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Self-organized substructural arrangements of dislocations formed in wavy slip 

metals during cyclic stress-induced fatigue produce substantial changes in the material 

microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity 

parameter β extracted from acoustic harmonic generation measurements. The 

contributions to β from the substructural evolution of dislocations and crack growth for 

fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model [Proc.  

Roy. Soc. London A 460, 757 (2004)] as a function of percent full fatigue life to fracture.  

A wave interaction factor fWI is introduced into the model to account experimentally for 

the relative volume of material fatigue damage included in the volume of material swept 

out by an interrogating acoustic wave.  For cyclic stress-controlled loading at 551 MPa 

and fWI = 0.013 the model predicts a monotonic increase in β from dislocation 

substructures of almost 100 percent from the virgin state to roughly 95 percent full life.  

Negligible contributions from cracks are predicted in this range of fatigue life.  However, 
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over the last five percent of fatigue life the model predicts a rapid monotonic increase of 

β by several thousand percent that is dominated by crack growth.  The theoretical 

predictions are in good agreement with experimental measurements of 410Cb stainless 

steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero 

to full tensile load with a measured fWI of 0.013.         

 

PACS numbers: 62.20.Mk; 61.72.Hh; 62.65.+k; 43.25.Ba 
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I. INTRODUCTION 

Cantrell1 has shown that self-organized substructural arrangements of dislocations 

formed in wavy slip metals during cyclic stress-induced fatigue produce substantial 

changes in the microelastic-plastic nonlinearity of the material that is quantified by a 

material nonlinearity parameter β.   The β parameter can be determined directly from 

acoustic harmonic generation measurements2,3.  For a given state of fatigue β is highly 

dependent on the volume fractions of veins and persistent slip bands (PSBs), PSB internal 

stresses, dislocation loop lengths, dipole heights, and the densities of secondary 

dislocations in the substructures.  More recently, the contribution to β from crack growth 

has been obtained4 by applying the Paris-Erdogan5 equation for crack propagation to the 

Nazarov-Sutin6 crack nonlinearity equation.  The resulting expression is combined with 

the Cantrell1 substructural nonlinearity model to assess the value of β at each stage of the 

fatigue process from the virgin state to fracture.   

Application of the model to stress-controlled cyclic loading of polycrystalline 

nickel as a function of percent total fatigue life from the virgin state to fracture predicts 

that for cyclic stress-controlled loading conditions at 241 MPa and at 345 MPa the values 

of the nonlinearity parameters above 0.01 percent total life differ by no more than three 

percent despite large differences in the characteristic values of the fatigue-generated 

substructures4.  The close agreement for such disparate loads may mean that the manner 

in which the dislocation substructures evolve during fatigue influences the value of β at a 

given fatigue state more than the specific values of the dislocation densities and volume 

fractions of the substructures involved.   Although the Cantrell model was developed for 

cyclic fatigue in metals having a wavy dislocation slip character, fundamental to the 
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analytical development are the contributions of dislocation monopoles and dipoles as 

building blocks for the generated fatigue substructures.  The dependence on fundamental 

dislocation arrangements and the relative insensitivity to the specific values of the 

substructural parameters suggest that the model may be somewhat more generic than 

originally considered.  Thus, the model may be applicable to a variety of materials, 

perhaps even planar dislocation slip materials, for calculating the fatigue dependence of β 

by accounting appropriately for differences in the fundamental material parameters, 

providing that the substructural evolution in the material occurs in a manner that is 

organizationally and temporally (in terms of percent full life) similar to that of 

polycrystalline nickel.  

It is important to note that experimental measurements using acoustic harmonic 

generation techniques may involve wave propagation volumes (wave-front cross-

sectional area times wave propagation distance) larger than that of the material containing 

the relevant fatigue-generated substructures (damage).  The value of the nonlinearity 

parameter measured in such cases would be smaller than the value that is properly 

representative of the extent of fatigue damage.  To account for this disparity a wave 

interaction factor, defined as the ratio of the material damage volume encountered by the 

wave to the total propagation volume swept out by the wave, is introduced into the 

model.   It is essential that the wave interaction factor be accounted in the measurement 

process.      

