Trimetallic nitride endohedral metallofullerene derivatives and their preparation are described. The trimetallic nitride endohedral metallofullerene derivatives have the general formula $A_{n}X\cdot @C_{60}(R)$ where n ranges from 0 to 3, A and X may be trivalent metals and may be either rare earth metal or group IIIB metals, m is between about 60 and about 200, and R is preferably an organic group. Derivatives where the R group forms cyclized derivatives with the fullerene cage are also described.
Figure 3

1

* denotes 13C label

Δ -CO$_2$

2

3

Sc$_2$NSc

Sc$_2$
Figure 4
ENDOHEDRAL METALLOFULLERENE DERIVATIVES

This invention was made with Government support under contract NCC-1-01044 awarded by NASA. The Government has certain rights in this invention.

FIELD OF THE INVENTION

The present invention is directed to derivatives of endohedral metallofullerenes. More particularly, the present invention is directed to derivatives of trimetallic nitride endohedral metallofullerenes.

BACKGROUND OF THE INVENTION

Fullerenes are a family of closed-caged molecules made up of carbon atoms. The closed-caged molecules consist of a series of five and six member carbon rings. The fullerene molecules can contain 500 or more carbon atoms. The most common fullerene is the spherical C_{60} molecule taking on the familiar shape of a soccer ball.

Fullerenes are typically produced by an arc discharge method using a carbon rod as one or both of the electrodes in a Kratschmer-Huffman generator. Kratschmer, W. et al., Chem. Phys. Lett., 170, 167-170 (1990) herein incorporated by reference in its entirety. Typically, the generator has a reaction chamber and two electrodes. The reaction chamber is evacuated and an inert gas is introduced in the reaction chamber at a controlled pressure. A potential is applied between the electrodes in the chamber to produce an arc discharge. The arc discharge forms a carbon plasma in which fullerenes of various sizes are produced.

Over the past decade, derivatives of the empty-cage C_{60} fullerene by organic functionalization chemistry has grown exponentially since the molecule was discovered to possess reactive double bonds at the [6,6] ring junctures of the cage, otherwise known as pyracyclene type units. Each C_{60} molecular cage contains six of these reactive units; however, the [6,6] junctures of larger empty cages like C_{70} and C_{78} are not as reactive as C_{60}.

U.S. Pat. No. 6,303,760, herein incorporated by reference in its entirety, describes a family of endohedral metallofullerenes where a trimetallic nitride is encapsulated in a fullerene cage. The endohedral metallofullerenes have the general formula $A_{n}X_{m}N@C_{60}$ (n=0-3) where A is a metal, X is a second trivalent metal, n is an integer from 0 to 3, and m is an even integer from about 60 to about 200. The metals A and X may be an element selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

The present invention is directed to derivatives of endohedral metallofullerenes. More particularly, the present invention is directed to derivatives of trimetallic nitride endohedral metallofullerenes.

SUMMARY OF THE INVENTION

The present invention is directed to a family of endohedral metallofullerenes derivatives having the formula $A_{n}X_{m}N@C_{60}$ (n=0-3).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a) an expansion of a [6,6] reactive site of a pyracyclene-type unit on a C_{60} fullerene cage; and b) cage an expansion of [5,6] reactive sites of a corannulene-type unit on a C_{60} fullerene cage.

FIG. 2 illustrates the structure of $Sc_{3}N@C_{60}(C_{6}H_{12}O_{2})$. FIG. 3 illustrates the reaction scheme for the preparation of $Sc_{3}N@C_{60}(C_{6}H_{12}O_{2})$.

FIG. 4 illustrates the configuration of the metallofulleropyrrolidine $Sc_{3}N@C_{60}(C_{6}H_{12}N)$.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is directed to derivatives of trimetallic nitride endohedral metallofullerenes. In accordance with an embodiment of the present invention, trimetallic nitride endohedral metallofullerenes may be derivatized on the exterior of the fullerene cage with an organic group via cycloaddition reactions.

As used herein, “endohedral” refers to the encapsulation of atoms inside the fullerene cage network. Accepted symbols for elements and subscripts to denote numbers of elements are used herein. Further, all elements to the right of an @ symbol are part of the fullerene cage network, while all elements listed to the left are contained within the fullerene cage network. Under this notation, $Sc_{3}N@C_{60}(R)$ indicates that the $Sc_{3}N$ trimetallic nitride is situated within a C_{60} fullerene cage and the R group is situated on the exterior of the C_{60} fullerene cage.

