High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

Rainee N. Simons, Jeffrey D. Wilson, and Dale A. Force
Glenn Research Center, Cleveland, Ohio

June 2008
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 301–621–0134

- Telephone the NASA STI Help Desk at 301–621–0390

- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320
High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

Rainee N. Simons, Jeffrey D. Wilson, and Dale A. Force
Glenn Research Center, Cleveland, Ohio

Prepared for the
2008 International Microwave Symposium
sponsored by the IEEE Microwave Theory and Techniques Society (MTT–S) and the Institute of Electrical and Electronics Engineers (IEEE)
Atlanta, Georgia, June 15–20, 2008

National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

June 2008
Acknowledgments

The authors greatly appreciate the excellent support we received from Neal R. Robbins, Daniel R. Dibb, Dr. W.L. Menninger, Dr. Xiaoling Zhai, Robert Benson, James Burdette, David E. Lewis, and Paul C. Spitsen at L–3 Communications, Electron Technologies, Inc.

This report contains preliminary findings, subject to revision as analysis proceeds.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov
High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

Rainee N. Simons, Jeffrey D. Wilson, and Dale A. Force
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

Recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA’s space-to-Earth communications are presented in this paper. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT has improved by a factor of ten over the previous generation Ka-Band devices.

Introduction

Signals transmitted from spacecrafts orbiting the outer planets or from the vicinity of the lunar surface need to travel enormous distances to ground antennas. In addition, as the distance from the sun increases, the amount of solar energy that is available for conversion to electrical power on board the spacecraft decreases. Hence, there is a need for developing reliable space amplifiers, which are capable of delivering high RF power as well as operating with very high efficiency (ref. 1). In addition, these amplifiers need to be lightweight and small in size. The two possible solutions to this problem are based on either solid-state or microwave vacuum electronics technology. Solid-state devices based on GaAs or GaN high electron mobility transistor (HEMT) technology, when characterized on-wafer using load-pull techniques, deliver only about 2 to 3 W of RF power at Ka-Band frequencies (ref. 2). Although these devices have efficiencies as high as 35 to 40 percent, the efficiency of the multi-stage monolithic microwave integrated circuit (MMIC) power amplifier (PA), built around these devices, is on the order of 25 to 30 percent due to additional circuit losses. In addition, when the output of several MMIC PAs are combined to realize a high power Ka-Band solid-state power amplifier (SSPA), the overall efficiency further drops to 15 to 20 percent due to combiner losses. Furthermore, the low efficiency results in thermal management issues, which impacts reliability. On the other hand, for space applications, microwave vacuum electronics based devices such as helix traveling wave tubes (TWTs) have demonstrated reliability at higher microwave frequencies with power output in the range of 10 to several hundred watts and corresponding efficiency in the range of 40 to 60 percent (refs. 3 and 4).

Communication from the vicinity of the Moon is considered to be near-Earth while that from the planets of our solar system is considered to be from deep space. The corresponding frequency band designated for near-Earth is 25.5 to 26.5 GHz (K-Band) and for deep space communications is 31.8 to 32.3 GHz (Ka-Band). In this paper, we present the microwave performance of a new K-Band helix TWT for near-Earth communications and also a new Ka-Band helix TWT for deep space communications. Both of these units are manufactured by L-3 Communications, Electron Technologies Inc. (ETI) under contracts from NASA Glenn Research Center (GRC).

TWT Design and Modeling

In the early eighties, the design of TWTs was mainly done through trial and error, which was time consuming and expensive. The advances made in desktop computing and electromagnetic simulation/optimization tools have enabled the first pass design success of modern TWTs. These include the U.S. Naval Research Laboratory’s CHRISTINE 3-D Code for high efficiency slow-wave interaction circuit and MITCHELLE 3-D Code for multi-stage depressed collector design (refs. 5 to 7). In addition, efficient thermal modeling/simulation tools are also available, which have enhanced the power handling capability of TWTs by integrating efficient conduction cooled packages. Furthermore, advances in materials technology have resulted in lightweight, temperature stable, high BH product samarium cobalt permanent magnets, which are used in focusing the electron beam. Moreover, advances in tungsten/osmium cathode technology have resulted in cathode lifetimes exceeding 20 years in space (ref. 8).