In Sect. II a summary of the salient features of the Cantrell model is presented and 

a method to determine experimentally the wave interaction factor is introduced.   The 

model is applied in Sect. III to a calculation of β versus percent total fatigue life for 
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martensitic 410Cb stainless steel. The results of the calculations are compared to 

experimental measurements.      

 

II. SALIENT FEATURES OF THE MODEL AND METHOD FOR DETERMINING 

THE WAVE INTERACTION FACTOR 

A. Fatigue-generated substructures and microelastic-plastic nonlinearity 

Nonlinear acoustical experiments7-10 indicate that metal fatigue may be 

characterized by a unique nonlinear relationship between an impressed stress perturbation 

(e.g., a sound wave) and a microelastic-plastic straining of the material at each stage of 

the fatigue process from the virgin to fracture.  The straining is quantified by an 

experimentally determined material (acoustic) nonlinearity parameter β that increases 

monotonically by several hundred percent over the fatigue life.  In wavy slip materials 

during fatigue, the initial cycles of alternating stress generate dislocation monopoles that 

accumulate on the primary glide planes of the material in the form of mutually trapped 

primary dislocation dipoles.  Continued cycling results in the growth of a vein structure 

formed from the accumulation of dipoles11.  The process of mutual trapping and 

accumulation of dislocations continues until the vein structure is composed almost 

entirely of dislocation dipoles. 

The growth of vein structure continues until a critical value of dislocation density 

is attained that results in a substructural elastic instability12. The instability leads to the 

transformation of some of the vein structure to a more stable persistent slip band (PSB) 

structure13.14.  The PSB structure consists of ladder-like arrays of densely-packed 

dislocation dipoles but with continued cyclic loading the PSBs eventually evolve into a 



 6

more cellular structure as the old PSBs harden and new PSBs with the ladder structure 

are initiated.   

Crack nucleation occurs primarily at the intersection of a PSB with a bounding 

surface that gives rise to a stress singularity14.  The density of microcracks nucleated 

during the first 20-40 percent of fatigue life is substantial, but the cracks do not contribute 

significantly to the material nonlinearity until the crack length reaches a critical value.  

This critical value does not typically occur for high cycle fatigue of most metals until 

roughly 80 – 90 percent of the fatigue life is expended.  The plastic zone around the crack 

tip is comprised of the same dislocation substructures (veins, PSBs, cell structures, etc.) 

that occur in single crystal material cyclically loaded in plastic strain control15, except 

that the substructures are more highly localized.  

Thus, both dislocation monopoles and dipoles contribute to the nonlinearity 

parameter of the material.  The contribution from monopoles is obtained as1  

   

                       β mp =
24
5

ΩΛmpL4R3 A2
e( )2

G3b2 σ0    (1) 

 

where G is the shear elastic modulus, b is the amplitude of the Burgers vector, and |σ0| is 

the magnitude of the initial (residual or internal) longitudinal stress in the material,  Λmp 

is the density of isolated single dislocations (dislocation monopoles) lying in arbitrary 

slip planes in the grains of polycrystalline solids, R is the Schmid or resolving factor from 

longitudinal to shear wave propagation, Ω is the conversion factor from shear to 
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longitudinal strain, L is the average dislocation half-loop length, and A2
e is the second 

order Huang coefficient of the polycrystalline material.  

 The contribution from dislocation dipoles to the nonlinearity parameter is1 

 

         β dp =
16π 2ΩR2Λdph3(1−ν)2(A2

e )2

G2b
   (2) 

 

where ν is Poisson's ratio, h is the dipole height (distance between parallel slip directions 

of a dislocation dipole), and Λdp is the dislocation dipole density.  In addition to the 

contributions from dislocation monopoles and dipoles the contribution to the material 

nonlinearity parameter from elastic anharmonicity is1 

 

        βe = −
A3

e

A2
e      .    (3) 

 

where A3
e is the third-order Huang coefficient. 

