The NASA Vision
To improve life here,
To extend life to there,
To find life beyond.

The NASA Mission
To understand and protect our home planet,
To explore the universe and search for life,
To inspire the next generation of explorers
... as only NASA can.
What's New: NASA Transformation

- NASA Transformation: Merge Office of Earth Science with Office of Space Science
- Science Mission Directorate Formed
- Sun-Earth System Division
 - Research Program
 - Missions Program
 - Applied Sciences Program
 - National Applications Program Element
 - 12 National Applications
 - Crosscutting Solutions Program Element
 - Integrated Benchmarked Systems Function
 - Solutions Networks Function
 - Human Capital Development Function
 - Geoscience Standards and Interoperability Function
Earth-Sun System Research

Sun-Earth Connection

Climate Variability and Change

Earth Surface and Interior

Weather

Carbon Cycle and Ecosystems

Atmospheric Composition

Water & Energy Cycle
Turning Observations into Knowledge Products

Petabytes 10^{15}
Multi-platform, multiparameter, high spatial and temporal resolution, remote & in-situ sensing

Terabytes 10^{12}
Calibration, Transformation To Characterized Geo-physical Parameters

Gigabytes 10^{9}
Interaction Between Modeling/Forecasting and Observation Systems

Megabytes 10^{6}
Interactive Dissemination and Predictions

Advanced Sensors

Data Processing & Analysis

Information Synthesis

Access to Knowledge
Applications of National Priority

Homeland Security
Disaster Management
Energy Management
Aviation
Water Management
Public Health
Coastal Management
Carbon Management
Agricultural Efficiency
Invasive Species
Ecological Forecasting
Air Quality
Space Weather
Applications, Partners and Decision Support

<table>
<thead>
<tr>
<th>National Application</th>
<th>Partner Organizations</th>
<th>Decision Support Tools - Current Priority (supporting decision processes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Efficiency</td>
<td>USDA, NOAA</td>
<td>CADRE – Crop Assessment Data Retrieval & Evaluation (USDA)</td>
</tr>
<tr>
<td>Air Quality</td>
<td>EPA, NOAA, USDA</td>
<td>CMAQ – Community Multi-scale Air Quality Modeling System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIRNow & AQI – Air Quality Index</td>
</tr>
<tr>
<td>Aviation</td>
<td>DOT/FAA, NOAA</td>
<td>NAS_AWRP – National Air Space – Aviation Weather Research Program</td>
</tr>
<tr>
<td>Carbon Management</td>
<td>USDA, DOE, NOAA</td>
<td>CQUEST – Support to the Energy Act of 1992, Section 1605b</td>
</tr>
<tr>
<td>Coastal Management</td>
<td>NOAA, EPA, NRL</td>
<td>HAB – Harmful Algal Bloom Bulletin / Mapping System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CREWS – Coral Reef Early Warning System</td>
</tr>
<tr>
<td>Disaster Management</td>
<td>DHS/FEMA, NOAA, USGS, USFS</td>
<td>HAZUS-MH – Hazards U.S. – Multi Hazards</td>
</tr>
<tr>
<td>Ecological Forecasting</td>
<td>USAID, NOAA, NPS, COAD, USGS</td>
<td>SERVIR – Regional Visualization & Monitoring System</td>
</tr>
<tr>
<td>Energy Management</td>
<td>DOE, UNEP, NOAA, NRC</td>
<td>RETScreen – Energy Diversification Research Laboratory (CEDRL)</td>
</tr>
<tr>
<td>Homeland Security</td>
<td>DHS, USGS, NOAA, NIMA, DoD</td>
<td>IOF – Integrated Operations Facility</td>
</tr>
<tr>
<td>Invasive Species</td>
<td>USGS, USDA, NOAA</td>
<td>ISFS – Invasive Species Forecasting System</td>
</tr>
<tr>
<td>Public Health</td>
<td>NIH, CDC, DoD, EPA</td>
<td>PSS – Plague Surveillance System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPHTN – Environmental Public Health Tracking Network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMS – Malaria Monitoring & Surveillance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSVP – Rapid Syndrome Validation Project</td>
</tr>
<tr>
<td>Water Management</td>
<td>EPA, USDA, USGS, BoR</td>
<td>RiverWARE – Bureau of Reclamation Decision Support Tool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWARES – Agricultural Water Resources & Decision Support Tool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BASINS – Better Assessment Science Integrating Point & Non-point Source</td>
</tr>
</tbody>
</table>
Integrating Knowledge, Capacity and