K-Band and Ka-Band Space TWT Requirements

The K-Band TWT was developed for communications from the Lunar Reconnaissance Orbiter (LRO) spacecraft to Earth. The specifications for the model 9835H K-Band TWT are shown in table I.

The Ka-Band TWT was developed for communications from a spacecraft orbiting any of the outer planets, such as Jupiter or its icy moons. The specifications for the model 999HA Ka-Band TWT are shown in table II.
TABLE I.—TWT MODEL 9835H K-BAND TWT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NASA specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency band</td>
<td>25.5 to 25.8 GHz</td>
</tr>
<tr>
<td>Output power, CW</td>
<td>40 W min</td>
</tr>
<tr>
<td>Saturated gain</td>
<td>46 dB min</td>
</tr>
<tr>
<td>Saturated gain</td>
<td>0.5 dB min</td>
</tr>
<tr>
<td>flatness</td>
<td></td>
</tr>
<tr>
<td>AM-to-PM</td>
<td>4.5 deg/dB max</td>
</tr>
<tr>
<td>VSWR</td>
<td>2.0:1 max</td>
</tr>
<tr>
<td>Overall efficiency</td>
<td>44 percent min</td>
</tr>
<tr>
<td>Overdrive</td>
<td>+6 dB</td>
</tr>
<tr>
<td>Mass</td>
<td><1750 gm</td>
</tr>
<tr>
<td>Size</td>
<td>37 by 9 by 9 cm</td>
</tr>
<tr>
<td>Input/output ports</td>
<td>WR-34 waveguide</td>
</tr>
<tr>
<td>Operating life/mission life</td>
<td>14/26 months</td>
</tr>
<tr>
<td>Environment</td>
<td>Lunar orbit</td>
</tr>
</tbody>
</table>

TABLE II.—TWT MODEL 999HA KA-BAND TWT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NASA specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency band</td>
<td>31.8 to 32.3 GHz</td>
</tr>
<tr>
<td>Output power, CW</td>
<td>180 W min</td>
</tr>
<tr>
<td>Saturated gain</td>
<td>50 dB min</td>
</tr>
<tr>
<td>Saturated gain</td>
<td>0.25 dB min</td>
</tr>
<tr>
<td>flatness</td>
<td></td>
</tr>
<tr>
<td>AM-to-PM</td>
<td>4 deg/dB max</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.5:1 max</td>
</tr>
<tr>
<td>Overall efficiency</td>
<td>55 percent min</td>
</tr>
<tr>
<td>Overdrive</td>
<td>+5 dB</td>
</tr>
<tr>
<td>Mass</td>
<td><1750 gm</td>
</tr>
<tr>
<td>Size</td>
<td>37 by 9 by 9 cm</td>
</tr>
<tr>
<td>Input/output ports</td>
<td>WR-28 waveguide</td>
</tr>
<tr>
<td>Operating life/mission life</td>
<td>7/20 yrs</td>
</tr>
<tr>
<td>Environment</td>
<td>Deep space</td>
</tr>
</tbody>
</table>

K-Band and Ka-Band TWT Measured Performance

Model 9835H K-Band TWT

Three TWTs were manufactured and characterized and all three meet full specifications, resulting in first pass design success and 100 percent yield. The measured output power, overall efficiency, and saturated gain of the three TWTs are summarized in table III.