 Cantrell1 found from a consideration of the interactions of the stress and strain 

fields associated with the dislocation monopole, dislocation dipole, and elastic 

contributions that the effective nonlinearity parameter β is not a simple sum of the 

individual contributions given in Eqs. (1)-(3), but rather is given by 

  

          β =
βe + β mp + β dp

1+ Γmp + Γdp( )2
    (4) 
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where the gamma factors 

        Γmp =
2
3

ΩΛmpL2R
G

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ A2

e     (5) 

and 

                Γdp =
4πA2

eΩRΛdph2 1−ν( )
G

 .   (6) 

    

Equation (4) is obtained under the assumption that the dislocation monopoles and 

dipoles are distributed uniformly throughout the material.  For wavy slip metals, the 

monopoles and dipoles are not distributed uniformly but are confined mostly to the 

discrete vein and PSB substructures generated in the material during fatigue.  We denote 

the total volume fraction of substructure containing monopoles by fmp and the total 

volume fraction of substructure containing dipoles by fdp.  We assume that the values of 

the monopole and dipole nonlinearity parameters, βmp and βdp, and gamma factors, Γmp 

and Γdp, are constant within the fatigue-generated substructures.  

The dislocation dipole contribution has a possible vein structure source and a 

possible PSB source depending on the state of fatigue.  We thus write 

f dpβdp = fveinβvein
dp + fPSBwβPSBw

dp  and f dpΓdp = fveinΓvein
dp + fPSBwΓPSBw

dp where fvein and fPSBw, 

respectively, are the volume fractions of material at a given percent full life containing 

vein structure and PSB wall structure.  The dislocation monopole contribution has a vein 

structure source and a PSB structure source resulting from the generation of secondary 

dislocations in the PSBs as they mature. Hence, we write 

f mpβmp = fveinβvein
mp +fPSBσβPSBσ

mp and f mpΓmp = fveinΓvein
mp +fPSBσ ΓPSBσ

mp where fPSBσ  is the volume 
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fraction of material within the PSBs that contains sufficiently large secondary dislocation 

densities to significantly influence β via the PSB internal stress field.  From a 

consideration of the organizational detail of the dislocation substructures that evolve 

during the fatigue process we obtain that the effective nonlinearity parameter for wavy 

slip metals is more appropriately given as1,4 

 

   β =
βe + fvein βvein

mp + βvein
dp( )+ fPSB 0.15βPSBσ

mp + 0.125βPSBw
dp( )

1+ fvein Γvein
mp + Γvein

dp( )+ fPSB 0.15ΓPSBσ
mp + 0.125ΓPSBw

dp( )[ ]2
 . (7) 

 

B. The effects of fatigue crack growth 

 In order to determine the crack contribution to the total nonlinearity parameter as 

a function of crack growth during the fatigue process, Cantrell4 applied the Paris-

Erdogan5 equation to the Nazarov-Sutin6 crack nonlinearity equation.  He derived that the 

crack contribution βcrk at given fraction of total fatigue life f measured from the virgin 

state is obtained as   

 

     βcrk =
5.3x106Ccrk

a1
n−2 + a2 1− f( )[ ]8 n−2( ) 1+

0.25Ccrk

a1
n−2 + a2 1− f( )[ ]6 n−2( )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

−2

   (8) 

where 

     a1 =
Bσmax

K1c
     (9) 

and 



 10

     a2 =
n − 2( )

2
Ntotal A BΔσ( )n     (10) 

 

Ccrk is the crack concentration; ∆σ is the applied stress range (maximum stress minus 

minimum stress) during cyclic loading; Ntotal is the total number of fatigue cycles from 

the virgin state to fracture; K1c is the fracture toughness of the material; B is a factor that 

depends on the geometry of the crack (≈ 1.13 for penny-shaped cracks); and A and n are 

material-dependent constants experimentally determined for a given material.   

