Electron Beam Freeform Fabrication: A Fabrication Process that Revolutionizes Aircraft Structural Designs and Spacecraft Supportability

Karen M. B. Taminger
NASA Langley Research Center

ARMD Technical Seminar on May 22, 2008
LaRC EBF3 Team

Technology Lead
- Karen Taminger

Researchers
- Rob Hafley
- Marcia Domack
- Eric Hoffman
- Keith Bird
- Sankara Sankaran
- Cindi Lach

Graduate Student
- Erik Nelson

Technicians
- Richard Martin
- Jimmy Geiger

Systems Analysts
- David Mercer
- Bill Seufzer

Graphics/Marketing
- Susanne Waltz

Partnerships
- Susan Cooper

http://www.nasa.gov
Outline

- Technology inception
- Characterization
- Technical challenges
- Current applications
- Influence on future designs
- Supportability in space
Outline

- Technology inception
 - Motivation
 - EBF^3 process description
 - Benefits
- Characterization
- Technical challenges
- Current applications
- Influence on future designs
- Supportability in space

http://www.nasa.gov
Structural Metals in Aircraft

- Aluminum, Al-Li
- Titanium
- Steel
- Titanium
- Inconel

http://www.nasa.gov
Motivation

- New metals technology
 - Efficient, lightweight structures
 - Cost-effective
 - Enable new alloys

- Disruptive technology

http://www.nasa.gov
Metal Deposition Processes

<table>
<thead>
<tr>
<th>Laser</th>
<th>E-Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10%</td>
<td>95%</td>
</tr>
<tr>
<td>Continuous gated pulsed</td>
<td>Continuous, rastered</td>
</tr>
<tr>
<td>Mirrors or fiber optics</td>
<td>Magnetically steered</td>
</tr>
<tr>
<td>Inert gas</td>
<td>Vacuum</td>
</tr>
<tr>
<td>Powder, 5-85%</td>
<td>Wire, ~100%</td>
</tr>
<tr>
<td>0.5-9 lb/hr</td>
<td>> 30 lb/hr</td>
</tr>
</tbody>
</table>

Energy efficiency
EBF³ Core Technology

- Rapid metal fabrication process
 - Layer-additive process
 - No molds or tools
 - Properties equivalent to wrought
 - Demonstrated on Al, Ti, Ni, Fe-based alloys
EBF³ Process

- Slice CAD drawing
- E-beam creates melt pool
- Add wire to pool
- Translate layer-by-layer
LaRC EBF3 System #1

- 42 kW gun
- 60 kV max
- 6-axis positioning

- 78” x 108” x 100” vacuum chamber
- 24” x 48” x 60” build envelope

http://www.nasa.gov
LaRC EBF³ System #2

- 3 kW gun
- 30 kV max
- 4-axis positioning

- 36” x 36” x 36” chamber
- 12” x 12” x 8” build envelope

http://www.nasa.gov
EBF³ Demonstration
Benefits of EBF³

- Near-net shape
 - Minimize scrap
 - Reduces part count

- Efficient designs
 - Lightweight
 - Enhanced performance

- Complex unitized components
 - Integral structures
 - Functionally graded materials

- “Green” manufacturing
 - Minimal waste products
 - Energy and feedstock efficient

http://www.nasa.gov
Ti Processing Steps

Conventional
1. TiCl₄
2. Sponge
3. Refine
4. Ingot
5. Forge
6. Billet Slab
7. Forge
8. Pre-form
9. Form
10. Mill Product
11. Machine
12. Final Product

Direct Fabrication
1. TiCl₄
2. Powder
3. Wire
4. EBF³
5. Machine
6. Final Product

http://www.nasa.gov
EBF3 Saves Resources

Conventional Machining:

- 3000 lbs.
- 2850 lbs.
= 150 lbs.

Additive Manufacturing via EBF3:

- 100 lbs.
- 100 lbs.
- 50 lbs.
= 150 lbs.

http://www.nasa.gov
Outline

- Technology inception
- Characterization
 - Microstructure
 - Mechanical properties
 - Structural integrity
- Technical challenges
- Current applications
- Influence on future designs
- Supportability in space

http://www.nasa.gov
2219 Al Microstructure

Machined from plate

Built by EBF³

0.01 in

0.01 in

http://www.nasa.gov
2219 Al EBF\(^3\) Microstructure

As-deposited

Rapid cool cast:
- Cu segregation
- Dendrites

0.004 in

T6 Condition

Transformed:
- Grain boundaries retained
2219 Al Tensile Data

- EBF³ tensile properties comparable to handbook data
Functionally Graded Al

100% Pure Al

50% Pure Al + 50% 2219 Al

100% 2219 Al

0.2 in

0.02 in

http://www.nasa.gov
Graded Deposit Hardness

2219 → 1100 Al

2219 → 2195 Al

Graded Deposit Hardness

http://www.nasa.gov
Ti-6Al-4V Microstructure
Ti-6Al-4V Tensile Data

- EBF³ Ti-6-4 equivalent to annealed wrought product

http://www.nasa.gov
Unitized Structural Tests

Uniaxial compression buckling tests

Machined
Riveted
EBF3
• EBF³ panels 5% lower than machined
• Reduction due to distortion
Outline

