A Temperature Sensor Using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

Richard L. Patterson
Glenn Research Center, Cleveland, Ohio

Ahmad Hammoud
ASRC Aerospace, Inc., Glenn Research Center, Cleveland, Ohio

Malik Elbuluk
University of Akron, Akron, Ohio

Dennis E. Culley
Glenn Research Center, Cleveland, Ohio
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 301–621–0134

- Telephone the NASA STI Help Desk at 301–621–0390

- Write to:
 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320
A Temperature Sensor Using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

Richard L. Patterson
Glenn Research Center, Cleveland, Ohio

Ahmad Hammoud
ASRC Aerospace, Inc., Glenn Research Center, Cleveland, Ohio

Malik Elbuluk
University of Akron, Akron, Ohio

Dennis E. Culley
Glenn Research Center, Cleveland, Ohio
Acknowledgments

This work was performed under the NASA Glenn Research Center, GESS–2 contract no. NNC06BA07B. Support was provided by the NASA GRC Fundamental Aeronautics/Subsonic Fixed Wing Program—Distributed Engine Control Task and by the NASA Electronic Parts and Packaging (NEPP) Program.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

Available electronically at http://gltrs.grc.nasa.gov
A Temperature Sensor Using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

Richard L. Patterson
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Ahmad Hammoud
ASRC Aerospace, Inc.
Glenn Research Center
Cleveland, Ohio 44135

Malik Elbuluk
University of Akron
Akron, Ohio 44325

Dennis E. Culley
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-On-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 °C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics / Subsonic Fixed Wing Program—Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued (ref. 1). This work used an SOI 555 timer as its core and is completely new work.

Temperature Sensor

A temperature-to-frequency relaxation oscillator circuit was constructed using a high temperature polyimide circuit board, Teflon wire interconnects, and high temperature lead-free solder. The circuit employed a high temperature Silicon-On-Insulator (SOI) precision timer and other specially selected, temperature-stable commercial-off-the-shelf (COTS) parts. The CHT-555-DIL14 ceramic-packaged chip was recently introduced by CISSOID Company and is specified for –30 to 225 °C operation (ref. 2). The other components of the circuit included a high temperature precision, thin film platinum RTD (Resistance Temperature Detector) as the temperature-sensing element, a solid tantalum input filter capacitor, and two NPO ceramic capacitors. A schematic of the circuit is shown in figure 1, and a photograph of the circuit board is shown in figure 2. The circuit was evaluated at selected test
temperatures between −190 and 210 °C. The effect of thermal cycling was also investigated by subjecting it to a total of ten cycles between 200 and −190 °C. A temperature rate of change of 10 °C/min and a dwell time of ten minutes at test temperature were used in these investigations. The circuit was evaluated in terms of its frequency-to-temperature conversion, period-to-temperature conversion, and variation in the output signal duty cycle and rise time with test temperature.

Results

A typical output response of the temperature-to-frequency conversion circuit, which comprised of a rectangular pulse train (yellow signal), is shown in figure 3 at 25 °C. The signal at the threshold pin (magenta), which governs the charge/discharge cycle of the timing capacitor C1, is also depicted in this figure as a triangular waveform. Those obtained at the high temperature of 210 °C and at the cryogenic temperature of −195 °C are shown in figures 4 and 5, respectively. (Scale: Yellow 2V/div, Magenta 1V/div; Horizontal 0.1ms/div).
Figure 3.—Output and threshold signal waveforms at 25 °C.

Figure 4.—Output and threshold signal waveforms at 210 °C.