Inputs
- NASA and Research Partners

Outputs
- Partners with Decision-Support Tools

Decision-Support Tools
- Assessments
- Decision-Support Systems
- Scenario Tools

Value and benefits to citizens and society
- Policy Decisions
- Management Decisions
- Exploration Decisions

Planetary Models
- Land
- Oceans
- Atmosphere
- Solar

Sun-Earth Observatories
- Satellite
- Airborne
- In Situ

Predictions/Forecasts
- High-Performance Computing, Communication, and Visualization

Partnership Area
<table>
<thead>
<tr>
<th>Priority</th>
<th>National Activity</th>
<th>International Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Vision for Human and Robotic Exploration</td>
<td>Understanding the Earth as the Foundation for Planetary Exploration and Search for Life</td>
<td>"Pursue opportunities for international participation to support U.S. space exploration goals"</td>
</tr>
<tr>
<td>Climate Change</td>
<td>Climate Change Science Program (CCSP, 13 Agencies)</td>
<td>Intergovernmental Panel on Climate Change (IPCC)</td>
</tr>
<tr>
<td></td>
<td>Climate Change Technology Program (CCTP, 12 Agencies)</td>
<td></td>
</tr>
<tr>
<td>Weather</td>
<td>U.S. Weather Research Program (USWRP, 7 Agencies)</td>
<td>World Meteorological Organization (WMO)</td>
</tr>
<tr>
<td>Natural Hazards</td>
<td>NSTC CENR Subcommittee on Natural Disaster Reduction (SNDR, 14 Agencies)</td>
<td>International Strategy for Disaster Reduction</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Roundtable on Science and Technology for Sustainability (National Academies)</td>
<td>World Summit on Sustainable Development (WSSD)</td>
</tr>
<tr>
<td>President's Management Agenda: E-Government</td>
<td>Geospatial One-Stop (GOS, 12 Agencies) and the Federal Geographic Data Committee (FGDC, 19 Agencies)</td>
<td>World Summit on the Information Society</td>
</tr>
</tbody>
</table>
Simultaneous high-time & space resolved pollutants (O3, CO, NOx, SO2, HCHO, aerosols); local resolution in boundary layer. Nighttime chemistry & transport. Feedbacks between aerosols, O3, H20, climate. Chem-radiation coupling in GCMs. Quantify LRT in regional pollution.

AURA - SO2, NOx, NH3 and aerosol products & IMPROVE network. INTEX-West. NH3 emissions factors; air dispersion models (NOx, CO, PM); MM5 & assimilation of surface moisture, heat capacity, insulation. Nested model developments. RAQMS & DAS for daily 3-D ozone.

AURA - AURA - AURA. Trop. residuals (O3, NO2, SO2, HCHO); NRT NOx & VOC emission inventories (top-down/bottom-up) for CMAQ & ozone precursors; O3 assimilations in CMAQ; 3-D global trop. chemistry in GEOS-CHEM; aerosol pattern rendering.

INTEX continental inflow-outflow; ICESat - vertical distribution of dust & clouds; ASTER urban heat flux; Global-to-regional RAQMS - prototype BCs in CMAQ; DAS nested GCM to 0.5° grid. Pollution trajectories & BL deposition of LRT of aerosols. PM network.

MODIS AOD, MOPITT CO, TOMS ozone residuals - correlate to EPA ground measures. Large scale transport of aerosols. GOCART assimilations for B.C.s in models. NRT MODIS-TEOM data fusion.

