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ABSTRACT 

The fatigue damage was characterized in specimens which consisted of a tapered 

composite flange, representing a stringer or frame, bonded onto a composite skin. Quasi-

static tension tests were performed first to determine the failure load. Subsequently, 

tension fatigue tests were performed at 40%, 50%, 60% and 70% of the failure load to 

evaluate the debonding mechanisms between the skin and the bonded stringer. For four 

specimens, the cycling loading was stopped at intervals and the specimens were taken out 

of the grips. Photographs of the polished specimen edges were taken under a light 

microscope to document the occurrence and growth of matrix crack and delaminations. 

At two diagonally opposite corners of the flange, a delamination appeared to initiate at 

the flange tip from a matrix crack in the top 45° skin ply and propagated at the top 45°/-

45° skin ply interface. At the other two diagonally opposite corners, a delamination 

running in the bondline initiated from a matrix crack in the adhesive pocket. Dye 

penetrant X-ray radiography was also used to measure the amount of delamination 

through the width. In addition, two specimens were cut longitudinally into several 

sections. Photographs of the polished section edges were taken under a light microscope 

to document the damage inside the specimens. These micrographs reveal a more complex 

pattern inside the specimen where the two delamination patterns observed at the edges 

are present simultaneously across most of the width of the specimen. The observations 

suggest that a more sophisticated nondestructive evaluation technique such as a D-scan, 

time-of-flight scan or depth scan is required to capture the complex damage pattern of 

matrix cracking and multi-level delaminations. With respect to finite element modeling of 

delaminations and predicting their propagation and growth, the question arises of how 

much simplification is permissible and how much detail is required in order to properly 

capture the damage mechanism. 

                                                
1 Current affiliation: Composites Innovations Inc., Montreal, Canada. 
2 Current affiliation: Daimler AG, Wörth, Germany. 
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INTRODUCTION 

Many composite components in aerospace structures are made of flat or curved panels 

with co-cured or adhesively bonded frames and stiffeners. Testing of skin gage stiffened 

panels designed for pressurized aircraft fuselages has shown that bond failure at the tip of 

the frame flange is an important and very likely failure mode [1]. The same type of skin-

stiffener debonding failure is observed when a thin-gage composite fuselage structure is 

allowed to buckle. Comparatively simple specimens consisting of a stringer flange 

bonded onto a skin have been developed to study skin/stiffener debonding [2-4]. The 

failure that initiates at the tip of the flange in these specimens is nearly identical to the 

failure observed in the full-scale panels and the frame pull-off specimens [3, 5]. To obtain 

a more complete understanding of skin/stringer debonding mechanisms, it is vital to 

perform fatigue tests along with the monotonic experiments to establish the durability of 

these bonded joints over the anticipated life cycle. Four-point bending fatigue tests were 

carried out in a previous study [6]. 

The objective of this work was to study the damage mechanisms in bonded composite 

skin/stringer structures under tension fatigue loading conditions. The specimens consisted 

of a tapered flange, representing the stringer bonded onto a skin. In a related study, static 

tension tests had been performed to evaluate the debonding mechanisms between the skin 

and the bonded flange and yield static failure loads. Then, tension fatigue tests were 

performed at load levels corresponding to 40%, 50%, 60%, and 70% of the damage onset 

loads. Microscopic investigations of the specimen edges and X-ray photography were 

used to document the onset of matrix cracking and delamination as a function of fatigue 

cycles. The results were used to develop a methodology for cumulative life prediction of 

bonded composite skin/stringer structures based on delamination fatigue characterization 

data and geometrically nonlinear finite element analyses [7]. The two- and three-

dimensional analyses accounted for different locations where the first delamination might 

occur, however, they were based on the assumption that there was only one plane of 

delamination across the entire width of the specimen [8] [9].  

