The Influence of Ablation on Radiative Heating for Earth Entry

Christopher O. Johnston* and Peter A. Gnoffo†

NASA Langley Research Center, Hampton, VA, 23681
and
Kenneth Sutton‡
National Institute of Aerospace, Hampton, VA, 24060

Using the coupled ablation and radiation capability recently included in the LAURA flowfield solver, this paper investigates the influence of ablation on the shock-layer radiative heating for Earth entry. The extension of the HARA radiation model, which provides the radiation predictions in LAURA, to treat a gas consisting of the elements C, H, O, and N is discussed. It is shown that the absorption coefficient of air is increased with the introduction of the C and H elements. A simplified shock layer model is studied to show the impact of temperature, as well as the abundance of C and H, on the net absorption or emission from an ablation contaminated boundary layer. It is found that the ablation species reduce the radiative flux in the vacuum ultraviolet, through increased absorption, for all temperatures. However, in the infrared region of the spectrum, the ablation species increase the radiative flux, through strong emission, for temperatures above 3,000 K. Thus, depending on the temperature and abundance of ablation species, the contaminated boundary layer may either provide a net increase or decrease in the radiative flux reaching the wall. To assess the validity of the coupled ablation and radiation LAURA analysis, a previously analyzed Mars-return case (15.24 km/s), which contains significant ablation and radiation coupling, is studied. Exceptional agreement with previous viscous shock-layer results is obtained. A 40% decrease in the radiative flux is predicted for ablation rates equal to 20% of the free-stream mass flux. The Apollo 4 peak-heating case (10.24 km/s) is also studied. For ablation rates up to 3.4% of the free-stream mass flux, the radiative heating is reduced by up to 19%, while the convective heating is reduced by up to 87%. Good agreement with the Apollo 4 radiometer data is obtained by considering absorption in the radiometer cavity. For both the Mars return and the Apollo 4 cases, coupled radiation alone is found to reduce the radiative heating by 30 – 60% and the convective heating by less than 5%.

Nomenclature

\(\bar{c}_i \) = elemental mass fraction of element \(i \)
\(h\nu \) = frequency in eV
\(m \cdot \text{dot} \) = ablation or mass injection rate divided by the free-stream density and velocity
\(q_c \) = convective heating (W/cm\(^2\))
\(q \cdot \text{cumulative} \) = running total of the spectrally-integrated radiative heat flux, starting at 0 eV (W/cm\(^2\))
\(q_r \) = wall directed radiative flux (W/cm\(^2\))
\(T_t \) = temperatures for the simplified shock layer model, \(i = 1 \) and 2 for layers 1 and 2 in Fig. 3
\(T_{tr} \) = translational-rotational temperature
\(T_{ve} \) = vibrational-electronic-electron temperature
\(x \) = coordinate parallel to the free-stream or along the stagnation-line (cm)
\(z \) = coordinate normal to free-stream (m)

* Aerospace Engineer, Member AIAA
† Aerospace Engineer, Fellow AIAA
‡ Senior Research Fellow, Associate Fellow AIAA
I. Introduction

The design of the ablating heat-shield for NASA’s Orion crew module requires the accurate prediction of the shock-layer radiative and convective heating. The ablating heatshield introduces carbon and hydrogen species into the flowfield, which complicate the flowfield and radiation modeling. The influence of these ablation products at peak-heating lunar return conditions, approximately defined by a velocity of 10.5 km/s, an altitude of 70 km, and a nondimensional ablation rate ranging from 0.005 to 0.05, is of particular interest for Orion. The nondimensional ablation rate, or $m\text{-dot}$, is defined as the ablation rate divided by the free-stream velocity and density (or free-stream mass flux).

Previous studies concerning the influence of ablation on the radiative heating have reported both increases and decreases in the radiative heating with the introduction of ablation. Research in the late 1960s and early 1970s, which was based mostly on equilibrium viscous shock layer flowfield models and 1960s era radiation data, showed a radiation decrease of roughly 30% with $m\text{-dot}$ values of 0.05 for conditions relevant to Mars return (15.24 km/s at 60.96 km). A later analysis by Gupta et al. confirmed these results with an updated flowfield model. More recent studies have focused on the analysis of the Apollo 4 flight data and the design and analysis of the Stardust and MUSES-C vehicles. For the Stardust and Apollo cases, Park predicts a significant reduction in the wall radiative flux due to vacuum ultraviolet absorption from ablation products, with $m\text{-dot}$ ranging from 0.0086 to 0.03. In contrast to the large radiation decrease shown by Park, both Olynick et al. and Gupta predict a slight increase in the radiative heating due to ablation species for Stardust peak heating conditions. For entry of the MUSES-C vehicle, which is similar to the Stardust vehicle, both Doihara and Nishida and Otsu et al. predict a 20% increase in the radiation with the introduction of ablation, while Fujita et al. predict a negligible change.