The present invention is directed to a family of derivatized endohedral metallofullerenes represented generally as $A_{n}X_{m}N@C_{60}$ (n=0-3) where A and X are metal atoms encapsulated in a fullerene cage and R is a group bonded to exterior of the fullerene cage.

In accordance with the present invention, the fullerene cage, C_{nr}, can range from about 68 carbon atoms to about 200 carbon atoms. In preferred embodiments, m can be about 68, about 78, or about 80. In one embodiment, the fullerene cage has a portion of the cage that corresponds to a corannulene-type unit. The corannulene-type unit consists of a five-member ring surrounded by five, six-member rings forming a five-member ring and six-member ring juncture, also called a [5,6] ring juncture. This configuration is illustrated in FIG. 1b, where the portion of the carbon cage has been expanded to illustrate the corannulene-type unit and the [5,6] ring junctures.
The R group is preferably an organic group positioned on the exterior of the fullerene cage. In one embodiment, the R group is associated with the carbon cage of the metallofullerene through at least two carbon atoms on the carbon cage. As shown in FIG. 2, the R group may form a cyclized derivative with the fullerene cage, where at least two carbons on the fullerene cage are part of the cyclized derivative. Preferably, the R group forms five or six-member rings with two carbon atoms on the fullerene cage. In a preferred embodiment, the R group is bonded to the fullerene cage through at least two carbon atoms on the corannulene-type unit. In some embodiments, the R group is bonded to the fullerene cage through a [5,6] ring juncture of the corannulene-type unit. In one embodiment, a single Diels-Alder addition product is formed on the cage of the endohedral metallofullerene.

In the case of a C₆₀ endohedral metallofullerene, without intending to be bound by theory, it is believed that the R group is formed on the metallofullerene cage through the cycloaddition of an organic group across the 1,2 position on the five-membered ring at a [5,6] ring juncture of a corannulene-type unit. By way of example, FIG. 2 illustrates a cycloaddition derivative of an organic group at the [5,6] ring juncture of a corannulene-type unit for Sc₃N@C₆₀(C₁₀H₁₂O₂).

The type of R group is not particularly limited. In one embodiment, the R group is composed of carbon and hydrogen, and may include nitrogen as well as oxygen. Preferably, the R group has at least 3 carbon atoms. The R group may vary widely depending upon the desired properties of the metallofullerene derivative. For example, the R group may contain carboxyl or hydroxy groups to increase the water solubility of the derivative. Similarly, the hydrophilicity or hydrophobicity of the derivative may be varied by varying the R group and its associated functional groups.

As discussed above, the [5,6] ring juncture in the corannulene-type unit of the metallofullerene is a reactive site. This site is reactive with respect to cycloaddition reactions. Virtually any compound that is expected to undergo cycloaddition reactions with π electrons can be used in accordance with the present invention to form the R group on the exterior of the fullerene cage. For instance, compounds that have an associated conjugated diene that are expected to undergo [4+2] cycloaddition may be used. Further, the decarboxylation reaction of an amino acid and formaldehyde can be used to form a pyrrolidine derivative through 1,3-dipolar cycloaddition. Compounds that undergo cycloaddition include, but are not limited to, benzene derivatives, ketenes, orthoquinodimethane derivatives, pyrolietines, ylides, carbones and malonate derivatives.

The encapsulated metals A and X may vary widely. Preferably, when the metallofullerene cage size is between about 68 carbon atoms and about 80 carbon atoms, the metal atoms are trivalent and have an ionic radius below about 0.095 nm. When the size of the fullerene cage is about 68, the metal atoms preferably have an ionic radius below about 0.090 nm for the A,N endohedral species. As the size of the cage increases, the ionic radius for the metal may increase. Further, A and X may be a rare earth element, a member of Group IIIB element, or combinations thereof. Preferably, A and X may be Scandium, Yttrium, Lanthanum, Gadolinium, Holmium, Erbium, Thulium, Ytterbium, or other metals, and combinations thereof.

To form the derivatives of the trimetallic endohedral metallofullerene, the desired trimetallic endohedral metallofullerene is reacted with the appropriate compound to form the organic R group on the fullerene cage. The preparation of trimetallic endohedral metallofullerenes is discussed in detail in U.S. Pat. No. 6,303,760 herein incorporated by reference in its entirety. Without intending to be bound by theory, it is believed that the reaction proceeds through a cycloaddition reaction between the desired trimetallic metallofullerene and the appropriate compound. Compounds that lend themselves to organic cycloaddition reactions, also called cycloaddition reagents, may be used with the present invention.