The intent of the current work was to identify the typical damage patterns observed in 

the specimen and to summarize and document the experimental work. First, the 

specimens and the experimental procedure are described, and the results of the static tests 

are summarized. Second, the results of the tension fatigue tests which were performed at 

load levels corresponding to 40%, 50%, 60%, and 70% of the damage onset loads are 

summarized. Third, the typical damage patterns in the specimens are identified, which is 

the focus of the current work. For four specimens, the cycling loading was stopped at 

intervals, and the specimens were taken out of the grips. Photographs of the polished 

specimen edges were taken under a light microscope to document the occurrence and 

growth of matrix cracks and delaminations. Additionally, dye penetrant X-ray 

radiography was used to measure the amount of delamination across the width. In 

addition, two specimens were cut longitudinally into four and seven sections, 

respectively. Photographs of the polished section edges were taken under a light 

microscope to document the matrix cracks and delaminations and thus identify the typical 

damage pattern. 
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MATERIALS AND SPECIMEN PREPARATION 

The specimens consisted of a tapered flange, representing the stringer, bonded onto a 

skin (Figure 1a). An IM7/8552 graphite/epoxy system manufactured by Hexcel 

Corporation was used for the skin and flange. The skin lay-up for panels 3 and 6 was 

[45/-45/0/-45/45/90/90/-45/45/0/45/-45] using prepreg tape. The flange was made of a 

plain-weave fabric, and the lay-up was [45/0/45/0/45/0/45/0/45]f where 0 represents a 0°-

90° fabric ply and 45 represents a 0°-90° fabric ply rotated 45°. 

For panel 2, the orientation of one layer was incorrect, resulting in the following skin 

lay-up: [45/-45/0/-45/45/90/90/0/45/0/45/-45]. These specimens were also tested. The 

layup of each specimen is documented in Table I. For panels 4 and 5, the orientation of 

the layers was rotated, resulting in the following skin lay-up: [-45/45/90/45/-45/0/0/45/-

45/90/-45/45]. In order to be able to compare results for the different load levels and 

obtain a fatigue life curve, it was decided to exclude the specimens with the rotated lay-

up from the test matrix of the fatigue testing and focus on the specimens cut from panels 

3 and 6. 

The flange was pre-cured, cut to size, machined with a 25° taper along the edges and 

co-bonded with the uncured skin using one ply of grade 5, FM® 300 film adhesive 

manufactured by Cytec Engineered Materials. The averaged ply thickness obtained from 

specimen thickness measurements and micrographs was 0.148 mm for the tape, 0.212 

mm for the fabric and 0.178 mm for the adhesive.  

EXPERIMENTAL PROCEDURE 

Quasi-static 

Quasi-static tension tests were performed in a servohydraulic load frame in displacement 

control at 0.4 mm/min. The specimens were mounted in hydraulic grips with a gage 

length of 101.6 mm. A total of five specimens was tested. Two specimens were equipped 

with two strain gages, one located in the center of the flange and the other located on the 

skin as close to the flange tip as possible (see Figure 1a). The remaining three specimens 

had the gage on the flange only. In addition to the strain gages, an extensometer with a 

25.4 mm gage length was mounted on the backside of the specimens and centered on the 

flange tip as displayed in Figure 1b. The tests were terminated when the flange debonded 

from the skin.  

Fatigue tests 

The fatigue test configuration is the same as the one used for the quasi-static tests. 

Fatigue tests were performed at a cyclic frequency of 5 Hz, an R-ratio of 0.1 and load 

levels corresponding to 40%, 50%, 60% and 70% of the quasi-static damage onset load. 

Four tests were performed at 40% and 60% and three tests were performed at 50% and 

70% as documented in Table I. During the test, the damage was monitored in-situ using a 

Questar! digital microscope manufactured by Company Seven, Astro-Optics Division. 

The digital microscope was used on one edge and an optical travelling microscope on the 

other edge as shown in the test set-up in Figure 2a. The specimen edges were painted 

white to make the cracks and delaminations more visible as shown in Figure 2b. Damage 
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was documented based on location at each of the four corners identified in Figure 1a. The 

number of cycles at which the first matrix crack appeared was recorded as well as the 

number of cycles to delamination onset. After the test, the specimen was clamped into a 

three-point bending rig shown in Figure 3a. A small load was applied by hand tightening 

a set screw to open the matrix crack and delamination and therefore increase the visibility 

of the damage as shown in Figure 3b. A photograph of the polished specimen edge was 

then taken under a light microscope as shown in Figure 3c. 

3-D mapping of the damage 

For four specimens (9B-02, 7B-06, 8B-06 and 10B-03), the cycling loading was 

interrupted several times. During the interruption, the specimen was taken out of the 

grips. Using the same bending rig described previously, a photograph of the polished 

specimen edge was then taken under a light microscope to document the occurrence and 

growth of matrix cracks and delaminations. The specimen was then returned to the 

loading frame and the cyclic loading continued. 