Studies of entry into Venus by Sutton and Fujita et al. have shown about a 20% reduction in the radiative heating by ablation. For Mars entry, with an $m\text{-dot}$ of 0.075, Gupta et al. predicted a radiative heating reduction of 50% with the introduction of ablation.

The conflicting trends found by previous studies, as noted above, for the influence of ablation on radiative heating motivated the present study. Applying state-of-the-art flowfield (LAURA) and radiation (HARA) models, the present work examines the influence of ablation on the radiative heating for lunar and Mars return conditions.
brief discussion of this recently developed capability32, which consists of a 22-species thermochemical nonequilibrium LAURA flowfield model with coupled HARA radiation and an ablating wall, is discussed in Section II. In Section III, the extension of HARA to treat carbon and hydrogen species is discussed and the sources of the required data are listed. The influence of the additional carbon and hydrogen species on the emission and absorption in an ablating boundary layer are examined in Section IV, using a simplified shock layer model consisting of two constant property layers, which allows the influence of the ablation species to be easily observed and interpreted. In Section V, the coupled ablation and radiation solutions for a widely studied Mars return case is presented to provide some validation for the present analysis. The influence of the ablation and radiation coupling on the radiative and convective heating for the Apollo 4 peak heating case are examined in Section VI, and a comparison is made with the flight data.

II. Flowfield Modeling with Ablation Products and Radiation

The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is a high fidelity, structured grid analysis tool, specialized for hypersonic re-entry physics, utilizing state-of-art algorithms for computational fluid dynamic (CFD) simulations33,34. Key elements of LAURA include Roe’s averaging35 and Yee’s Symmetric Total Variation Diminishing (STVD)36 formulation of second-order, inviscid flux. Yee’s STVD formulation has been found to be exceptionally robust and Courant number independent using first point-implicit and then line-implicit relaxation for hypersonic flow simulations.

A two-temperature thermochemical nonequilibrium model34 is applied, except in Section V, in which a single temperature chemical equilibrium model is applied. The following 22-species are included in the flowfield calculation: N, N+, NO, NO+, N\textsubscript{2}, N\textsubscript{2}+, O, O+, O\textsubscript{2}, O\textsubscript{2}+, C, C+, CO, CO+, C\textsubscript{2}, C\textsubscript{3}, C\textsubscript{2}H, CN, H, H+, H\textsubscript{2}, e−. The chemical reaction rates are compiled from previous studies of Earth37,38, Mars39 and Titan40 entry. The thermophysical properties are taken from the work of Mcbride et al.41 and Gupta et al.42. Multicomponent diffusion is approximated using Sutton and Gnoffe’s43 approximate-corrected approach. Values of 0.76 and 0.24 are applied for the free-stream elemental mass fractions of nitrogen and oxygen, respectively.

Laminar flow is assumed for all cases. As mentioned in the Introduction, past studies23 of the strongly ablating and radiating Galileo probe showed an influence of turbulent flow on the radiation. Preliminary results were obtained for the Apollo 4 case presented in Section VI using the standard Baldwin-Lomax algebraic turbulence model. For the m-dot values considered, these results showed a negligible influence of turbulence on the radiative heating, although the convective heating was significantly increased. No attempt was made to alter the applied turbulence model to account for ablation. The proper treatment of turbulence in the presence of ablation was beyond the scope of the present work, although it should be considered in a future study.

