NASA Radiometric Characterization

Kara Holekamp

Science Systems and Applications, Inc.
John C. Stennis Space Center, MS 39529
phone: 228-688-3840
e-mail: kara.holekamp@ssc.nasa.gov

High Spatial Resolution Commercial Imagery Workshop
Reston, Virginia, USA
November 9, 2004
Contributors

NASA, Stennis Space Center
- Troy Frisbie
- Tom Stanley
- Vicki Zanoni

Science Systems and Applications, Inc., Stennis Space Center
- Slawomir Blonski
- Mary Pagnutti
- Ruby Stubbs
- Brennan Grant
- Kenton Ross
- Steve Tate
- Kelly Knowlton
- Robert E. Ryan

Computer Sciences Corporation, Stennis Space Center
- Debbie Fendley
- Jeffrey Russell
- Ronald Vaughan

Lockheed Martin
- David Carver
- Dean Noel
- Charles Smith
- Jerry Gasser
- Richard Sellers
- Wes Tabor
- Randy Greer

South Dakota State University
- David Aaron
- Dennis Helder
- Students from the SDSU Image Processing Laboratory

University of Arizona
- Chris Cattrall
- Kurt Thome
- Students from the UofA Remote Sensing Group

This work was directed by the NASA Applied Sciences Directorate (formerly the Earth Science Applications Directorate) at the John C. Stennis Space Center, Mississippi. Participation in this work by Lockheed Martin Space Operations – Stennis Programs was supported under contract number NAS 13-650. Participation in this work by Computer Sciences Corporation and by Science Systems and Applications, Inc., was supported under NASA Task Order NNS04AB54T.

November 9, 2004
Outline

- Characterization Overview
 - Vicarious Calibration
 - MODTRAN
- Ground Truth Data Collection
 - Stennis Space Center, MS
 - Brookings, SD
- Data Processing Methods
 - Data Processing for MODTRAN
- QuickBird Characterization
 - Data Collections
 - Results
- OrbView-3 Characterization
 - Data Collections
 - Results
Characterization Overview

- **Objective**
 - Perform radiometric vicarious calibrations of imagery and compare with vendor-provided calibration coefficients

- **Approach**
 - Use multiple, well-characterized sites
 - Sites widely used by the NASA science community for radiometric characterization of airborne and spaceborne sensors
 - Perform independent characterizations with independent teams. Each team has slightly different measurement techniques and data processing methods.
 - NASA Stennis Space Center
 - University of Arizona Remote Sensing Group
 - South Dakota State University (provided ground-truth data)
Data Providers

- DigitalGlobe, Inc.
 - Imagery acquired by the QuickBird sensor
 - Data purchased by NASA through the Scientific Data Purchase project
 - Independent characterization is a continuation of the previous year

- OSC/ORBIMAGE, Inc.
 - Imagery acquired by the OrbView-3 sensor
 - Data received through a Space Act Agreement among NASA, Orbital Sciences Corporation, and ORBIMAGE, Inc.
 - Independent characterization performed on pre-initial on-orbit checkout (pre-IOC) data

November 9, 2004
Vicarious Calibration Method

- Reflectance-based approach
 - Ground truth collection
 - Characterize target reflectance at time of satellite overpass
 - Measurements taken of target area and a 99% reflectance Spectralon® panel (Jackson BRDF model)
 - Laboratory measurements of target BRDF
 - Characterize atmosphere at time of satellite overpass
 - Radiosonde data used to determine Rayleigh scattering and water vapor extinction
 - Least squares fit of sun photometer data to determine model atmosphere parameters
 - Use MODTRAN radiative transport code to predict at-sensor radiance
 - Compare predicted at-sensor radiance to actual radiance acquired by sensor
At-Sensor Radiance Prediction Method

Stennis Space Center

COLLECT GROUND TRUTH DATA

RADIOSONDE, TOMS, SENSOR-VIEWING & SOLAR GEOMETRY (P, T, H₂O, O₃, θᵥ, θₛ)

ATMOSPHERIC GASEOUS PROFILE

SUN PHOTOMETER (AEROSOL PROPERTIES)

AEROSOL ASYMMETRY AND VISIBILITY PROPERTIES

SPECTORADIOMETER, REFERENCE AND TARGET BRDF, BACKGROUND ALBEDO, SENSOR SPECTRAL RESPONSE

TARGET AND BACKGROUND REFLECTANCE

MODTRAN INPUT

MODTRAN VERIFICATION
GROUND RADIANCE ESTIMATE FOR REFERENCE PANEL COMPARED TO CALIBRATED ASD RADIANCE

CHECK AND REVIEW INPUT PARAMETERS

RADIANCE ESTIMATE AGREES WITH GROUND MEASUREMENTS?

NO

YES

MODTRAN SENSOR SPECTRAL RESPONSE

MODTRAN AT-SENSOR RADIANCE ESTIMATION

November 9, 2004
Comparison to Spectralon Panel

- Verification of parameters used to generate MODTRAN at-sensor radiance estimate
 - Measuring the radiance of Spectralon panel with a well-calibrated spectroradiometer is a way of measuring atmospheric global and diffuse irradiance
 - Use ground truth data and geometry modeling an ASD FieldSpec FR spectroradiometer measuring a 99% reflectance Spectralon panel as input to MODTRAN to predict radiance
 - Compare MODTRAN-calculated radiance to actual radiance measured from Spectralon panel to verify the atmospheric model

Spectralon Panel Radiance 10/20/03

- [Graph showing Spectralon Panel Radiance 10/20/03]
Ground Truth Data Collections