Furthermore, dye penetrant X-ray radiography was used to measure the amount of 

delamination across the width. Zinc-iodide based X-ray dye penetrant was deposited on 

the specimen edges and flange tip and allowed to soak into the specimen for a minimum 

of 15 minutes. Radiographs of the specimen were then recorded on type 53 coaterless 

4”x5” instant black and white film manufactured by Polaroid!. The area of interest and 

the corresponding enhanced image are shown in Figure 4. One difficulty encountered is 

that the delamination occurs right below the bevel of the flange. The change in specimen 

thickness will result in a change of gray levels in that zone, rendering the delamination 

difficult to detect.  This difficulty was solved by taking an X-ray image before testing 

(see Figure 5a) and using a digital image processing technique to subtract the undamaged 

specimen image from the damaged specimen image (see Figure 5b). The images were 

digitized using a flatbed scanner. A resolution of 600 dots per inch was used. The image 

processing was done using the software Photoimpact! manufactured by Ulead and 

consisted of the following steps: the images were first rotated by aligning vertically the 

left edge of the specimen, then the undamaged specimen image was inverted. Then, the 

“stiching” function with a degree of transparency of 50% was used to align the two 

images on top of each other and combine them. The resulting enhanced image is shown 

in Figure 5c. Care had to be taken when taking the X-ray image radiograph to obtain an 

appropriate brightness and contrast, constant from image to image. To align the images, 

the strain gauge was used if present, or a piece of aluminum tape was placed on the 

specimen prior to taking the X-ray image. 

Finally, two specimens (8B-06 and 10B-03) were cut longitudinally in several slices as 

shown in the drawings of Figure 6 and the photographs in Figure 7. The thicknesses wi of 

the i slices as well as the distance zir and zil to the right and left edges of the slices 

(measured from the left edge of the specimen) are documented in Table I. The edges of 

each slice were polished (marked with a red star) and photographed under a light 

microscope, as described before. The measurement of the delamination length was 

combined with information about the location of the delamination through the thickness 

to obtain a 3-D mapping of the damage as discussed later.  
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TESTS RESULTS 

Quasi-static tests 

In Figures 8 and 9, typical results are shown as plots of load versus displacement and 

strain versus load, respectively. The loads, flange and skin strains are reported in Table II 

for the point of possible damage initiation as well as for the maximum sustained load. For 

the specimens with two strain gages (2B02 and 2B03), the strain values are shown for 

flange strain and skin strain, respectively. For the remaining specimens, these values are 

shown for flange strain only. 

The load-displacement curves were slightly nonlinear over a wide range as shown in 

Figure 8. Possible damage initiation was assumed when a small initial load drop was 

observed prior to flange debonding. At this point, a crack in one flange tip or a small 

delamination along one flange corner was observed. In two specimens (2B02 and 6B06), 

no initial load drop or visible damage could be detected. In general, the initial load drop 

occurred above 90% of the maximum sustained load. The nonlinear strain-load response 

up to flange debonding is shown in Figure 9. Initially, flange strains dropped before 

rising again with increasing load. The initial compression phase captured by the strain 

gage is caused by secondary bending due to the load eccentricity in the flange region and 

the asymmetric layup with respect to the neutral axis. In all specimens, a load drop was 

also accompanied by a decrease in strain. The same three specimens that showed a load 

drop in the load-displacement plots also displayed a drop in flange strain prior to flange 

debonding. Skin strains were nearly linear until flange debonding occurred, as shown in 

Figure 9. The value of the damage onset load was averaged from five tests and 

determined to be 17.8 kN which was later designated as P100%.  

 

Fatigue tests 

The load level as a function of the number of cycles to matrix crack onset is shown in 

Figure 10 for the specimens made from panels 3 and 6 (red squares). The loads at onset 

of damage obtained from the quasi-static tests are shown on the ordinate (green circles). 

These data points represent the damage initiation loads given in Table II. The mean 

values for each load level are represented by solid symbols. The load level as a function 

of the number of cycles to delamination onset is shown in Figure 11 for the specimens 

made from panels 3 and 6 (purple diamonds). The number of cycles to delamination 

onset is a cumulative number and includes the cycles to matrix crack onset. There is a 

considerable difference between matrix crack onset and delamination onset, especially 

when considering the mean values. An almost linear relationship between Pmax and log N 

can be also observed for delamination onset, with some scatter between the replicates 

tested at each load levels [7]. The results obtained from specimens made from panel 2 

were added to the plots as shown in Figure 12 and 13. The specimens made from panel 2 

exhibit a longer life compared to the life of the specimens made from panels 3 and 6. This 

is to be expected, since the lay-up of panel 2 leads to a stiffer specimen resulting in a 

lower stress at the flange tip. 
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MICROSCOPIC INVESTIGATION 

Typical damage patterns observed at the flange tip are shown in Figures 14 and 15. 

