Initial Results from the Variable Intensity Sonic Boom Database

AIAA-2008-3034

Edward A. Haering, Jr.
Larry J. Cliatt, II
Thomas J. Bunce
Thomas Gabrielson
Victor W. Sparrow
Lance L. Locey

May 7, 2008
House VIBES (Variable Intensity Boom Effect on Structures)

- 43 sonic booms generated (a few were evanescent waves)
 - Overpressures of 0.08 to 2.20 lbf/ft^2
 - Risetimes of about 0.7 to 50 ms
- Objectives
 - Structural response of a house of modern construction
 - Sonic boom propagation code validation
- Approach
 - Measure shockwave directionality
 - Determine effect of height above ground on acoustic level
 - Generate atmospheric turbulence filter functions
Low Boom Dive Flight Maneuver

- Reach Test Point Mach Number
- Pull to dive angle
- Roll Upright
- Roll Inverted
- 10° heading change
- 10° heading change

- Contrail stops when engines to idle
- Boom hits 1-1/2 to 2 minutes later
- Microphones recording:
 - From 30 seconds after contrail stops
 - To 60 seconds after boom
- Recordings used for boom simulators

Recover above 30K ft

Altitude (kft)
Low Boom Dive Footprint

- PCBBoom4 calculated footprint on GoogleEarthPro map
 - Preflight GPSsonde weather balloon
 - Aircraft trajectory data
- High overpressure area
- Low Boom area
10m Tower

- 14 Brüel & Kjaer Model 4193 microphones
- Heights of 0, 1.2, 2, 3, 4, 5, 6, 7, 8, and 10m
- Lateral ground microphones at 5 and 10m south and east
- All data digitally sampled simultaneously at 24,000 sps or higher
- 24-bit resolution
- GPS based IRIG-B timecode
Boom Amplitude and Direction Sensor, BADS

- Six pressure transducers on octahedron truss, about 1.8m on a side
- Automatic recording for all but quietest booms
- Sample rate of 8,333 sps
- GPS time-tagging
Large Triple Array

- 10m tower, Far West, and BADS sensor used for azimuth
- About 130m on a side
Shockwave Angular Difference, PCBoom4 vs. Measured

- 50% of boom measurements agreed with PCBoom4 to within:
 - 2.6° for BADS, 1.5° for 10m Tower, 0.6° for Large Triple
- Larger arrays give better agreement
- Azimuth agreement better than elevation
- Elevation measurement can be depressed by ~1° due to shock reflection
Shockwave Arrival Time Difference, PCBoom4 vs. Measured

- Arrival times agree within:
 - 0.22 s 70% of the time
 - 1.1 s for all signatures
Overpressure Difference, PCBoom4 vs. Measured

- Measured N-waves were idealized to remove turbulence effects
- Agreement to within:
 - 0.1 lbf/ft² 70% of the time
 - 0.3 lbf/ft² for all signatures
Evanescent Wave (1083P1)

- Signature nearly a sinusoid
- Very low overpressures and elevation angles
- No reflection effect
- Little change in acoustic level with height above ground
Low Boom, 1 of 5 (1557P4)

- Signatures at 1.2m and 2m have merged with ground signature
- Signatures above 3m have delay halfway up shock
- Minimum ASEL and PL at 3m
- CSEL decreases with increasing height
• Signatures below 6m are more merged with ground signature
• Slight delay at higher heights
• Minimum ASEL at 6m, minimum PL at 6 to 8m
• CSEL decreases with increasing height
Low Boom, 3 of 5 (1083P3)

- Signatures below 5m are merged with ground signature
- Signatures above 5m have increasing delay
- Minimum ASEL and PL at 5m
- CSEL decreases with increasing height
Low Boom, 4 of 5 (1085P6)

- Signatures below 5m have merged with ground signature
- Signatures above 5m have increasing delay
- Minimum ASEL and PL at 5m
- CSEL decreases or is constant with increasing height
Low Boom, 5 of 5 (1557P2)

- CSEL decreases or is constant with increasing height
- Minimum ASEL and PL at 1.2m
- Higher signatures have increasing delay
- Minima in ASEL and PL occur where elevated time history of the shock is the straightest, and not merged with ground trace
Normal Boom, 1 of 3 (1087P1)

- CSEL decreases or is constant with increasing height
- ASEL and PL do not have minimum at straightest pressure rise, but the signatures strongly show the effects of turbulence
• CSEL decreases with increasing height
• ASEL is minimum at 1.2m height, and PL is minimum at 2m height
• Straightest pressure rise occurs at 1.2m
Normal Boom, 3 of 3 (1086P1)

- CSEL generally decreases with increasing height
- ASEL minimum at 3m, PL minimum at 4m
- Straightest pressure rise at 3m
Sailplane

- US Air Force Test Pilot School’s Super-Blanik L-23
- Microphones on noseboom and wingtip
- Same recording hardware as on 10m tower
- Data between 4,000 and 11,000 ft MSL (ground about 2,400 ft MSL)
Sailplane Measurements (1085P2)

- Incident and reflected shocks measured
- More turbulence effects on reflected shock
- Quality from noseboom microphone rivals ground measurement
Sailplane Raypath Ground Impact Locations

- Sailplane maneuvered to intercept shock wave that would reach ground microphone
- Several sailplane raypaths within a few hundred feet of ground sensor
- Used sailplane/ground recording pairs to generate turbulence filters
Turbulence Filter Function (1086P4, 0m at tower)

- Only used positive pressure portion from sailplane measurement
- Excellent agreement with ground measurement
- Can be used on “clean” waveforms to induce realistic atmospheric turbulence effects

![Graph showing comparison of sailplane, ground, and filter output]
Concluding Remarks

- Extensive sonic boom database with low- to normal-intensity booms gathered
- PCBoom4 used as effective tool to place desired booms at a specific location, and to guide a sailplane to intercept shockwaves
- Good agreement in arrival time and overpressure
- Shockwave elevation and azimuth angles can be determined with an array of microphones
 - Measured angles agreed well with PCBoom4
 - Larger arrays gave better agreement
 - Equal or better agreement in azimuth than elevation
- Evanescent waves showed little dependence on height
- Elevated microphones show effect of reflection
- CSEL almost always decreases or is constant as height increases
- ASEL and PL have minimums at 1.2m to 6m where elevated microphone shock signature is the straightest
- Sailplane measurement quality on par with ground measurements
- Some sailplane / ground recording shockwave raypaths within a few hundred ft
- Turbulence filter functions generated, showing excellent agreement with ground recordings