It is emphasized that Eq.(8) applies in the Paris law regime where the crack radius 

is of the order 250 μm or larger.  Such crack lengths generally occur in the final 10-20 

percent of fatigue life for high cycle fatigue.  Cracks having a radius smaller than 250 μm 

make a negligible contribution to βcrk for typical values of Ccrk (of order6 107m-3).  

 

C. The wave interaction factor 

 As mentioned previously, ultrasonic measurements may involve wave 

propagation volumes larger than that of the material encountered by the wave containing 

relevant fatigue damage.  The value of the nonlinearity parameter measured in such cases 

will always be smaller than the value that is properly representative of the fatigue 

damage.  In order to correct for this disparity we define the ratio of the damage volume 

encountered by the wave to the total wave propagation volume to be the wave interaction 

factor fWI.  The equation for the effective nonlinearity parameter is then more 

appropriately written in terms of the wave interaction factor as 
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β =

βe + fWI fvein βvein
mp + βvein

dp( )+ fWI fPSB 0.15βPSBσ
mp + 0.125βPSBw

dp( )
1+ fWI fvein Γvein

mp + Γvein
dp( )+ fWI fPSB 0.15ΓPSBσ

mp + 0.125ΓPSBw
dp( )[ ]2

  . (11) 

 

Note that the wave interaction factor includes contributions to β both from veins and 

PSBs.  The individual contributions to β from veins and PSBs are accounted by the 

factors fvein and fPSB.  Although variations in fvein and fPSB most certainly occur in different 

regions of fatigue damage, such detailed information is generally not available for any 

material and we are limited to the approximations assumed here.  

 In order to assess the value of fWI we turn to the equation obtained by Cantrell1 for 

the effective second order Huang elastic constants of fatigued material (A2
e)effect (= Q-1 in 

Ref. 1).    We modify the equation to account for the wave interaction factor fWI, by 

writing 

 

         
A2

e( )effect
= A2

e

1+ fWI fvein Γvein
mp + Γvein

dp( )+ fWI fPSB 0.15ΓPSBσ
mp + 0.125ΓPSBw

dp( )[ ]
   (12) 

 

where A2
e is the second order Huang constant in the virgin state.  The effective second 

order Huang constant is obtained directly from ultrasonic phase velocity measurements as 

(A2
e)effect = ρ0v2, where v is the phase velocity and ρ0 is the mass density of the material.  

Hence, measurements of the mass density and the ultrasonic phase velocities in the virgin 

state and fatigue state, respectively, will yield A2
e and (A2

e)effect.  The wave interaction 

factor fWI can then be determined from Eq.(12).  
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III. APPLICATION OF MODEL TO MARTENSITIC 410Cb STAINLESS STEEL 

A. General considerations 

We consider the application of the above model to the calculation of the 

nonlinearity parameters of martensitic 410Cb stainless steel as a function of percent full 

fatigue life to fracture.  Grobstein et al.16 published an extensive study of substructural 

evolution in fatigued polycrystalline nickel, a face-centered cubic (fcc) wavy slip metal, 

cyclically stressed from the virgin state to fracture using various specimens subjected to a 

variety of loading conditions.  Although correspondingly detailed substructural evolution 

data are not available for 410Cb stainless steel, we consider those aspects of the 

evolutionary data for nickel that may be relevant to 410Cb stainless steel in its relation to 

the material nonlinearity parameter. 

Martensitic 410Cb stainless steel has a body-centered tetragonal (bct) crystal 

structure and forms a lath-like morphology with a high dislocation density in the virgin 

state resulting from the large shear process in the displacive transformation from the 

body-centered (bcc) cubic austenite lattice.  Martensitic alloys generally possess low 

stacking fault energies that favor planar dislocation slip17.  However, the unusually high 

dislocation density of the alloy promotes a significant deformation by the formation of an 

increasingly finer dislocation cell structure that “would not be expected of planar 

dislocation formation unless dynamic strain aging of a low-temperature tempered 

structure occurs.”18  These opposing characteristics coupled with the paucity of data in 

the literature on the substructural evolution of 410Cb during fatigue leave to speculation 

the slip character of the alloy.  In addition, 410Cb possesses precipitated secondary 
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phases that would be expected to complicate further the substructural evolution during 

the fatigue process.  