- Technology inception
- Characterization
- Technical challenges
 - Preferential vaporization
 - Process control
 - Residual stress
- Current applications
- Influence on future designs
- Supportability in space
Loss of Al in Ti-6Al-4V

- Al loss in vacuum
- Function of temperature and pressure
- Process repeatability
- Issue with other alloys too
Need for Process Control

- Melt pool changes with temperature
- Monitor for process control
Closed loop process control

Collaboration with L-M and UTSl
Thermal Residual Stresses

- Localized heat induces distortion and residual stress
Baseplate Distortion

Clamp Distance from Deposit

Vertical Displacement (inch)

http://www.nasa.gov
NASA-Industry Alliance

- Joint-funded alliance
 - Boeing
 - Lockheed-Martin
 - Spirit AeroSystems
 - NASA
 - AFRL

- Develop process standards
- Catalyze growth of supply web
- NASA lead
 - Public benefit without private preference

http://www.nasa.gov
Outline

- Technology inception
- Characterization
- Technical challenges
- Current applications
 - Replace existing parts
 - Potential industries
- Influence on future designs
- Supportability in space

http://www.nasa.gov
Add Details onto Forgings

- Add features onto simplified preform
- Reduces billet sizes and buy-to-fly ratio
Cryotank Concept

- Form cylinder
- EBF3 stiffeners
- Tailored stiffener arrays

http://www.nasa.gov
Complex Shapes

- Build entire part
- Unitized structures
- Allows internal cavities
Potential Industries

- Aerospace
- Tool & dies
- Automotive
- Medical implants
- Sporting goods
- Repairs in remote locations
Outline

- Technology inception
- Characterization
- Technical challenges
- Current applications
- Influence on future designs
 - New unitized structural designs
 - Functionally-graded structures
 - Integrated systems
- Supportability in space

http://www.nasa.gov
Curved stiffeners can be optimized for:

- Performance
- Low weight
- Low noise
- Damage tolerance
Aeroelastic Tailoring

Monocoque wing Coupled bending-torsion wing
Design for Acoustics

- Optimize stiffeners to tailor natural resonance frequencies
Functional Gradients

Locally control:
- Chemistry
- Microstructure
- Properties

Lengthwise gradient

Build height gradient

http://www.nasa.gov
Integrated Systems

- Sensors for health monitoring
- Selective reinforcement

Outline

- Technology inception
- Characterization
- Technical challenges
- Current applications
- Influence on future designs
- **Supportability in space**
 - In-space repair
 - EBF3 in 0-g
 - Space applications

http://www.nasa.gov
Need for Supportability

- Long duration missions
- Support autonomy
- Minimize resupply from Earth
- Fab or repair parts
- Enhances mission success
System Evolution

Ground-based: 100,000 lbs. ➔ Portable: 1,800 lbs. ➔ Space-based: (concept) <100 lbs.
Height vs. Cooling Path

- Cooling path influences temperature

First layer

After multiple layers
In 0-g, surface tension dominates.

- Function of temperature
Microgravity Testing

- NASA JSC’s C-9
 - 15-20 sec. at 10^{-2} g
 - 1.8 g pullout
 - 40 per flight

http://www.nasa.gov
Successful 0-g Deposits

- Wetting forces attract molten pool
Successful 0-g Deposits

- 0-g deposit comparable to 1-g
EBF³ in 0-g

- Surface tension dominates in 0-g
Learning in 0-g

- Height control required in 0-g

http://www.nasa.gov
Lunar Surface Repairs

- Concept to support long duration human exploration missions

Automated

Hand-held

http://www.nasa.gov
On-Orbit Assembly

- Concept for fabrication of large space structures

http://www.nasa.gov
Remote Terrestrial Repairs

Similar self-supportability needs on Earth:

- Navy ships
- Army supply in-theater
- Remote science bases

http://www.nasa.gov
Summary

- Led by LaRC since inception
- Disruptive technology
- Cross-cutting:
 - Aeronautics
 - Space
 - Other industry sectors
- Enables new structural designs
- Demonstrated in 0-g for use in-space

http://www.nasa.gov
EBF³ Timeline