On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

Robert M. Wilson and David H. Hathaway
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

February 2008
The NASA STI Program…in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA’s STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Report Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA’s mission. Specialized services also include creating custom thesauri, building customized databases, and organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at <http://www.sti.nasa.gov>
- E-mail your question via the Internet to <help@sti.nasa.gov>
- Fax your question to the NASA STI Help Desk at 301–621–0134
- Phone the NASA STI Help Desk at 301–621–0390
- Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076–1320
On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

Robert M. Wilson and David H. Hathaway
Marshall Space Flight Center, Marshall Space Flight Center, Alabama
Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076–1320
301–621–0390

This report is also available in electronic form at
<https://www2.sti.nasa.gov>
TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. RESULTS AND DISCUSSION ... 2

3. SUMMARY .. 9

REFERENCES ... 10
LIST OF FIGURES

1. Annual variation of (a) sunspot number R and (b) the corrected aa geomagnetic index for the years 1860–2006. The thin, vertical lines mark the sunspot minimum years and the numbers refer to the sunspot cycles 10–23. Notice that most cycles have their largest aa index after sunspot maximum (except cycles 12 and 13) and their minimum aa index value either in the sunspot minimum year or the year following the sunspot minimum year (except cycle 21) .. 3

2. Scatterplot of the annual aa index values against R for the years 1868–2006. Notice that all aa index values lie on or above the line denoted aa_R, which is used to compute the leading sporadic component of the aa index (i.e., the solar cycle component) ... 4

3. Annual variation of the residual or following recurrent interplanetary component of the aa index, computed as $aa_I = aa - aa_R$ for the years 1868–2006. The thin, vertical lines mark the sunspot minimum years; the thick, vertical lines mark the sunspot maximum years; and the numbers refer to the sunspot cycles 11–23. Plainly, the maximum recurrent component of the aa index usually occurs after sunspot maximum (except cycles 12 and 13). Notice that the largest observed value of the recurrent component (24.3) occurred in 2003 during the decline of cycle 23 4

4. Annual variation of (a) R, (b) aa, (c) aa_I, (d) solar wind speed v, and (e) number of hours of solar wind observations for the years 1950–2006. The thin and thick vertical lines and the numbers 19–23 have the same meanings as before. See text for details .. 6

5. Scatterplots of (a) aa and (b) aa_I versus v for the years 1964–2006. See text for details .. 7

6. Cyclic variation of (a) $<R>$, (b) $<aa>$, (c) $<aa_I>$, and (d) and $<v>$ for cycles 11–23. See text for details .. 8
LIST OF ACRONYMS

IP interplanetary
PI prediction interval
TP Technical Publication
NOMENCLATURE

- **aa**: the *aa* geomagnetic index
- **<aa>**: cyclic average of *aa*
- **aa_I**: residual component of the *aa* index, equal to *aa* – *aa_R*
- **<aa_I>**: cyclic average of *aa_I*
- **aamax**: *aa* index maximum
- **aamin**: *aa* index minimum
- **cl**: confidence level
- **R**: sunspot number
- **<R>**: cyclic average of *R*
- **Rmax**: sunspot maximum
- **Rmin**: sunspot minimum
- **r**: linear correlation coefficient
- **r^2**: coefficient of determination
- **se**: standard error of estimate
- **v**: solar wind speed
- **x**: independent variable
- **y**: regression equation
1. INTRODUCTION

In order to explain the late-occurring geomagnetic peak in solar cycles, Feynman suggested decomposing the aa geomagnetic index into two components—one that is in phase and correlated directly with the sunspot cycle, the leading sporadic component, and the other that is out of phase and associated with interplanetary disturbances from the Sun, the residual or following recurrent component, which usually peaks after sunspot maximum (the exceptions are cycles 12 and 13) just before the next cycle’s sunspot minimum. Following Feynman’s approach, Hathaway and Wilson decomposed the aa geomagnetic record and used the late-cycle recurrent peak to forecast the expected size of the next sunspot cycle (cycle 24), using both the observed and adjusted records of the aa index, where the adjusted record is one that compensates for changes in the repositioning of the magnetometers prior to 1957 that are used in the determination of the aa index. (See also Svalgaard, Cliver, and Le Sager.) From their studies, it was determined that cycle 24 should be expected to be a cycle of larger than average size, comparable to cycles 21 and 22, the second and third largest cycles of the modern era. (See also Dikpati, de Toma, and Gilman.)