The treatment of a blowing boundary condition in LAURA was presented by Thompson and Gnoffe44. Recent work35 has extended this capability to accommodate the injection of a gas containing the elements C, H, O, and N. The wall is assumed to be in chemical equilibrium at a specified wall temperature. The elemental composition at the wall is obtained by solving the elemental continuity equations35, which account for diffusion, convection, and mass injection of the char and pyrolysis gas. For cases with no ablation, these equations reduce to the equilibrium catalytic wall conditions. The ablation rate and elemental composition of the injected char and pyrolysis gas are specified along with the wall temperature. While the ablation rate at the stagnation point is specified, the distribution along the rest of the body is scaled with the local wall pressure.

The divergence of the radiative flux, calculated from the HARA code, is included in the LAURA flowfield calculations. For typical lunar-return cases, the radiation is updated every 3000 flowfield iterations. Details of the HARA code are provided in the following section.

III. Radiation Modeling of Air with Ablation Products

The shock-layer radiation is modeled with the HARA (High-temperature Aerothermodynamic RAdition) code. The details of this code for treating air species are presented by Johnston et al.46,47. Briefly, it is based on a set of atomic levels and lines obtained from the National Institute of Standards and Technology (NIST) online database48 and theOpacity Project49, as well as atomic bound-free cross sections from the TOPbase50. The negative nitrogen and oxygen ions are treated using cross sections suggested by Soon and Kunc51 and Chauveau et al.52, respectively. The molecular band systems are treated using a smeared-rotational band (SRB) model53, which was shown by Johnston et al.46 to be sufficient for treating VUV absorbing and optically-thin emitting band systems in air. The accuracy of the SRB model for treating band systems resulting from ablation species is discussed in Section IV. The molecular data for modeling these band systems are obtained from Laux54, except for the VUV N\textsubscript{2} systems, which are obtained from various other sources55,56,57. The non-Boltzmann modeling of the atomic and molecular electronic states is
based on a set of electron-impact excitation rates compiled from the literature and presented in detail by Johnston et al.47. Following the work of Park58, the quasi-steady state assumption is made when solving the Master Equation. The tangent-slab approximation is applied to calculate radiative flux and the divergence of the radiative flux, which is required for the radiation-flowfield coupling procedure. For calculating the divergence of the radiative flux, the wall is assumed to emit with an emissivity of 0.85 at the specified wall temperature. Note that the radiative flux emitted from the wall is not included in the wall radiative heating values presented throughout this paper. This is clarified by referring to the presented values as the “wall directed radiative flux at the wall”, represented as q_r.

For the present study, the HARA code was extended to treat hydrogen and carbon ablation species. The various radiative mechanisms for these species are listed in Table 1. For atomic carbon and hydrogen, the oscillator strengths and electronic levels from NIST are applied. In addition, the Stark broadening widths from Griem59 and Wilson and Nicolet60 are used for carbon, while for hydrogen, the line shapes and broadening parameters presented by Sutton61 are applied. The photoionization cross-sections for carbon and hydrogen are obtained by curve-fitting the detailed TOPbase50 cross-sections. For the molecular band oscillator strengths and energy level data, the values presented by Lino da Silvia are applied for many of the C2 and CO systems, except for the CO VUV systems, which were obtained from Park63. For the CN and H2 systems, values from Laux54 and Allison and Dalgarno67 are applied. For the C3 and C2H band systems, the available data64,65,66 is limited to experimentally determined total cross sections, which are essentially constant with temperature.