- Robust emissions control planning
- Routine warnings of pollution events
- Multiple-day air quality forecasts

Accurate pollution forecasts updated regularly within day. Reduced hospital visits from extreme events. Improved NAAQS planning - fewer non-attainment areas. Insight on mobile emission fluctuations. Advanced, targeted mitigation of impacts from severe episodes.

Clear Skies NOx/SO2 Trading Program. Longer lead-time on source & destination of ozone and aerosols. Alerts to re-route airplanes. Alerts to hospitals to expect specific symptoms. Ozone attainment areas. Potential EPA SIP credits for heat island reduction approaches & corresponding state/city policies.

Forecasts of beginning & length of annual “pollution season.” Improvements from achievable SIPs - reduced haze, improved visibility in parks, cleaner water, healthier forest ecosystems, reduced lost work/school days. Support US treaty on long-range transport of organic pollutants.

Policy-Forecasts-Health-Economics. Aerosol transport loops in EPA Air Quality Index (AQI) for regional forecasts. Improved siting for surface monitoring network locations. Support EPA-developed tools for state/locals on regional haze. Evaluate exceptional events for effects on NAAQS violations. EPA PM transport rule making.

Improved capabilities to air quality managers to assess, plan & implement sound-science, emissions control strategies, policy, & air quality forecasts.
Air Quality
Integrated System Solution

EARTH SYSTEM MODELS
- Aerosol Transport: GOCART
- Global-Regional Assimilations: RAQMS
- Atmospheric Chemistry: GEOS-CHEM
- Emissions: SMOKE
- Meteorology: MM5, ETA
- Air Trajectories: NOAA-Hysplit4

EARTH OBSERVATIONS
- Aerosols: Terra, Aqua, TOMS, Aura, Aeronet, AIRNow, INTEX, CALIPSO, Glory-APS
- Ozone & Precursors: TOMS, Aura, SAGE III, AIRNow, INTEX
- Trace Gases: Terra, Aqua, OCO
- Clouds: Terra, Aqua, CloudSAT, CALIPSO
- Land Use/Cover: Terra, Aqua, Landsat
- Atmospheric Parameters: GOES, POES, GIFTS, NPP, NPOES

DECISION SUPPORT TOOLS
- CMAQ (Community Multiscale Air Quality modeling system)
- Assess emissions control strategies
- Develop achievable SIPs (State Implementation Plan)
- Assess compliance
- Waivers to air standards
- Quantify voluntary stationary emission reductions

AIRNow & AQI (Air Quality Index)
- Forecast transport of dust/pollutants
- Actions to reduce source emissions
- \(\text{PM}_{2.5} \) forecasts

VALUE & BENEFITS
- Reduce lung-related diseases & premature death
- Reduce hospital admissions & use of medicines
- Reduce lost workdays and school days
- Improve visibility and reduce haze for tourism
- Improve resiliency of crops; increase yields
- Increase confidence in government
- Improve crop estimates
- Sensitive populations can change activities

