ART: Surveying the Local Universe at 2–11 keV

MPE (Germany) G. Hasinger, N. Meidinger, P. Predehl
IKI (Russia) V. Arevsh, M. Buntov, I. Lapshov, M. Pavlinsky, M. Revnivtsev, S. Sazonov, N. Semiena, A. Tkachenko
SAO S.E. Romaine, A. Viklii
VNIIEF (Russia) S. Grigorovich, D. Litvin
USRA D.A. Schwartz
Penn State W.N. Brandt
Yale C.M. Urry
Spectrum Röntgen Gamma (SRG) is a new, Russian-led x-ray astronomy mission.

ART (US; Germany; Russia)
Astronomical Röntgen Telescope

eROSTTA (Germany)
extended Röntgen Survey with an Imaging Telescope Array

XRS (Japan & US; Germany)
X-Ray Spectrometer

- In scanning mode, SRG will perform an all-sky survey of unprecedented sensitivity, with CCD energy resolution.
- In pointed mode, SRG will obtain long exposures, with microcalorimeter energy resolution.
ART is a medium-energy x-ray telescope system for SRG, proposed as a 3-nation collaboration.

Mirror assembly
- 2x4 modules of electroformed-Ni shells
- US (NASA/MSFC & SAO, proposed)
- Russia (VNIIEF)

Optical bench and alignment
- Russia (IKI)

Focal-plane detectors
- 2 eROSITA CCDs
- Back-illuminated pn
- 50-ms integration
- 450-μm depletion
- Germany (MPE)

- Each mirror module images onto a distinct quadrant of a CCD.
- ART modules point 3° from mean direction.
- Align 1 pair of modules to eROSITA & SRG.
ART extends the spectral coverage of eROSITA to 11 keV (15 keV for pointed observations).
This extended coverage increases detections of Fe-K lines by 3, heavily obscured AGN by 3–5.

ART will detect nearly 100,000 AGN >2 keV.

<table>
<thead>
<tr>
<th>SRG ART</th>
<th>All-sky</th>
<th>Polar</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey Ω [deg²]</td>
<td>41,000</td>
<td>400</td>
<td>125</td>
</tr>
<tr>
<td>Sensitivity [erg cm⁻² s⁻¹]</td>
<td>3.1×10⁻¹³</td>
<td>3.4×10⁻¹⁴</td>
<td>8×10⁻¹⁵</td>
</tr>
<tr>
<td>Detected #</td>
<td>52,000</td>
<td>14,000</td>
<td>31,000</td>
</tr>
<tr>
<td># > 100 cts</td>
<td>1,000</td>
<td>310</td>
<td>3,100</td>
</tr>
</tbody>
</table>

eROSITA will detect many more soft sources.

Expected all-sky detections of obscured AGN

<table>
<thead>
<tr>
<th>Column (N_H) [cm⁻²]</th>
<th>eROSITA alone</th>
<th>ART alone</th>
<th>eROSITA + ART</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1×10^{23}</td>
<td>5000</td>
<td>3000</td>
<td>12,000</td>
</tr>
<tr>
<td>> 3×10^{23}</td>
<td>600</td>
<td>700</td>
<td>1,800</td>
</tr>
<tr>
<td>> 1×10^{24}</td>
<td>20</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Estimates are based upon Treister & Urry 2005.

Urry & Padovinin 1995

5 ART: Surveying the Local Universe at 2-11 keV
ART bridges the soft- and hard-X-ray bands, complementing other missions—e.g., NuSTAR.

NGC 6240
(Seyfert 2)
z=0.0244

ART response for model spectrum
(Vignati et al. 1999)

Transparent thermal:
0.5 keV
0.7 keV

Fe-K lines:
neutral fluorescence
helium-like
hydrogen-like

Compton-reflected
power law

Heavily-absorbed
($N_H=2x10^{24} \text{ cm}^{-2}$)
power law ($\Gamma=1.8$)