It has long been believed that there should be a good correlation between geomagnetic activity and solar wind speed and, indeed, for periods of high coverage, a strong correlation has been found. Also, it has been found that a general increase in the aa index has occurred between 1868 and 2006, where this increase has been attributed to an increase in the strength of the polar magnetic field of the Sun.

In this Technical Publication (TP), the relationship between solar wind speed, geomagnetic activity (the aa index), and the solar cycle is reexamined using annual averages, where the solar wind speed is determined using the Omni-merged, 1-hr, 1 AU interplanetary (IP) data <http://cdaweb.gsfc.nasa.gov>. This is the first of a two-part study of solar wind and the geomagnetic/solar cycle.
2. RESULTS AND DISCUSSION

Figure 1 displays the variation of annual averages of (a) sunspot number R and (b) the adjusted aa index for the interval 1860–2006, where the adjusted aa index is merely the observed aa value for the interval 1857–2006 and the observed value plus 3 nT for the interval 1868–1956. Although Nevanlinna and Kataja have extended the aa index for two additional solar cycles (1844–1867) using hourly declination readings at the Helsinki magnetic-meteorological observatory (1844–1880), these data have not been used in this TP. The thin, vertical lines mark the sunspot minimum years and the numbers refer to sunspot cycles 10–23, where cycle 23 is the current sunspot cycle that began in 1996. While sunspot cycles usually have a single, well-defined peak (R_{max}) that follows sunspot minimum (R_{min}) by 3–5 yr when described using annual averages, the geomagnetic cycle typically has multiple peaks, with the largest (a_{amax}) usually occurring during the declining portion of the sunspot cycle (as previously mentioned, the exceptions are cycles 12 and 13), just prior to the sunspot minimum of the following cycle. Also, the minimum value of the geomagnetic index (a_{amin}) almost always has occurred in the year following the sunspot minimum year. (The exceptions are cycles 14, 15, and 19, which had a_{amin} and R_{min} occurring contemporaneously, and cycle 21, which had a_{amin} occurring in 1980, some 4 yr past R_{min} and 1 yr past R_{max}, although a slightly larger local minimum value was seen at 1 yr past R_{min}; the a_{amin} value for cycle 11 likely occurred during the sunspot minimum year of 1867 and not 1868.)

From Figure 1, R_{min} is found to have varied between 1.4 (cycle 15) and 13.4 (cycle 22), having a 90% prediction range of 7 ± 6.7 for the given sample size of 13 cycles. Also, R_{max} is found to have varied between 63.5 (cycle 14) and 190.2 (cycle 19), having a 90% prediction range of 117.5 ± 70.9. The ratio (not shown) of R_{max} to R_{min} for the past 13 solar cycles is found to have varied between 10.38 (cycle 20) and 74.21 (cycle 15), having a 90% prediction range of 22.3 ± 31.89. The value of R in 2006 measured 15.2, a value that lies just outside the 90% prediction range for R_{min}. Hence, the sunspot minimum year for cycle 24 likely will occur in 2007 (the annual average for 2007 has recently been determined to be 7.6, well within the 90% range for R_{min}), or possibly 2008 if cycle 24 turns out to be a slow riser.

Likewise, from Figure 1, a_{amin} (in the vicinity of sunspot minimum) is found to have varied between 9 (cycle 14) and 20.2 (cycles 19 and 21; cycle 21 actually had a lower a_{amin} in 1980 (18.5), well after its sunspot minimum year of 1976), having a 90% prediction range of 15.2 ± 7.1 for the given sample size of 12 cycles. (Cycle 11 is not included since its a_{amin} probably occurred in 1867, before the start of the aa record.) Also, a_{amax} is found to have varied between 20.5 (cycle 14) and 37.1 (cycle 23), with all cycles from cycle 18 onward having an $a_{\text{amax}} \geq 30.3$. The 90% prediction range for a_{amax} is 29.7 ± 8.1. The ratio (not shown) of a_{amax} to a_{amin} for the past 12 solar cycles is found to have varied between 1.62 (cycle 19) and 2.59 (cycle 12), having a 90% prediction range of 2.03 ± 0.6. The value of aa in 2006 measured 16.2, a value within the 90% prediction range for a_{amin}, and the value of aa for the first 7 mo of 2007 has averaged 15.6. Excluding cycles 12 and 13, which had a_{amax} that preceded R_{max} by 1 yr, a_{amax} is found to have occurred after R_{max}, on average, by about 3 yr (the range is 2–6 yr). (Cycles 12 and 13 had slightly smaller local a_{amax} values after R_{max}, by 3 and 1 yr, respectively.)
Figure 1. Annual variation of (a) sunspot number R and (b) the corrected aa geomagnetic index for the years 1860–2006. The thin, vertical lines mark the sunspot minimum years and the numbers refer to the sunspot cycles 10–23. Notice that most cycles have their largest aa index after sunspot maximum (except cycles 12 and 13) and their minimum aa index value either in the sunspot minimum year or the year following the sunspot minimum year (except cycle 21).