International Treaties
Air Quality

TOMS-EP

Aqua

Data Processing & Mission Control

Tasking

Processing

Exploitation

Ozone

EOSDIS Science Data Systems: DAACs

Public Access

Ozone and PM2.5 Forecasts

Current Air Quality Conditions

Ozone Maps

PM2.5 Maps
• NASA Research is Undertaken Utilizing Best Possible Data Sources AND Not Competing with Private Industry
• JACIE is integral to the Applied Sciences goal of incorporating commercial data sources into scientific research
 – Used by Earth System Science Research as an high resolution augmentation to NASA remote sensing assets
 – Used by Space Science to help characterize “Mars Analog” Features on Earth for Future Exploration
• Applied Sciences Annual Performance Goals Include:
 – Crosscutting Solutions: Work within the Joint Agency Committee on Imagery Evaluation and the Commercial Remote Sensing Policy Working Group through partnerships with NIMA, USGS, NOAA, and USDA to verify/validate at least two commercial remote sensing sources/products for Earth science research, specifically with respect to land use/land cover observations for carbon cycle and water cycle research.
The National Aeronautics and Space Administration (NASA) is announcing opportunities to participate in the Applied Sciences Program of the Science Mission Directorate. The Program requests innovative solutions to evaluate, verify and validate, and benchmark solutions that integrate NASA Earth and Space science results into decision-support tools of partnering organizations. Proposals are invited in two main areas: 1) Integrated Systems Solutions to integrate NASA Earth and Space science results into applications of national priority, demonstrate prototypes, and benchmark performance, and 2) Solutions Networks to improve the collective ability of Earth science organizations to interact and harness the results of NASA Earth and Space science research. Participation in the CAN is open to all categories of domestic and foreign organizations, including educational institutions, industry, non-profit institutions, NASA research centers, and other government agencies and laboratories. This solicitation will be available electronically on the release date via the Internet at the Science Mission Directorate ? Destination Earth Home Page: http://www.earth.nasa.gov/ under ?Research Opportunity.? Paper copies of the announcement will be available to those who do not have Internet access by calling (202) 358-3552 and leaving a voice-mail message. The following dates apply to this announcement: CAN Release Date: September 17, 2004 Step 1 (Pre-Proposals) Due: October 22, 2004 Step 2 (Final) Proposals Due: December 17, 2004 POC: Lawrence Friedl Program Manager, Science Applications Applied Sciences Program NASA Headquarters Washington, DC 20546 Phone: (202) 358-1599 Fax: (202) 358-3098 E-mail: Lawrence.A.Friedl@nasa.gov "This is a broad agency announcement as specified in FAR 6.102 (d) (2). Notwithstanding the posting of this opportunity at FedBizOpps.gov, Grants.gov, or at both sites, NASA reserves the right to determine the appropriate award instrument for each proposal selected pursuant to this announcement.
Questions or Comments, Contact:

Martin Frederick/Deputy Director, Applied Sciences Program

- Email: Martin.Frederick-1@nasa.gov
- Program Website: www.earth.nasa.gov/esseapps/
- Phone: 202-358-0913
Disaster Management

HAZUS-MH - Risk Assessment and Loss Estimation

State 2 - Improved
- Hurricane prediction
- Flood prediction
- Severe Storm prediction
- Wildfire prevention and prediction
- Earthquake prediction

Impacts:
- Reduce losses across all disasters

Outcomes:
- Improvement of FEMA capabilities across all hazards and phases

Primary Partners:
- Transfer of advanced event-modeling capabilities using next-generation hardware, software, and communications

Land use/Land cover, changes in earth's surface topography and improved geodetic imaging, ocean measurements to track hurricanes

Outcomes:
- Improvement of FEMA capabilities to weather and natural hazards

Impacts:
- Reduce losses across all weather-driven Disasters and earth movement

Outcomes:
- Improved measurements of soil moisture, global precipitation, water vapor, and wind

Impacts:
- Reduce losses related to hurricane, fire, and high wind disasters.

Outcomes:
- Understanding of Earth's gravity field and terrestrial reference frame changes in geomagnetic field and understanding of sea level change and climate

Impacts:
- Reduce losses related to hurricanes and earthquakes.

Outcomes:
- Production of assimilated data sets, reanalysis of long period observations

Impacts:
- Better community planning

State 1 - Earthquake Damage assessment

- Hurricane prediction
- Flood prediction
- Severe Storm prediction
- Wildfire prevention and prediction
- Earthquake prediction

Impacts:
- Reduce losses across all disasters

Outcomes:
- Improvement of FEMA capabilities across all hazards and phases

Primary Partners:
- Transfer of advanced event-modeling capabilities using next-generation hardware, software, and communications

Land use/Land cover, changes in earth's surface topography and improved geodetic imaging, ocean measurements to track hurricanes

Outcomes:
- Improvement of FEMA capabilities to weather and natural hazards

Impacts:
- Reduce losses across all weather-driven Disasters and earth movement

Outcomes:
- Improved measurements of soil moisture, global precipitation, water vapor, and wind

Impacts:
- Reduce losses related to hurricane, fire, and high wind disasters.