- Ground truth data collection occurred at five sites over the 2003-2004 season
 - Data collections by University of Arizona (described in previous presentation)
 - White Sands Missile Range, NM
 - Ivanpah Playa, CA
 - Railroad Valley, NV
 - Data collections by NASA
 - Stennis Space Center, MS (SSC)
 - Data collections by South Dakota State University
 - Brookings, SD

November 9, 2004
Site: Scattered buildings within a heavily wooded area; manmade reservoirs and canals

Elevation: 5.5–10 m

Centerpoint: 30.356° N, 89.62° W

In-situ Instrumentation: Analytical Spectral Devices FieldSpec FR spectroradiometers, Yankee multifilter rotating shadowband radiometers (MFRSRs), automated solar radiometers (ASRs), Sippican radiosonde, full sky imager, 20-m x 20-m radiometric tarps, 99% reflectance Spectralon panels
NASA SSC Target Field

QuickBird image acquired
January 10, 2004
True-Color Pan-Sharpened

November 9, 2004
Includes material © DigitalGlobe™
Radiometric Tarps

- Four 20-m x 20-m tarps with reflectance values of approximately 3.5%, 22%, 34%, and 52% within spectral measurement range
- Peak-to-peak variation in reflectance less than 10% within any 100-nm spectral band within spectral measurement range
- Less than 10% variation in reflectance values when measuring tarps from 10° to 60° off axis within spectral measurement range
- Spectral measurement range of 400 to 1050 nm
- Each side is straight to within ±6.0 cm over the 20-m length
- Each tarp has 60 square witness samples measuring 30.5 cm x 30.5 cm

November 9, 2004
Measurements of several target areas were taken:
- ~35-m x 15-m area of a grassy field
- ~30-m x 20-m area of a concrete parking lot
- Up to four 20-m x 20-m radiometric tarps (3.5%, 22%, 34%, and 52% reflectance)

Measurements were taken along transect lines (grass and concrete) or tarp perimeter:
- All measurements were taken while walking to increase spatial averaging
- Periodic Spectralon panel measurements were taken
- ASD FieldSpec FR spectroradiometer optimization and dark current measurements were taken before and during target measurements.

All data were acquired within 30 minutes of satellite overpass.
Target Reflectance for Stennis Space Center, 10/20/03

Reflectance vs Wavelength (μm)

- 52% tarp
- 34% tarp
- 22% tarp
- 3.5% tarp
- concrete
- grass

November 9, 2004
Atmospheric Measurements

- Solar irradiance data collected from early morning through post-sensor acquisition
 - One MFRSR and one ASR acquired data from the measurement field
 - One MFRSR acquired data from a building rooftop approximately 2 miles away
- Radiosonde launched near satellite overpass time
 - Data acquired up to 3 km on 9/28/03
 - Data acquired over 20 km on 10/20/03 and on 1/10/04
Transmission Values for Stennis Space Center, 10/20/03

- **Transmittance** vs **Wavelength (nm)**

 - **ASR** (squares)
 - **MFR** (diamonds)
Full Sky Imager

NASA SSC
January 10, 2004
Brookings, South Dakota

- **Site:** Grass field beside 3M plant on the outskirts of the city of Brookings
- **Elevation:** approx. 500 m
- **Centerpoint:** 44.3° N, 96.8° W
- **In-Situ Instrumentation:** ASD FieldSpec FR spectroradiometers, Yankee MFRSRs, automated solar radiometer, 20-m x 20-m radiometric tarps, 99% reflectance Spectralon panels

QuickBird Imagery
August 23, 2003

Includes material © DigitalGlobe™
ASD FieldSpec FR Spectroradiometer Measurements

- ASD FieldSpec FR spectroradiometer measurements of several targets were taken
 - ~150-m x 150-m area of a grassy field
 - Two 20-m x 20-m radiometric tarps (3.5% and 52% reflectance) for the 9/15/03 collect
- Measurements were taken along transect lines (grass) or tarp perimeter
 - All measurements were taken while walking to increase spatial averaging
 - Periodic Spectralon panel measurements were taken
 - Before and during target measurements, the instrument was optimized and dark current measurements were made
- All data were acquired within 30 minutes of satellite overpass
Spectroradiometer Data

Target Reflectance for Brookings, 09/15/03

- 52% tarp
- 3.5% tarp
- grass

Wavelength (μm)

Reflectance
Atmospheric Measurements

- Solar irradiance data collected from early morning through post-sensor acquisition
 - Two MFRSRs acquired data in the measurement field
 - One ASR was used on 8/23/03; two ASRs were used on 9/15/03 and on 10/20/03 to acquire data in the measurement field
Transmission Values for Brookings, 09/15/03

- Wavelength (nm)
- Transmittance

Brookings, SD
September 15, 2003

November 9, 2004
Additional Data Processing

- Data processing to calculate additional MODTRAN input parameters
 - Incorporation of laboratory-measured target BRDF
 - Estimation of visibility
 - Estimation of aerosol asymmetry

November 9, 2004
BRDF Correction

- BRDF of radiometric tarp witness samples measured in laboratory
 - Witness samples removed from tarps after ground truth data collection
 - Sun and satellite geometry recreated in the laboratory to determine BRDF correction factors for each radiometric tarp
- Calculated correction factors incorporated into reflectance data files

Target Reflectance for Stennis Space Center, 9/28/03
Visibility Estimation

ASR and MODTRAN Predicted Transmissions for Brookings, 09/15/03

Transmittance

Wavelength (nm)

ASR

Band-Averaged MODTRAN

MODTRAN
The asymmetry factor for the aerosol scattering phase function is estimated by comparing MODTRAN output diffuse-to-global ratio values to MFRSR measured diffuse-to-global ratio values.