One skilled in the art will understand that solvents and reaction conditions for cycloaddition can vary depending upon the trimetallic endohedral metallofullerene and the cycloaddition reagent being used. In general, the cycloaddition reagent may be added to the trimetallic endohedral metallofullerene in the presence of a solvent, such as 1,2,4-trichlorobenzene, and refluxed for a sufficient time to form a derivative of the trimetallic endohedral metallofullerene. The reaction time will vary depending upon the reagents and solvent being used. One can use basic chemistry techniques, such as liquid chromatography, to monitor the reaction progress to determine when the reaction has completed.

The present invention is illustrated in the following examples. The examples are provided for illustration purposes and should not be construed as limiting the scope of the present invention.

EXAMPLE 1
Preparation of Sc₂N@C₆₀(C₁₀H₁₂O₂)

A 1,2,4-trichlorobenzene solution containing Sc₃N@C₆₀ (6.5 mg, 99%) was refluxed for 24 hours with an excess of 6,7-dimethoxyisochroman-3-one (99%, ¹³C labelled) to achieve the ¹³C labelled metallofullerene monoadduct. FIG. 3 illustrates the reaction scheme for the preparation of Sc₃N@C₆₀(C₁₀H₁₂O₂). The reaction solution was dominated by a single reaction product and was purified by HPLC methods using a Trident-Tri-DNP column (Buckyclutcher column; Regis Chemical) with chloroform as the eluent. Matrix assisted 9-nitroanthracene/20 laser desorption ionization time-of-flight mass spectrum (MALDI-TOF MS) showed a peak for the ¹³C labeled monoadduct at m/z 1274 and a peak at m/z 1109 for the cleaved adduct. ¹³C NMR showed a single narrow signal at 42.25 ppm for equivalent hydrogens attached to the methylene carbons and suggests a plane of symmetry. The hydrogens attached to the methylene carbons are nonequivalent and centered at 3.41 and 3.57 ppm, respectively.

EXAMPLE 2
Preparation of Sc₂N@C₆₀(C₁₀H₁₂N)

An orthodichlorobenzene solution containing Sc₃N@C₆₀ (4.6 mg) was refluxed for 24 hours with an excess of N-ethylglycine (98%) and formaldehyde to achieve the metallofullerene monoadduct. The reaction solution was dominated by a single reaction The product was and was purified by HPLC methods using a Trident-Tri-DNP column (Buckyclutcher column; Regis Chemical) with chloroform as the eluent. Matrix assisted 9-nitroanthracene/20 laser desorption ionization time-of-flight mass spectrum (MALDI-TOF MS) showed a peak for the monoadduct at m/z 1180. FIG.
4 illustrates the configuration of a metallofullerpyrrolidine
derivative Sc,N@C_{80}(C_{6}H_{14}N).

In accordance with the present invention trimetallic
nitride endohedral metallofullerene derivatives having the
general A_{2-n}X_{n}N@C_{m}(R) are produced using the above
described methods. This family of trimetallic nitride
endohedral metallofullerene derivatives include unique mol-
ecules with extraordinary properties due to the wide variety
of metals and metal clusters that can be encapsulated inside
the carbon cages and the wide variety of groups that can be
added to the exterior of the fullerene cage. By varying the
groups on the exterior of the fullerene cage, one can fine tune
the properties of the endohedral metallofullerene to a par-
ticular application. For example, these derivatives can have
properties that can find utility in conductors, semiconductor,
superconductors, or materials with tunable electronic prop-
serties such as quantum computers, optical limiters, nonlinear
optical devices, ferroelectrics and dielectrics. Trimetallic
nitride endohedral metallofullerene derivatives having en-
capsulated radioactive metals, such as Ho, may be used for
medical applications such as radioactive tracers, PET, MR
and X-ray contrast agents. These tracers may serve as
fluorescent or optical tags. By varying the group on the
exterior of the fullerene cage, the water solubility or bioac-
tivity of the derivative may be varied. Further, trimetallic
nitride endohedral metallofullerene derivatives provide a
new approach for surface dispersal for catalysts, coatings,
and inks via a non-polar solvent (toluene, carbon disulfide,
or 1,2-dichlorobenzene) or vacuum vaporization. The mate-
rials may be utilized directly as surface coatings or oxidized
to the corresponding metal oxides.

It will therefore be readily understood by those persons
skilled in the art that the present invention is susceptible to
broad utility and application. Many embodiments and adap-
tations of the present invention other than those herein
described, as well as many variations, modifications and
equivalent arrangement, will be apparent from or reasonably
suggested by the present invention and the foregoing
description thereof, without departing from the substance or
scope of the present invention.