Two typical micrographs were included. All quasi-static and fatigue tests yielded similar 

damage patterns. Under quasi-static loading, failure occurred across one flange tip of the 

specimen only, with no clear preference for corners 1 and 2 or corners 3 and 4 shown in 

Figure 1. In fatigue, damage initiated at both flange tips, but not at the same time. 

At corners 2 and 3, a delamination (B, in blue) formed in the top 45°/-45° skin ply 

interface, as depicted in Figure 14. For the quasi-static case, the damage can only be 

observed after the test, and it appears that this delamination initiated at the flange tip from 

a matrix crack in the top 45° skin ply as shown in Figure 14(a,b). In fatigue, the sequence 

of events, as depicted in Figure 14(c), has been observed with a Questar! microscope. 

The first matrix crack occurs in the adhesive pocket (!), then grows through the top 45° 

skin ply and forms a delamination B (" in violet) in the top 45°/-45° skin ply interface 

growing towards the center of the flange (!#"). Sometimes, the delamination B ($, in 

blue) grows back towards the grip and causes a matrix crack through the top 45° ply, 

reaching the skin surface ($#%). The original matrix crack through the adhesive pocket 

and top 45° ply closes (!). The closure explains the observations from the static case, 

where the matrix crack through the adhesive pocket was not observed (see Figure 14(a)).  

At corners 1 and 4, a delamination running in the bondline (A1, in green) initiated 

from a matrix crack in the adhesive pocket, as shown in Figure 15. In some of the quasi-

static cases, a second delamination (A2, in orange) was observed below the first one, in 

the top –45°/0° skin ply interface. Delamination A2 was not observed in fatigue 

presumably, because the load levels were lower compared to the static test. 

In fatigue, damage first appeared at corner 2 and 3 (delamination B) for 12 of the 14 

specimens. The delamination lengths were measured using the traveling stage of the 

optical microscope while the edges were still covered with white paint. The lengths 

measured for four specimens (9B-02, 7B-06, 8B-06 and 10B-03) after different numbers 

of load cycles are listed in Table III. The mechanics are discussed in the section on the 

mechanics of failure. 

3-D DAMAGE MAPPING 

Images obtained form X-ray radiography 

The final images obtained from X-ray radiography and image post-processing are 

shown in Figures 16 to 19 for four specimens (9B-02, 7B-06, 8B-06 and 10B-03) after 

different load cycles. The dark areas where the contrast fluid had penetrated into the 

damaged section of the specimen reveal the delaminations. In the image of Figure 16(a) - 

taken from specimen 8B-06 after 279 cycles, a delamination was only visible along the 

flange edge from corners 3 to 4. The gray intensity appeared to be more pronounced 

towards corner 3 (delamination B), which suggests an increased growth in this area. This 

observation is confirmed by Figure 16(b) (taken after 506 cycles) and Figure 16(c) (taken 

after 730 cycles) where the delamination appears the have grown further to corner 3 

(delamination B). Delamination growth at the opposite flange edge (from corner 1 to 2) 

was also observed as shown in Figures 16(b) and (c). The growth appeared to be slower 
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and more uniform compared to the other edge. The observations were verified by cutting 

the specimens into slices as shown in Figures 6 and 7. Micrographs of the edges were 

obtained to reveal the growth in the interior of the specimen. The observations are 

discussed later. 

The images for the other specimens (10B-03, 9B-02 and 7B-06) reveal a similar 

growth pattern as shown in Figures 17, 18 and 19. For specimen 10B-03, shown in 

Figure 17, the observations were also verified by slicing the specimens as shown in 

Figures 6 and 7. The observations from micrographs of the edges are discussed later. For 

specimen 10B-03, shown in Figure 18, the gray intensity is less pronounced which made 

it more difficult to determine how far the contrast fluid had penetrated into the damaged 

section. For specimen 7B-06, the delamination lengths measured at the polished edges of 

corners 1 to 4 were added to Figure 19. The measured lengths are listed in Table III. 