Outcomes:
- Understanding of Earth's gravity field and terrestrial reference frame changes in geomagnetic field and understanding of sea level change and climate

Impacts:
- Reduce losses related to hurricanes and earthquakes.

Outcomes:
- Production of assimilated data sets, reanalysis of long period observations

Impacts:
- Better community planning
Disaster Management
Integrated System Solution

EARTH SYSTEM MODELS
- Earthquake: MMI, Quakesim
- Hurricane: HURRSIM
- Flood: SLOSH, WAVEwatch, STWAVE, HURSURGE
- Land: GPS Network, SBEACH
- Building Cost Models: ATC-13
- Building Structure Models: EPEDAT

DEcision Support Tools
- HAZUS-MH (Hazards U.S. - Multi Hazard)
 - Disaster Recovery/ Mitigation
 - Land use decision
 - Potential economic loss
 - Estimation of direct damage, induced damage, direct losses, and indirect losses
 - Accurate risk prediction to communities
 - Loss estimates of buildings, essential facilities, transportation & utility lifelines, and population
 - Social impacts

EARTH OBSERVATIONS
- Land: Landsat, SRTM, GPS, SCIGN, Terra, Aqua
- Ocean: QuickSCAT, IceSAT, GOES, POES, SSMI, JASON, TOPEX/POSEIDON
- Atmosphere: TRMM, GOES, POES, GPM, NPP, NPOESS

*Future Mission

Value & Benefits
- Identify/ Prioritize high-risk communities
- Reduction in lives lost
- Reduction in damage cost
- Anticipate the scope of disaster-related damage
- Improve disaster response
- Community Planning
Invasive Species
Agriculture Efficiency

NASA

Tasking

Data Processing & Mission Control

Processing

Exploitation

EOSDIS Science Data Systems: DAACs

CADRE

USDA
An Environmental Monitoring and Decision Support System for Central America

Central American Commission for Environment and Development
- Emergency Responders
- Environmental Managers
- Political Leaders
- Researchers, Educators

Environmental Monitoring & Decision Support Products
- Red Tide - El Salvador fishing industry saved $M
- Fires
- Land Cover/Use/Change

Electronic Transfer

SERVIR Node @ NSSTC
(NASA/MSFC and U. Alabama in Huntsville)
- Product Generation System
 - Ingest Data
 - Subset Data Over C. Amer.
 - Mine Data for Events
 - Generate Products
- Web Server
 - servir.nsstc.nasa.gov
 - Distribute Products
 - Archive Products
- Visualization System

Source Data Archive
Product Archive

Data & Algorithms

FIARI-SERVIR Partners

Goals
- Rapid Response
- Corridor Preservation
- Species Preservation
- Sustained Development
- Better Living Conditions
- Policy Changes

SERVIR Node in Panama
University of Arkansas (World Bank Funding)
- Geographic Info Systems
- Decision Support Systems
- Environmental Data from Central American countries
• NASA performs human and robotic exploration in space
 – About 40% of NASA’s budget is dedicated to the study of the Earth and the Universe using the unique vantage point of space
 – Our fields of research include Climate Variability and Change, Astronomy, Weather, Heliophysics, Atmospheric Composition, Astrobiology, and more

• One of the purposes of our scientific research is to increase knowledge of the Earth-Sun System to enable improved predictions of climate, weather, and natural hazards

• The NASA Applied Sciences Program goal is to extend the results of our scientific research and knowledge beyond the science community to contribute to our partners’ applications of national priority.

• The Program primarily optimizes benefits for citizens by contributing to partnering on applications that are used by state, local, and tribal governments.