Although the above considerations raise concerns over the applicability of the 

Cantrell model, based on substructrual evolution in wavy slip materials, to 410Cb 

stainless steel, the generic character of the model as embodied in Eq.(4) emphasizes that 

the more fundamental contribution to β is dependent on the dislocation monopoles and 

dipoles generated during the fatigue process.  Further, the substructure data of Grobstein 

et al.16 for polycrystalline nickel, obtained under a variety of widely disparate loading 

conditions, reveal that the volume fractions of veins and PSBs always increase 

monotonically during the fatigue process but with substantially different values that are 

dependent on the loading conditions.  However, when using the data of Grobstein et al.16 

in Eq.(7), the calculated values of β all agree to within three percent after accounting for 

differences in the numbers of cycles to fracture4.   

The relative invariance of β to widely disparate loading conditions and values of 

substructural parameters, together with the generic linking of β via Eq.(4) to dislocation 

monopoles and dipoles, suggest that the manner in which the dislocation substructures 

evolve during fatigue may influence the value of β for a given fatigue state more than the 

specific values of the dislocation densities and volume fractions of the substructures 

involved.  If this is so, then the model may be applicable to a wider variety of materials 

than previously thought by accounting appropriately for differences in the fundamental 

material parameters, such as the elastic moduli and Burgers vector, providing that the 

substructural evolution occurs in a manner that is organizationally and temporally (in 

terms of percent full life) similar to that of polycrystalline nickel.   
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Indeed, the substructures generated during the fatigue of metals do have 

somewhat similar evolutionary characteristics, whether the slip character of the material 

is wavy or planar slip19.  The Luders bands (matrix structure) of planar slip materials are 

crudely analogous to the veins of wavy slip materials and increase in volume fraction in 

accordance with increasing fatigue loading cycles.  The PSBs of wavy slip materials find 

a counterpart in the persistent Luders bands (PLBs) in planar slip materials that give rise 

to a strong generation of secondary dislocations as they mature.  The PLBs do not 

represent zones of dislocation structure distinctly different from the matrix structure but 

are rather denser dislocation zones (bands) of activated primary slip planes.  Thus, while 

the evolutionary substructures generated in planar slip materials are certainly different 

from that of wavy slip materials, the basic building blocks of the planar slip substructures 

are nonetheless dislocation monopoles and dipoles as in wavy slip materials.  It is this 

common, yet tenuous, thread that we wish here to explore. Hence, it is with considerable 

trepidation and caution that the equations derived for wavy slip materials are applied here 

to martensitic 410Cb stainless steel with its uncertain slip character.  

 

B. Calculation of model parameters for 410Cb stainless steel 

We consider 410Cb stainless steel specimens cyclically loaded in stress-control at 

551 MPa from zero to full load, a load corresponding to roughly 75 percent of the 

ultimate tensile strength of the material.  Because of the uncertainty in the slip character 

of 410Cb, we use the terminology and dislocation substructure-related parameters 

obtained by Grobstein et al.16 for wavy-slip polycrystalline nickel for cyclic loading in 

stress-control at 345 MPa, also a load corresponding to roughly 75 percent of the ultimate 
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tensile strength of the material.   For such loads the vein structure attains a volume 

fraction fvein = 0.44 at roughly10 percent full life and remains at that volume fraction to 

fracture.   PSBs begin to form at approximately 0.1 percent full life and monotonically 

grow with decreasing slope to a volume fraction fPSB = 0.224 at full life.  The dislocation 