TABLE III.—LRO PROGRAM GOALS AND PERFORMANCE DATA OF MODEL 9835H K-BAND TWT AT f₀ = 25.65 GHz

<table>
<thead>
<tr>
<th>Performance parameters</th>
<th>LRO program goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF power output, (CW) (W)</td>
<td>40</td>
</tr>
<tr>
<td>Overall efficiency, (%) (min)</td>
<td>44</td>
</tr>
<tr>
<td>Saturated gain, (dB) (min)</td>
<td>46</td>
</tr>
<tr>
<td>RF power output, (CW) (W)</td>
<td>41.90</td>
</tr>
<tr>
<td>Overall efficiency, (%) (min)</td>
<td>50.84</td>
</tr>
<tr>
<td>Saturated gain, (dB) (min)</td>
<td>47.85</td>
</tr>
<tr>
<td>RF power output, (CW) (W)</td>
<td>41.79</td>
</tr>
<tr>
<td>Overall efficiency, (%) (min)</td>
<td>45.93</td>
</tr>
<tr>
<td>Saturated gain, (dB) (min)</td>
<td>47.10</td>
</tr>
</tbody>
</table>

Model 999HA Ka-Band TWT

A photograph of the fully packaged Model 999HA TWT is shown in figure 1. Three such TWTs were manufactured and characterized, and three units were able to demonstrate 180 W. The TWT S/N 202 was tested up to 250 W and set up at 200 W for additional flight qualification testing. The measured overall efficiency and saturated gain of this TWT exceeded 60 percent and 55 dB, respectively. The measured characteristics are presented in figure 2.

To transmit data from Jupiter at very high rates on the order of Mb/s, the spacecraft transmitter power has to be on the order of 1 kW. To achieve this kind of power level, the outputs from four of the above TWTs would be combined. Combining efficiency as high as 90 percent has been demonstrated at Ka-Band frequencies for a two-way combiner.

Both the K-Band and Ka-Band TWTs have four-stage depressed collector circuits for high efficiency. The collector circuits require high voltages, which are provided by a separate electronic power conditioner (EPC), which is attached by an umbilical power cord to the TWT.

Figure 1.—The Model 999HA Ka-Band space TWT in a conduction cooled package.
Electronic Power Conditioners (EPC)

The model 2300HE 7-kV electronic power conditioner (EPC) is mated with the 40-W K-Band TWT and the model 1693HC 14-kV EPC is mated with the 180-W Ka-Band TWT to form two new TWT amplifiers. These EPCs are also manufactured by L-3 Communications ETI. These EPCs are highly reliable and efficient (90 percent). They can operate from either regulated or unregulated spacecraft bus voltages. The mass and dimensions of the TWT and the EPC are summarized in Table IV.

Conclusions and Discussions

The performance parameters of a K-Band TWT for NASA’s near-Earth and a Ka-Band TWT for deep space communications are presented. These results are state-of-the-art and provide unprecedented performance. Prior to this development, the highest CW RF power produced by a space TWT at Ka-Band and flown in space was the Model 910H TWT manufactured by L-3 ETI for the Cassini-Huygens Mission with 10 W, 41 percent overall efficiency, and mass of 750 gm. The figure-of-merit (FOM) is defined as the ratio of the RF power output to the mass (W/kg), which for this TWT is about 13. In contrast, the Ka-Band Model 999HA traveling wave tube presented in this paper has a FOM of 133, which is an improvement by a factor of ten.

References

High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

1. REPORT DATE
01-06-2008

2. REPORT TYPE
Technical Memorandum

4. TITLE AND SUBTITLE
High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 342556.06.01.10.01.02

6. AUTHOR(S)
Simons, Rainee, N.; Wilson, Jeffrey, D.; Force, Dale, A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION REPORT NUMBER
E-16507

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORING ACRONYM(S)
NASA

11. SPONSORING/MONITORING REPORT NUMBER
NASA/TM-2008-215220

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category: 17
Available electronically at http://gltrs.grc.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA’s space-to-Earth communications are presented in this paper. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT has improved by a factor of ten over the previous generation Ka-Band devices.

15. SUBJECT TERMS
Telecommunications; Transmitters; Deep space network; Space communication; Satellite communications; Microwave transmission; Microwave amplifiers; Microwave tubes; Power amplifiers; Power conditioning; Power efficiency; Traveling wave tubes

16. SECURITY CLASSIFICATION OF:

a. REPORT	U
b. ABSTRACT	U
c. THIS PAGE	U

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
9

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

19b. TELEPHONE NUMBER (include area code)
301-621-0390