Figure 2 shows the scatterplot of aa versus R for 1868–2006. All aa values are found to lie either on or above the given diagonal line $aa_R = 8.83123 + 0.06254R$, where this equation is used to compute the leading sporadic component of the aa index (i.e., the solar cycle component).

Figure 3 depicts the residual $aa_I = aa - aa_R$, or the following recurrent interplanetary component, having removed the leading sporadic component. The residual is believed to be associated with recurrent high-speed streams from coronal holes, which typically are at their greatest extent after sunspot maximum. Thin, vertical lines mark the sunspot minimum years; thick, vertical lines mark the sunspot maximum years; and the numbers 11–23 again refer to the sunspot cycles. For all cycles, except cycles 12 and 13, the maximum value of the residual, denoted here as $(aa_I)_{max}$, occurs after sunspot maximum and ranges in value between 10.5 (cycle 14) and 24.3 (cycle 23), having a 90% prediction range of 16.7 ± 7.4.
Figure 2. Scatterplot of the annual aa index values against R for the years 1868–2006. Notice that all aa index values lie on or above the line denoted aa_R, which is used to compute the leading sporadic component of the aa index (i.e., the solar cycle component).

Figure 3. Annual variation of the residual or following recurrent interplanetary component of the aa index, computed as $aa_I = aa - aa_R$ for the years 1868–2006. The thin, vertical lines mark the sunspot minimum years; the thick, vertical lines mark the sunspot maximum years; and the numbers refer to the sunspot cycles 11–23. Plainly, the maximum recurrent component of the aa index usually occurs after sunspot maximum (except cycles 12 and 13). Notice that the largest observed value of the recurrent component (24.3) occurred in 2003 during the decline of cycle 23.
Figure 4 plots the annual variation of R, aa, aa_I, the solar wind speed v (in km s$^{-1}$), and the number of hours of solar wind observation (plots (a)–(e), respectively) for the interval 1950–2006. As before, thin, vertical lines mark the sunspot minimum years; thick, vertical lines mark the sunspot maximum years; and the numbers refer to solar cycles 19–23. Solar wind data are available for 1964–present, adapted here using the Omni-merged, 1-hr, 1 AU IP data (available at <http://cdaweb.gsfc.nasa.gov>). In particular, the annual solar wind speed used in this study is the average of the maximum and minimum hourly solar wind speeds for each day, weighted by the number of hours of daily observation. As an example, on January 1, 1964, solar wind speeds were recorded for 12 hr, having a maximum of 370 km s$^{-1}$ and a minimum of 310 km s$^{-1}$, thereby, inferring an average of the extremes of 340 km s$^{-1}$. Observations are available for 29 of the 31 days of the month covering 558 hr (75% coverage). The average of the daily maximum-minimum averages, weighted according to the number of hours of daily observation, was 369 km s$^{-1}$ and this value represents the average solar wind speed for January 1964. For the remainder of the year, the average monthly solar wind speed/numbers of hours of observation were 352.9/228 (February), 0/0 (March–June), 517.5/111 (July), 453.6/159 (August), 463.4/237 (September), 459.8/396 (October), 430.7/249 (November), and 396/183 (December). For the year 1964, the average solar wind speed was 418.4 km s$^{-1}$ based on 8,688 hr of observation (99.2% coverage), and it is this solar wind speed (and number of hours of observation) that is plotted in figure 4 for the year 1964. Inspection of figure 4 clearly shows that the solar wind speed v peaks after sunspot maximum for all observed cycles (cycles 20–23; observations began in November 1963). Interestingly, the highest average solar wind speed occurred in 2003 (542.8 km s$^{-1}$ based on 8,689 hr of observation or 99.2% coverage; coverage is greatest (>90% coverage) for the years of 1974, 1979–1981, and 1995–present), and the peak in solar wind speed for all cycles (except cycle 23) occurs 2 yr prior to the following cycle’s sunspot minimum year (cycle 23 actually has a secondary peak in 2005, measuring 469.9 km s$^{-1}$ based on 8,689 hr of observation or 99.2% coverage).