Accordingly, while the present invention has been
described herein in detail in relation to its preferred embodi-
ment, it is to be understood that this disclosure is only
illustrative and exemplary of the present invention and is
made merely for purposes of providing a full and enabling
disclosure of the invention. The foregoing disclosure is not
intended or to be construed to limit the present invention or
otherwise to exclude any such other embodiments, adap-
tations, variations, modifications and equivalent arrange-
ments, the present invention being limited only by the claims
and the equivalents thereof.

What is claimed is:

1. An endohedral metallofullerene having the formula:
A_{2-n}X_{n}N@C_{m}(R)

wherein:
A is a metal;
X is a second metal;
R is a metallofullerene cage through at least two carbon atoms on the C_{m} fullerene cage.

2. The metallofullerene of claim 1 wherein m is 80.

3. The metallofullerene of claim 1 wherein:
A is selected from the group consisting of Scandium,
Yttrium, Lanthanum, Gadolinium, Holmium, Erbium,
Thulium, and Ytterbium; and
X is selected from the group consisting of Scandium,
Yttrium, Lanthanum, Gadolinium, Holmium, Erbium,
Thulium, and Ytterbium.

4. An endohedral metallofullerene having the formula:
A_{2-n}X_{n}N@C_{m}(R)

wherein:
A is a metal;
X is a second metal;
m is an integer from 0 to 3;
m is an even integer from about 68 to about 200; and
R is C_{10}H_{14}O_{2} bonded to the C_{m} fullerene cage through at least two carbon atoms on the C_{m} fullerene cage.

5. The metallofullerene of claim 4 wherein m is 80.

6. The metallofullerene of claim 4 wherein:
A is selected from the group consisting of Scandium,
Yttrium, Lanthanum, Gadolinium, Holmium, Erbium,
Thulium, and Ytterbium; and
X is selected from the group consisting of Scandium,
Yttrium, Lanthanum, Gadolinium, Holmium, Erbium,
Thulium, and Ytterbium.

7. An endohedral metallofullerene having the formula:
A_{2-n}X_{n}N@C_{m}(R)

wherein:
A is a metal;
X is a second metal;
m is an integer from 0 to 3;
m is an even integer from about 68 to about 200; and
R comprises carbon and hydrogen, and wherein R forms a cyclic ring with at least two carbon atoms on the C_{m} fullerene cage.

8. The metallofullerene of claim 7 wherein R forms a five-member ring on the C_{m} fullerene cage.

9. The metallofullerene of claim 7 wherein R further comprises an oxygen or nitrogen.

10. The metallofullerene of claim 7 wherein m is 80.

11. The metallofullerene of claim 7 wherein:
A is selected from the group consisting of Scandium,
Yttrium, Lanthanum, Gadolinium, Holmium, Erbium,
Thulium, and Ytterbium; and
X is selected from the group consisting of Scandium,
Yttrium, Lanthanum, Gadolinium, Holmium, Erbium,
Thulium, and Ytterbium.

12. The metallofullerene of claim 7 wherein X is Scandium.

13. The metallofullerene of claim 7 wherein X is Holmium.

14. The metallofullerene of claim 7 wherein X and A are different.

15. The metallofullerene of claim 7 wherein A is selected from the group consisting of a rare earth element and group IIIB element.

16. The metallofullerene of claim 15 wherein X is selected from the group consisting of a rare earth element and group IIIB element.

17. The metallofullerene of claim 7 wherein R forms a six-member ring with the C_{m} fullerene cage.

18. The metallofullerene of claim 7 wherein A is Gadolinium.

19. The metallofullerene of claim 7 wherein R is bonded to the C_{m} fullerene cage at a five-member ring and six-
member ring junction of the C_{m} fullerene cage.

20. The metallofullerene of claim 7 wherein A_{2-n}X_{n}N@C_{m}(R) is a [4+2] cycloaddition product.

21. The metallofullerene of claim 7 wherein A_{2-n}X_{n}N@C_{m}(R) is a [1, 3-dipolar] cycloaddition product.
22. The metallofullerene of claim 7 wherein $A_{3,2}\text{X}_N\text{N}C_{60}(R)$ is a [2+1] cycloaddition product.

23. The metallofullerene of claim 7 wherein $A_{3,2}\text{X}_N\text{N}C_{60}(R)$ is a [3+2] cycloaddition product.

24. The metallofullerene of claim 7 wherein $A_{3,2}\text{X}_N\text{N}C_{60}(R)$ is a [2+2] cycloaddition product. * * * * *