Table 1. Radiative mechanisms treated for ablation species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Mechanism</th>
<th>Spectral Range (eV)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Lines</td>
<td>0 - 18</td>
<td>48,59,60</td>
</tr>
<tr>
<td></td>
<td>Photoionization</td>
<td>0 - 18</td>
<td>50</td>
</tr>
<tr>
<td>H</td>
<td>Lines</td>
<td>0 - 18</td>
<td>48,61</td>
</tr>
<tr>
<td></td>
<td>Photoionization</td>
<td>0 - 18</td>
<td>50</td>
</tr>
<tr>
<td>CO</td>
<td>4+ ($\text{A}^1\Pi$ - $\text{X}^1\Sigma$)</td>
<td>6.0 - 10</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>3+ ($\text{b}^3\Sigma$ - $\text{a}^3\Pi$)</td>
<td>3.0 - 5.0</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>$\text{B}^1\Sigma$ - $\text{X}^1\Sigma$</td>
<td>10.2 - 11.4</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>$\text{C}^1\Sigma$ - $\text{X}^1\Sigma$</td>
<td>10.0 - 12.2</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>$\text{E}^1\Pi$ - $\text{X}^1\Sigma$</td>
<td>11.2 - 11.9</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Angstrom ($\text{B}^1\Sigma$ - $\text{A}^1\Pi$)</td>
<td>0.5 - 3.2</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Asundi ($\text{a}^3\Sigma$ - $\text{a}^3\Pi$)</td>
<td>0.1 - 3.5</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Triplet ($\text{d}^3\Delta$ - $\text{a}^3\Pi$)</td>
<td>0.1 - 4.0</td>
<td>62</td>
</tr>
<tr>
<td>C2</td>
<td>Swan ($\text{d}^3\Pi$ - $\text{a}^3\Pi$)</td>
<td>0.4 - 4.2</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Mulliken ($\text{D}^3\Sigma$ - $\text{X}^1\Sigma$)</td>
<td>3.6 - 7.4</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Deslandres-d’Azambuja ($\text{C}^3\Pi$ - $\text{A}^1\Pi$)</td>
<td>1.5 - 4.5</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Mulliken ($\text{D}^3\Sigma$ - $\text{X}^1\Sigma$)</td>
<td>3.6 - 7.4</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Fox-Herzberg ($\text{e}^3\Pi$ - $\text{a}^3\Pi$)</td>
<td>3.0 - 6.2</td>
<td>62</td>
</tr>
<tr>
<td>C3</td>
<td>Swings ($\text{A}^1\Pi$ - $\text{X}^1\Sigma$)</td>
<td>2.5 - 4.1</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>UV $\text{X}^1\Sigma$</td>
<td>7.3 - 10</td>
<td>65</td>
</tr>
<tr>
<td>C2H</td>
<td>Continuum</td>
<td>4.6 - 6.5</td>
<td>66</td>
</tr>
<tr>
<td>CN</td>
<td>Violet ($\text{B}^1\Sigma$ - $\text{X}^1\Sigma$)</td>
<td>2.6 - 4.0</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Red ($\text{A}^1\Pi$ - $\text{X}^1\Sigma$)</td>
<td>0.5 - 1.5</td>
<td>54</td>
</tr>
<tr>
<td>H2</td>
<td>Lyman ($\text{B}^1\Sigma$ - $\text{X}^1\Sigma$)</td>
<td>10 - 14.0</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Werner ($\text{C}^3\Pi$ - $\text{X}^3\Sigma$)</td>
<td>8.1 - 12.3</td>
<td>67</td>
</tr>
</tbody>
</table>

Radiation emission and absorption from spalled particles68,69 is not treated in this study, although Park has predicted that the emission from these particles contributes significantly to the radiative heating for the Stardust vehicle12. Note that there is significant uncertainty in the modeling parameters required to treat this mechanism. Also, post flight analyses of the Stardust heat shield recession70 and observed radiation71 data do not indicate the presence of excessive radiation that may be attributed to spalled particle emission. The same is true for the present analysis of the Apollo 4 flight data presented in Section VI, where good agreement with the flight data is found without accounting for spalled particle emission. This argument does not rule out spalled particle absorption, or blockage, which may reduce the radiative flux reaching the wall. However, the magnitude of this absorption mechanism is likely small69.
For the air and ablation species mixtures to be studied in Section IV for the simplified shock layer model, the parameter α is defined to represent the mass fraction of ablation elements in an air/ablation mixture. The elemental mass fractions of the mixture are then defined as

$$\tilde{c}_i = \tilde{c}^{\text{air}}_i (1 - \alpha) + \tilde{c}^{\text{abl}}_i \alpha$$

$$\tilde{c}^{\text{air}}_N = 0.76, \quad \tilde{c}^{\text{air}}_O = 0.24, \quad \tilde{c}^{\text{air}}_C = 0.00, \quad \tilde{c}^{\text{air}}_H = 0.0$$

$$\tilde{c}^{\text{abl}}_N = 0.04, \quad \tilde{c}^{\text{abl}}_O = 0.01, \quad \tilde{c}^{\text{abl}}_C = 0.90, \quad \tilde{c}^{\text{abl}}_H = 0.05$$

Equation (1)