Figure 5.—Output and threshold signal waveforms at –190 °C.
It can be clearly seen that the relaxation oscillator circuit performed very well throughout the temperature range between 210 and −190 °C as the frequency of the output signal fluctuated with variation in the sensed temperature. While the frequency of the output signal had a value of about 3.393 kHz at room temperature, it decreased to about 2.072 kHz at 210 °C and attained a frequency of 15.048 kHz when the temperature approached −190 °C. This frequency response, which took on a hyperbolic trend with temperature, is depicted in figure 6. Plotting the period of the output signal versus temperature reveals, as expected, a linear response as shown in figure 7. No change was experienced by either the duty cycle or the rise time of the output signal throughout the test temperature range as shown in figures 8 and 9, respectively.
The supply current of the circuit varied slightly with temperature as depicted in figure 10. While the current hovered around 0.68 mA between 20 and 210 °C, it exhibited a slight increase with decreasing temperature reaching about 2.5 mA at the extreme cryogenic temperature of –190 °C. This change in the circuit current with temperature is most likely attributed to the variation in the resistance value of the RTD element in the circuit as test temperature changed.
As was mentioned earlier, the performance of the relaxation oscillator circuit was also investigated after subjecting it to ten thermal cycles between 200 and –190 °C. Post-cycling measurements performed on the investigated parameters, i.e. frequency output, duty cycle, rise time, and supply current, revealed no major deviation from those obtained prior to cycling at any given test temperature. Therefore, this limited thermal cycling has had no impact on the operation of the oscillator circuit. In addition, the circuit demonstrated successful start-up operation while at the extreme temperatures, i.e. 210 °C and –190 °C.

It should be noted that this circuit design is tailored to operate into a fixed load impedance because the timing components are connected across the output. Variation in the load impedance would result in a change in the charge/discharge time constant of the circuit, and thereby the frequency of the output would change.

Conclusions

A temperature-to-frequency relaxation oscillator circuit was constructed using COTS (Commercial-Off-The-Shelf) parts for application under extreme temperatures. The circuit employed a recently-developed high temperature silicon-on-insulator CHT-555 timer, thin-film platinum RTD, and solid tantalum and ceramic capacitors. The circuit was designed mainly for hot jet engine environment but it was evaluated also for potential use under cryogenic conditions. Performance of the oscillator circuit was investigated in terms of its temperature-sensing response, output signal duty cycle and rise time, and supply current under a wide temperature range between –190 and 210 °C and after thermal cycling. The prototype circuit performed well throughout this temperature range in producing a pulsed output whose period was a linear function of the sensed temperature, and no major changes were observed in its characteristics, i.e. duty cycle and rise time of the output signal, as a result of change in test temperature. In addition, all of the individual parts exhibited no physical or packaging damage due to the extreme temperature exposure or cycling. It can be concluded, therefore, that all the COTS parts used in designing the circuit exhibited good performance under wide temperature swing, and these preliminary results suggest that the circuit has good potential for use in both hot and cold temperature environments. Issues such as long-term exposure to extreme temperatures, thermal cycling, and mechanical vibrations (that are
typically encountered in jet engine and spacecraft environs) need to be addressed to establish reliability of
the circuit and to better determine its suitability for use in hostile aerospace and space applications.

References

1. Patterson, Richard and Hammoud, Ahmad; “Use of COTS (Commercial-Off-The-Shelf) Parts for
Wide-Range Temperature Sensing from Hot Jet Engine Distributed Control Systems to Cryogenic
2. CISSOID Company, “CHT 555 High Temperature Precision Timer,” Datasheet Doc. DS-07006
14. ABSTRACT
A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 °C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.

15. SUBJECT TERMS
Electronics; Timer; Silicon-on-insulator; Extreme temperature; High-temperature; Jet engine

<table>
<thead>
<tr>
<th>SECURITY CLASSIFICATION OF:</th>
<th>LIMITATION OF ABSTRACT</th>
<th>NUMBER OF PAGES</th>
<th>TELEPHONE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>U</td>
<td>13</td>
<td>301-621-0390</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td>STI Help Desk (email:help@sti.nasa.gov)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19b. TELEPHONE NUMBER (include area code)</td>
<td>301-621-0390</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>