent ~18bar max
 - Above 2.5 safety ratio

TEST 1: Receiving Inspection and Test
TEST 2: Capacity and Resistance Performance
TEST 3,4: Cell PTC Trip Time against Temp and Current
TEST 5,6,7: Mission PTC Trip Temperature Evaluation
TEST 8: Hot Temperature PTC Trip for Battery Sizing
TEST 9: Cell PTC withstanding Voltage
TEST 10: Cell Self Discharge and Crimp Seal Leakage
TEST 11: Cell Overcharge
TEST 12: Cell Over Discharge
TEST 13: Cell Internal Short Circuit
TEST 14: Cell Destructive Parts Analysis
Conclusions

- AEA selection and successful Interim Design Review for AHPS proves maturity of small cell approach for very large batteries.
- Cells show excellent opportunity for battery mass reduction for AHPS and other low cycle applications.
- Lack of cycle and extended calendar life make EOL battery performance difficult (AHPS 8 year mission).
- Preliminary design, AEA retained SONY 18650HC cell as baseline:
 - Well characterised performance
 - Wealth of safety test data