Therefore, $\alpha = 0.0$ represents pure air while a value greater than zero represents a mixture of air and ablation species. Figure 1 presents the total molecular band and atomic continuum absorption coefficients for pure air ($\alpha = 0.0$) and for a mixture of air and ablation species ($\alpha = 0.2$). It is seen that for the same temperature and pressure, both the molecular band and atomic continuum absorption coefficients are significantly larger over most of the spectrum. The $\alpha = 0.0$ molecular band result is larger in the region between 4 and 6 eV because of the strong NO band systems. For the $\alpha = 0.2$ case, most of the NO is replaced by CO, which increases the spectrum in the 7 to 9 eV range, but decreases it in the 4 to 6 eV range. Figure 2 shows the impact of this increased absorption on a 1 cm constant property layer. The transmissivity (Φ), which represents the fraction of the intensity that passes through the layer, is defined as

$$\Phi = \exp(-\kappa_{\text{hy}} \Delta z)$$

Equation (2)

where κ_{hy} is the absorption coefficient and Δz is the thickness of the layer. For clarity, the atomic line contribution is not included in the figure. Therefore, the sum of the band and continuum absorption coefficients shown in Figure 1 are applied for this example. Above 12 eV, it is seen that Φ is essentially zero for both cases, which means that all of the radiation entering the layer in this spectral range is absorbed. The most significant difference between the two cases is in the 6 – 10 eV range, where the $\alpha = 0.2$ case contains significantly more absorption. This is a result of the CO (4+) and C$_3$ (UV) band systems. The impact of these transmissivity differences on the radiative flux or intensity passing through the layer depends on the spectral distribution of the incoming flux or intensity. For typical lunar-return shock layer conditions, this impact will be shown in the next section. The increase in the absorption coefficient shown here indicates a corresponding increase in the emission coefficient. The net effect of the increased emission and absorption for a simplified ablating boundary layer will also be studied in the next section.
IV. Radiation Analysis of a Simplified Ablating Shock Layer

For insight into the absorption and emission of an ablating shock layer, a simplified model will be examined\(^\text{72,73}\). This model, shown in Figure 3, consists of a high-temperature layer of air (layer 1), and a smaller lower temperature layer containing both air and ablation species (layer 2). To approximate the inviscid region of a lunar return shock layer, \(T_1 \) and \(\Delta z_1 \) are set to 10,000 K and 15 cm, respectively. To approximate the boundary layer, \(T_2 \) will be varied while \(\Delta z_2 \) is set to 1 cm. The pressure in both layers is set to 0.5 atm.

For various values of \(T_2 \) and \(\alpha \), the spectrally-integrated radiative flux to the wall of the simplified shock layer model is presented in Figures 4 (a - c). Figure 4 (a) shows that, for \(T_2 \) values greater than 3000 K, layer 2 provides a net increase in the flux below 6 eV, meaning the emission in these cases is larger than the absorption. For the flux above 6 eV, Figure 4 (b) shows that for all values of \(T_2 \) and \(\alpha \), layer 2 absorbs a significant fraction of the flux from layer 1. The amount of absorption is seen to increase with increasing \(\alpha \). Figure 4 (c) presents the entire flux, which is the sum of the values in Figures 4 (a) and (b). A slight minimum is apparent at \(\alpha = 0.1 \) for temperatures above 3000 K. The 3000 K case is the only case with a continuous decrease in the flux with increasing \(\alpha \). Note that the largest flux for \(\alpha > 0.2 \) is from the 5000 K case, and not the 6000 K case. For all cases with \(\alpha < 0.3 \), layer 2 provides net absorption, meaning the flux from layer 2 is less than that from layer 1.