density in the PSB walls Λmp
PSBw = 2.1 x 1015 m-2, the dislocation density in the vein 

structure Λmp
vein = 1.05 x 1015 m-2, and the density of secondary dislocations generated as 

the PSBs mature is estimated from the work of Wang and Mughrabi20 and Wang et al.21 

to be roughly 2.0 x 1015 m-2.  The dipole density in the vein structure Λdp
vein = 5.25 x 1014 

m-2 and the dipole density in the wall structure Λdp
PSBw = 1.05 x 1015 m-2.  We assume22,23 

that the dipole height in the vein structure hvein = 7.6 nm, the dipole height in the PSBs 

hPSB = 5.4 nm, and the dislocation half-loop length L = 8.2 x 10-8 m.   For 410Cb stainless 

steel9,24 the shear modulus G = 68.6 GPa, the longitudinal modulus Ae
2 = 277 GPa, the 

Poisson ratio ν = 0.34, and the magnitude of the Burgers vector b = 0.249 nm.  For 

polycrystalline solids we assume Ω ≈ R ≈ 1/3. 

According to Mughrabi25 the internal shear stress experienced by a given 

dislocation in the vein (matrix) structure is estimated to be roughly 20% of the saturation 

shear stress for the material.  For engineering alloys the saturation stress is roughly 

equivalent to the endurance limit.  The longitudinal stress endurance limit for 410Cb 

stainless steel26 is approximately 410 MPa, corresponding to an endurance limit shear 

stress of roughly 205 MPa.  Hence, the internal shear stress experienced by a given 

dislocation in the vein structure is approximately 41 MPa.  The effective longitudinal 

stress |σ0|vein in the vein structure is larger than the internal shear stress by the inverse 

Schmid factor R-1.  Thus, |σ0|vein ≈ 123 MPa and the dislocation monopole contribution to 
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the nonlinearity parameter from the vein structure is calculated from Eq.(1) to be βvein
mp  ≈ 

1342.   The gamma factor for dislocation monopoles in the vein structure is calculated 

from Eq.(5) to be Γmp
vein = 2.11.   

A substantial contribution to the nonlinearity parameter is also obtained from the 

action of initial (internal) stresses on dislocations generated on secondary slip systems as 

the PSBs mature.   From a consideration of Brown’s model14,27 for the internal stress 

fields of dislocation substructures we calculate from the analytical procedure reported by 

Cantrell4 that the effective longitudinal stress |σ0|PSBσ in the secondary dislocation 

structures of the PSBs is 75.9 MPa.  Thus, the dislocation monopole contribution to the 

nonlinearity parameter from the mature PSBs is calculated from Eq.(1) to be β PSBσ
mp =  

1576.  The gamma factor for dislocation monopoles associated with secondary 

dislocations is calculated from Eq.(5) to be Γmp
PSBσ = 2.01. 

The calculation of the contribution to the nonlinearity parameter from dislocation 

dipoles in the vein structure is obtained by substituting the material constants and 

dislocation-related parameters given above into Eq.(2).   We obtain β vein
dp =  38.7 for the 

value of the dipole contribution associated with the vein structure.  The gamma factor for 

dislocation dipoles in the vein structure is calculated from Eq.(6) to be Γdp
vein = 0.11.  The 

dipole contribution to the nonlinearity parameter associated with the PSB wall (ladder) 

structure is obtained from Eq.(2) to be β PSBw
dp =  27.7.  The gamma factor for dislocation 

dipoles in the PSB wall structure is calculated from Eq.(6) to be Γdp
PSBw = 0.11.  

 The contribution to β from crack growth is calculated from Eqs.(8)-(10). For 

410Cb stainless steel we assume26 n ≈ 3.0, B = 1.13 (penny-shaped cracks), and K1c ≈ 60 
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MPa√m.  Experimental data is not available in the crack growth region for loading at 551 

MPa.  However, experimental data is available from measurements taken of 410Cb 

stainless steel steam generator turbine blades retired for cause because of cracking28.   For 

these blades29 the maximum cyclic stress is estimated to be roughly 70.3 MPa, A ≈ 3.1 x 

10-15MPa-3m-0.5cycle-1, and Ntotal ≈ 2,3 x 1011cycles.  We assume6 that Ccrk ≈ 107 m-3.  