Micrographs of the interior obtained from individual slices of the specimens 

Two specimens (8B-06 and 10B-03) were cut into slices as discussed earlier. The 

slices are shown in Figures 6 and 7. The edges marked with a red star in Figure 6 were 

polished and micrographs were obtained to reveal the growth in the interior of the 

specimen. The micrographs taken across the width of specimen 8B-06 along the flange 

edge from corners 3 to 4 were assembled as shown in Figure 20. A detail of an x-ray 

radiograph (taken from Figure 16c) and a sketch of the slices (taken from Figure 6a) were 

included to help identify the location of the micrographs with respect to the specimen 

width. At the specimen edges (corners 3, z1l=0.0 mm and 4, z4r=25.578 mm), only one 

delamination type (B, in red or A1, in light blue) was observed as discussed earlier and 

shown in Figures 14 and 15. Based on the observations at the edges of the specimen, a 

simple transition from delamination type B to type A1 was expected to occur in the 

interior of the specimen. The micrographs, however, reveal a more complex pattern 

where both delaminations (B and A1) are present simultaneously across most of the 

width of the specimen. The mechanics of the failure are discussed below. The 

delamination lengths were measured using image analysis of the scanned and stiched 

micrographs. The delamination lengths are listed in Table IV. The delamination outline 

seen in the X-ray image (dark area) captured the size of the delamination well, which is 

shown by adding delamination lengths (B, in red or A1, in light blue) measured from the 

micrographs. The images obtained from X-ray radiography, however, were not able to 

reveal the complexity of the damage pattern observed. An ultrasound inspection, which 

includes a D-scan, time-of-flight scan or depth scan may be required to identify the 

complete pattern. 

The micrographs taken across the width of specimen 8B-06 along the opposite flange 

edge from corners 1 to 2 were assembled in a similar manner as shown in Figure 21. As 

above, a detail of an x-ray radiograph and a sketch of the slices were included to help 

identify the location of the micrographs with respect to the specimen width. The same 

complex pattern as discussed above is observed where both delaminations (B, in yellow 

and A1, in magenta) are present simultaneously across most of the width of the specimen. 

In this particular case, delamination A1 is visible across the entire width of the specimen 

including the free surface at corner 2 (z4r=25.578 mm). The delamination lengths 

measured from the individual micrographs are listed in Table IV. The lengths listed in 

Table III and Table IV for the same corners differ slightly, since they were measured at 
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different times using different equipment.  

The micrographs taken across the width of specimen 10B-03 along the flange edge 

from corners 3 to 4 were assembled as discussed above and are shown in Figures 22a and 

b. A detail of an x-ray radiograph (taken from Figure 17d) and a sketch of the slices 

(taken from Figure 6b) were included to help identify the location of the micrographs 

with respect to the specimen width. The same complex pattern as discussed above for 

specimen 8B-06 is observed here, and both delaminations (B, in yellow and A1, in 

magenta) are present simultaneously across most of the width of the specimen. The 

delamination lengths measured at the edges are listed in Table III. 

The assembly of the corresponding micrographs taken across the width of the 

specimen along the opposite flange edge from corners 1 to 2 is shown in Figures 23a and 

b. The same complex pattern as discussed above is observed here, and both delaminations 

(B, in yellow and A1, in magenta) are present simultaneously across most of the width of 

the specimen. 

Mechanics of Failure 

Earlier investigations [2-5] indicated that the maximum ply principal transverse tensile 

stress may cause the initial failure in the form of matrix cracks from which delaminations 

may start to grow. Failure, therefore, may occur when the computed principal tensile 

stress in the plane normal to the fiber direction exceeds the transverse tensile strength of 

this ply. Due to geometric symmetry of the specimen and the tensile loading, one would 

therefore expect to see the same type of matrix cracking simultaneously at all four 

corners of the flange. Due to the presence of +45° and -45° plies in the layup, however, 

the specimen is not symmetric resulting in a failure pattern that is not symmetric. The 

observed matrix cracking and delamination growth is the same at diagonally opposite 

corners of the flange e.g. 1 and 4 or 2 and 3 as shown in Figures 14 and 15.  

Previous two and three-dimensional finite element analyses of the current specimen 

configuration accounted for different locations where the first delamination might occur, 

however, were based on the assumption that delamination occurred only in one interface 

across the entire width of the specimen [7-9]. A more comprehensive understanding of 

the complex mechanics of the failure process would require modeling delaminations 

simultaneously at different interfaces to determine the propagation and growth of the 

individual delamination. Such detailed three-dimensional finite element analyses, 

however, are out of the scope of this paper. 