Figure 5 shows the scatterplots of (a) aa versus v and (b) aa_I versus v for 1964–2006. Plainly, both aa and aa_I tend to increase in value as solar wind speed increases. Both correlations are statistically very significant, with the stronger one being between aa_I and v. The inferred correlation has a coefficient of determination $r^2 = 0.748$, implying that nearly 75% of the variance can be explained by the inferred regression. So, the peaks observed in the aa and aa_I indices late in the cycle (after solar maximum) appear to be directly related to increased solar wind speed, which probably is the result of high-speed streams from coronal holes.

Figure 6 depicts (a) the cyclic variation of sunspot number $<R>$, (b) the aa geomagnetic index $<aa>$, (c) the following recurrent component $<aa_I>$, and (d) the solar wind speed $<v>$ for cycles 11–23, where each cyclic average is computed from sunspot minimum to subsequent cycle sunspot minimum. (Cycle 23 is presumed to have ended in 2006 on the basis of annual averages.) For the first three parameters, all reveal a long-term increase over time, such that for cycle 24, the next cycle, one infers $<R> = 82.6 \pm 27.6$, $<aa> = 26 \pm 4.3$, and $<aa_I> = 12 \pm 2.8$, these estimates being the 90% prediction intervals. Thus, there is a 95% probability that cycle 24 will have $<R> \geq 55$, $<aa> \geq 21.7$, and $<aa_I> \geq 9.2$. Because of the close relationship between solar wind speed and, in particular, aa and aa_I (fig. 5), the cyclic average of solar wind speed is inferred to have increased over time, as well. (Strictly speaking, the cyclic variation of solar wind speed $<v>$ is indeterminate because of the brevity of the solar wind record, 1964–present, especially, as compared to the solar/geomagnetic record, which is considered reliable since the mid 1800s.)
Figure 4. Annual variation of (a) R, (b) aa, (c) aa_I, (d) solar wind speed v, and (e) number of hours of solar wind observations for the years 1950–2006. The thin and thick vertical lines and the numbers 19–23 have the same meanings as before. See text for details.
Figure 5. Scatterplots of (a) aa and (b) aa_I versus v for the years 1964–2006. See text for details.
Figure 6. Cyclic variation of (a) $\langle R \rangle$, (b) $\langle aa \rangle$, (c) $\langle aa^\dagger \rangle$, and (d) and $\langle v \rangle$ for cycles 11–23. See text for details.
3. SUMMARY

This study has shown that, on the basis of annual averages, solar wind speed is directly related to both the geomagnetic and solar cycles. Higher (lower) solar wind speed associates with higher (lower) values of the aa index, especially for the residual or following recurrent component of the aa index. Because there has been a long-term increase in the strength of the solar/geomagnetic cycles over time (cycles 11–23), it is inferred that the solar wind speed has also experienced a long-term increase.
REFERENCES

The \textit{aa} index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964–2006, a highly statistically important correlation ($r=0.749$) is found between annual averages of the \textit{aa} index and the solar wind speed (especially between the residual component of \textit{aa} and the solar wind speed, $r=0.865$). Because cyclic averages of \textit{aa} (and the residual component) have trended upward during cycles 11–23, cyclic averages of solar wind speed are inferred to have also trended upward.
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Report Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, and organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at <http://www.sti.nasa.gov>

- E-mail your question via the Internet to <help@sti.nasa.gov>

- Fax your question to the NASA STI Help Desk at 301–621–0134

- Phone the NASA STI Help Desk at 301–621–0390

- Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076–1320
On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

Robert M. Wilson and David H. Hathaway

Marshall Space Flight Center, Marshall Space Flight Center, Alabama

February 2008