 Finally, the measured values of the effective Huang elastic constants (A2
e)effect 

along the axis of cylindrical 410Cb specimens during fatigue shows a roughly one 

percent decrease from the value A2
e measured in the virgin state9.  From Eq.(12) such a 

decrease corresponds to an fWI value of roughly 0.013 and indicates that relatively little of 

the damage region is interrogated by the ultrasonic weave.  A decrease in (A2
e)effect of a 

percent or two is common for measurements in the bulk of engineering alloys.  For 

monocrystalline pure metals, decreases of ten percent have been reported30. 

 

C. Comparison of model to experimental data 

The total nonlinearity parameters β for 410Cb stainless steel is plotted in Fig.1 as a 

function of percent fatigue life from the virgin state to fracture.   The curve is calculated 

for stress-controlled cyclic loading at 551 MPa except for the portion of the curve in the 

Paris law regime, where the increase in β occurs by crack extension from pre-existing 

flaws at a loading stress of roughly 70.3 MPa.  The experimental data points in the figure 

are taken from the work of Na et al.9 and Kessel et al. 28 who obtained the β measurements 

from acoustic wave propagation along the axis of cylindrical samples taken from the 

gauge section of standard ASTM “dogbone” specimens.  The measurements were taken on 

a series of specimens fatigued sequentially to a designated increased number of fatigue 
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cycles at 551 MPa and then prepared for acoustic harmonic generation measurements. The 

last two data points (in the crack propagation region) are taken on retired-for-cause steam 

generator blades for which percent life was estimated from inspection records.   

It is important to note that significant variations (scatter) in the measured values of 

β occur in the 410Cb stainless steel experimental data, indicating that the fatigue damage 

is localized.  The velocity measurements do not reveal a sufficiently large variation in the 

wave interaction factor fWI to account for the measured variations in β.  Such variations 

may result from variations in the internal stresses at the dislocation sites as the result of 

texturing, but a more likely cause is “premature” crack growth proximate to pre-existing 

flaws in the material.  Indeed, the two data points in the Paris law region of Fig.1 show 

significant increases in β from cyclic loads (~70.3MPa) that are substantially below the 

endurance limit.  Such growth can only result from crack growth initiated from preexisting 

flaws and substantiates the existence of pre-fatigue cracks or stress-raising flaws in the 

material.  Variations in β may also result from large fluctuations in the dislocation 

densities in the material resulting from martensite formation.  Indeed, the variations in β 

below roughly 0.1 percent fatigue life appear larger than the fluctuations above 0.1.  This 

may indicate that the effects of density fluctuations are somewhat mollified as the result of 

the increased organization of the dislocations into substructures at increasing levels of 

fatigue.         

Despite the scatter, there is generally quite good agreement between the 

experimental data and the theoretical curve.  The agreement is surprisingly good when one 

considers that the theoretical curve is obtained by applying the substructural evolution 

data for polycrystalline nickel, a wavy slip fcc pure metal, to 410Cb stainless steel, a 
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martensitic alloy of uncertain slip character.  Such agreement lends support to the notion 

that the analytical model may indeed be somewhat generic and thus applicable to a wide 

variety of metals.  However, considerable caution must be exercised in such applications, 

since many of the microstructural input parameters used in the model calculations for both 

nickel and 410Cb stainless steel are based on educated estimates from other metals that 

are, as yet, experimentally unconfirmed for the present materials.  