SUMMARY AND CONCLUDING REMARKS 

The fatigue damage was characterized in specimens which consisted of a tapered 

composite flange, representing a stringer or frame, bonded onto a composite skin. In the 

first step, a quasi-static tension test was performed to determine the failure load. 

Subsequently, tension fatigue tests were performed at 40%, 50%, 60% and 70% of the 

failure load to evaluate the debonding mechanisms between the skin and the bonded 

stringer. For four specimens, the cycling loading was stopped at intervals, and the 

specimens were taken out of the grips. Photographs of the polished specimen edges were 

taken under a light microscope to document the occurrence and growth of matrix cracks 

and delaminations. Additionally, dye penetrant X-ray radiography was used to measure 

8



the amount of delamination through the width. In addition, two specimens were cut 

longitudinally into several sections. Photographs of the polished section edges were taken 

under a light microscope to document the damage inside the specimens.  

The microscopic inspection revealed the following: 

• All quasi-static and fatigue tests yielded similar damage patterns. Under quasi-static 

loading, failure occurred across one flange tip of the specimen only, with no clear 

preference for corners 1 and 2 or corners 3 and 4. In fatigue, damage initiated at both 

flange tips, but not at the same time. 

• At corners 2 and 3, a delamination initiated at the flange tip from a matrix crack in the 

top 45° skin ply and propagated in the top 45°/-45° skin ply interface. In fatigue, 

damage first appeared at this location for 12 of the 14 specimens.  

• At corners 1 and 4, a delamination running in the bondline initiated from a matrix 

crack in the adhesive pocket. 

• The micrographs taken from individual slices reveal a more complex pattern inside 

the specimen. The two delamination patterns observed at the edges are present 

simultaneously across most of the width of the specimen.  

• The outline from the X-ray images compared well with lengths measured from the 

micrographs taken from individual slices. Images obtained from X-ray radiography, 

however, did not reveal the complexity of the damage pattern. 

The observations suggest that a more sophisticated nondestructive evaluation 

technique such a D-scan, time-of-flight scan or depth scan is required to capture the 

complex damage pattern of matrix cracking and multi-level delaminations. With respect 

to finite element modeling of delaminations and predicting their propagation and growth, 

the question arises of how much simplification is permissible and how much detail is 

required in order to properly capture the damage mechanism. 
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TABLE I. OVERVIEW OF TEST SPECIMENS. 
Specimen Load level¶ Panel 

number* 
Slice No. i Slice width 

wi, mm 
Distance 

from edge 

zil, mm 

Distance 

from edge 

zir, mm 

  9B-02+ 70% 2     

  6B-02 70% 2     

  4B-03 70% 3     

  6B-03 70% 3     

  8B-06+ 70% 6 1 6.637   0.000++   6.637++ 

   2 6.310   7.220 13.530++ 

   3 6.037 14.110++ 20.147++ 

   4 4.855 20.723 25.578++ 

  7B-02 60% 2     

11B-02 60% 2     

  7B-03 60% 3     

  9B-03 60% 3     

  3B-06 60% 6     

  7B-06+ 60% 6     

  8B-02 50% 2     

12B-02 50% 2     

  5B-03 50% 3     

10B-03+ 50% 3 1 3.560   0.000++   3.560++ 

   2 3.328   3.912   7.240++ 

   3 3.023   7.565 10.588++ 

   4 3.461 10.949 14.410++ 

   5 3.342 14.810 18.152++ 

   6 3.423 18.499 21.922++ 

   7 3.060 22.303 25.363++ 

  4B-06 50% 6     

10B-02 40% 2     

  8B-03 40% 3     

11B-03 40% 3     

12B-03 40% 3     

11B-06 40% 6     
* Panel 2: [45/-45/0/-45/45/90/90/0/45/0/45/-45]; 3 and 6: [45/-45/0/-45/45/90/90/-45/45/0/45/-45] 
¶ Load level 70%=12.45 kN, 60%=10.67 kN, 50%=8.9 kN, 40%=7.12 kN 
+ X-rays taken for four specimens 
++ Polished edges 
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TABLE II. RESULTS FOR QUASI-STATIC TENSION TESTS. 
Specimen Damage 

initiation   

load, kN 

Damage 

initiation 

flange 

strain, µ! 