Notwithstanding such uncertainties, the present analytical model predicts and the 

experimental data generally show that the magnitude of the nonlinearity parameters of 

410Cb stainless steel increase monotonically from the virgin state to fracture as the result 

of stress-controlled cyclic loading.  It is significant that the nonlinearity parameter is a 

monotonically increasing function of the percent total fatigue life of the material, since a 

measured value of β then corresponds to a unique value of the total fatigue life. The 

contribution from substructural evolution accounts for an increase of almost 100 percent, 

despite the small value of the wave interaction factor fWI.  A measurable contribution 

from crack growth begins roughly at 95 percent of total fatigue life and rapidly becomes 

the dominant contribution to β as the crack increases in size to fracture. From Eq.(11) a 

larger value of fWI would result in larger values of β, since the measurement volume 

would then contain a larger fraction of fatigue damage.  However, such an increase does 

not diminish the fatigue-life predictive power of the measurement, since the values of β 

scale in exactly the same way over the whole range of percent total life.  Indeed, the 

larger β scale would enable a more accurate assessment of the total fatigue life.       
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IV. CONCLUSION 

The analytical model previously developed1,4 of the nonlinear interaction of a 

stress perturbation (e.g., an acoustic wave) with organized dislocation substructures 

generated in wavy slip pure metals at a given state of fatigue is based on the accumulated 

nonlinearities of dislocation monopoles and dipoles that serve as building blocks for the 

substructures.  The previous application4 of the model to polycrystalline nickel and 

aluminum alloy 2024-T4 indicates that the manner in which the dislocation substructures 

evolve during fatigue may influence the value of β at a given fatigue state more than the 

specific values of the dislocation densities and volume fractions of the substructures 

involved.  The dislocations substructures generated during fatigue of wavy slip materials 

have tenuous counterparts in planar slip materials that evolve in a somewhat similar 

temporal fashion to wavy slip substructures during the fatigue process.  The similarity of 

the substructural evolution and the commonality of dislocation monopoles and dipoles as 

basic building blocks of the substructures, irrespective of slip character, provide a basis 

for applying the model, albeit cautiously, to a wider variety of metals than defined by the 

wavy slip origins of the model.     

We have taken here the step of applying the model to 410Cb stainless steel. The 

agreement between the theoretical curve and experimental data in Fig.1 for 410Cb 

stainless steel is surprisingly good.  Such agreement would not be possible, if appropriate 

accounting were not taken of the wave interaction volume.  The wave interaction volume 

is quantified by the wave interaction fraction fWI obtained from ultrasonic velocity 

measurements.  Thus, it is important that careful velocity measurements be performed on 
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all materials to be evaluated for fatigue damage from nonlinearity parameter 

measurements.  

The agreement between theory and experiment also suggests that the dislocation 

monopoles and dipoles do, indeed, dominate the substructural organization of 410Cb 

stainless steel and provide for a monotonic increase in the nonlinearity parameter during 

fatigue in a manner somewhat similar to that predicted for wavy slip metals.  However, 

the details of the substructural organization, the temporal development of the 

substructures, the internal stresses developed in the substructures, the initially large 

dislocation densities and strains in the lath martensite structures, premature and arrested 

crack growth, crack tip plastic zones, and perhaps other as yet unknown factors, are most 

certainly responsible for contributions to the nonlinearity parameter not accounted in the 

model.  Such contributions must be addressed in future studies.  Indeed, a more 

comprehensive understanding of wave-microstructure interactions in a variety of metals 

and alloys and the assessment of model parameters resulting from such interactions at the 

most fundamental level must be acquired to gain confidence in model predictions and 

reliability.  Such an understanding is presently being pursued through research with 

microscopically well-characterized single crystals and polycrystals of fatigued pure 

metals and metal alloys.      
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FIGURE CAPTIONS 

Fig. 1.  Graph of material (acoustic) nonlinearity parameter plotted as a function of  

percent total fatigue life for martensitic 410Cb stainless steel fatigued in stress-

controlled cyclic loading at 551 MPa.  The continuous curve is calculated from 

the analytical model.  The filled circles with error bars are experimental data 

points from Refs. 9 and 28 obtained from acoustic harmonic generation 

measurements.   
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