Damage 

initiation 

skin strain, 
µ! 

Max. load, 

kN 
Flange 

strain at 

max. load, 
µ! 

Skin strain 

at max. 

load, µ! 

2B02 19.9 1368 9934 19.9 1368 9934 

2B03 15.9 1075 9756 17.2 577 10280 

2B06 16.6 1153  17.7 704  

6B06 18.3 1390  18.3 1390  

10B06 18.0 1378  18.0 1378  

mean 17.8 1273 9845 18.2 1083 10107 

std. dev. 1.6 148 126 1.0 407 245 

CoV [%] 8.9 11.6 1.3 5.7 37.6 2.4 

 

 

TABLE III. DELAMINATION LENGTHS AT CORNERS 1-4. 
Specimen – load 

level 

Number of 

cycles 

Corner 1    

ac1, mm 

Corner 2    

bc2, mm 

Corner    3 

bc3, mm 

Corner 4    

ac4, mm 

9B-02 – 70% 1400 MC 3.99 1.297 MC 

 1995 2.415 5.877 5.05 0.386 

 5000 3.869 9.536 8.475 2.418 

7B-06 – 60% 3233 MC MC 3.972 - 

 4460 0.804 3.264 5.779 2.557 

8B-06 – 70% 279 0.301 MC 2.156 MC 

 506 0.307 MC 5.027 MC 

 730 0.681 2.34 7.87 1.1 

10B-03 – 50% 5502 MC(0.512) 1.827 MC MC (0.786) 

 6506 MC 3.823 MC MC 

 7611 MC 4.431 2.265 MC 

 11500 1.676 7.58 5.699 2.083 

 MC: matrix crack only – damage has not yet developed into a delamination  
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TABLE IV. DELAMINATION LENGTHS FOR SLICED SPECIMENS. 
Specimen Load level Slice No. i Edge from corner 3 to 4 Edge from corner 1 to 2 

   length A1, 

mm 

length B, 

mm 

length A1, 

mm 

length B, 

mm 

8B-06 70% 1 a1l=0.00 b1l=8.20 a1l=0.71 b1l=0.00 

   a1r=1.34 b1r=5.13 a1r=1.03 b1r=0.70 

  2 a2r=2.37 b2r=2.95 a2r=1.22 b2r=1.37 

  3 a3l=1.55 b3l=4.21 a3l=0.68 b3l=1.01 

   a3r=1.09 b3r=1.80 a3r=0.34 b3r=2.97 

  4 a4r=1.05 b4r=0.00 a4r=0.46 b4r=2.60 
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(a). Specimen configuration.

Strain Gages

(quasi-static 

tests only)
  50.8 mm   50.8 mm 

Corner 4

Corner 3 Corner 1

Corner 2

(b). Tension test set-up.

25.4 mm

101.6 mm

Figure  1. Specimen configuration and test set-up [5,7].
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(a). Test set-up.

(b). Specimen in the loading grips.

Figure  2. Fatigue tension test set-up.

painted edge
flange

skin

delamination 

onset

matrix crack 

onset
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(a). Loaded specimen in the rig.

(b). Detail of observed delamination opening.

Figure  3. Three-point bending rig.

support pins

tightening screw

loading mechanism

specimen

(c). Photograph of polished edge.
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Specimen width

Figure 4. X-ray radiograph of skin/stringer specimen.

(a) Top view of specimen (b) X-ray radiograph of specimen 

8B-06 taken after 279 load cycles

Delamination

Delamination

Flange

x,u

z,w

x,u

z,w

flange edge

flange edge

177.8 mm 177.8 mm 

Corner 3 Corner 4

Corner 1 Corner 2

25.4 mm

Strain gage

Strain gage

area of X-ray image

Marker in fabric

Marker in fabric
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Figure 6. Cutting of specimens.
(a) Specimen 8B-06 (b) Specimen 10B-03
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(a). Specimen 8B-06 cut into four slices.

(b). Specimen 10B-03 cut into seven slices.

Figure  7. Sectioned specimens.
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Figure 9. Flange strain-load plots for quasi-static tension tests [7].
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Figure 11. Delamination onset fatigue life following matrix 

cracking for composite skin/flange debonding [7].
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Figure  15. Typical damage patterns observed in skin/stringer specimen 

at specimen corners 1 and 4 [7]. 
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