To further investigate these trends, Figures 5 (a – c) present the cumulative flux spectrums from layer 2 for several of the cases presented in Figures 4 (a – c). The increase in the emission between 1 – 3 eV as \(\alpha \) is increased may be attributed to the \(\text{C}_2 \), \(\text{C}_3 \), and CN bands identified in Figure 1. The flux above 12 eV is seen to be absorbed for all cases, which is consistent with the nearly zero transmittance shown in Figure 2 for this spectral range (even for the \(\alpha = 0 \) case). The introduction of ablation species were shown in that figure to reduce the transmittance considerably between 7 and 9 eV. As a result, Figures 5 (b) and (c) show a reduced flux contribution from this spectral range relative to the pure air case in Figure 5 (a).
As mentioned in the previous section, the HARA code applies the smeared rotational band (SRB) model for treating the molecular band systems. Although this model is known to be accurate for optically thin emission74, its ability to treat optically-thick absorption is questionable. The significant absorption from VUV molecular band systems shown in Figures 1 and 2 indicates that significant optically-thick absorption is encountered in an ablating or non-ablating boundary layer. The sufficient accuracy of the SRB model for the VUV absorption in a non-ablating boundary layer was shown by Johnston et al.46. To assess the validity of the SRB model in the presence of ablation species, Figure 6 presents the VUV flux from layer 2 for $\alpha = 0.4$ and $T_2 = 5,000$ K. The spectrum and cumulative flux (starting from zero at 8 eV) obtained by ignoring all of the VUV band systems are represented by the dashed lines. Likewise, the flux obtained by treating all of the VUV band systems with a line-by-line (LBL) or SRB model are represented by the solid gray and black lines, respectively. The absorption from the VUV band systems is clearly indicated by the difference between the LBL or SRB results and the no VUV bands case. It is seen that over 40% of the VUV flux is absorbed by the VUV band systems. Furthermore, it is seen that the VUV flux predicted by the LBL and SRB models agrees within 3%. Similar agreement was found for other α and T_2 values. This good agreement provides confidence in the application of the SRB model to an ablating boundary layer.

In summary, the analysis presented in this section has shown that an ablation contaminated boundary layer absorbs significantly in the 6 to 18 eV range for a wide range conditions. The radiation in the 0 to 6 eV range, however, was shown to provide net emission for most cases. Moreover, the magnitude of this emission was shown to be very sensitive to the temperature and abundance of ablation species. The counteracting influence of emission in the 0 to 6 eV range and absorption in the 6 to 18 eV range, and the inherent sensitivity of their net result, indicates how previous studies have predicted both
increases13,14 and decreases12 in the radiative heating with the introduction of ablation species. It should also be noted that, although not presented, similar trends with α and T_2 were obtained using the equilibrium chemistry and radiation models of the RAD/EQUIL code10. Finally, the validity of the SRB model for treating absorbing VUV band systems was shown.

V. Mars-Return Benchmark Case

To provide confidence in the coupled radiation and ablation flowfield model discussed in Sections II and III, the developed model was applied to a widely studied Mars-return case. This case consists of the flow past a 3.05 m sphere with a free-stream velocity of 15.24 km/s, a density of 2.55x10$^{-4}$ kg/m3 (altitude = 60.96 km), and a wall temperature of 3600 K. The injected gas is carbon-phenolic with elemental mass fractions specified as C:H:O:N = 0.92:0.022:0.049:0.009. The combination of the high flight velocity, relatively high free-stream density, and large body size results in a highly thermochemical equilibrium flowfield that is coupled strongly to the radiation. The strong thermochemical equilibrium conditions cause sharp gradients in the temperatures and number densities at the shock (as a result of the abrupt change from the free-stream quantities to the post-shock quantities), which were found to cause stability problems in the flowfield solution procedure. To accommodate this, the recently developed12 general chemical equilibrium option in LAURA was applied. This option treats a single temperature and solves the elemental continuity equations. The same 22-species listed in Section II are applied. To maintain stability in the solution procedure, a 128-point grid normal to the body was implemented, instead of the commonly applied 64-point grid. Note that all previous studies of this case6,9,75,77 avoided these stability issues by applying discrete-shock viscous-shock layer flowfield models, which do not require the continuous treatment of the free-stream to post-shock transition.

The influences of both coupled ablation and radiation on the stagnation-line temperature and wall-directed radiative flux profiles are shown in Figures 7 and 8. Significant decreases in the temperature and radiative flux profiles, as well as the shock standoff distance, are seen to result from the radiation coupling (all cases shown include radiation coupling except for the “No Rad.” case). The introduction of ablation is shown to increase the shock standoff while absorbing roughly 40% of the radiative flux. The equilibrium viscous shock layer results of Moss8 are also shown in these figures, where available. Considering the different flowfield, radiation, and thermophysical property models applied by Moss, the comparison with the present results is very good. A further comparison between the present results and those of Moss is shown in Figure 9. The “ablation mass fractions” shown in this figure are defined as the sum of the following mass fractions: C, C$^+$, CO$_2$, C$_2$, C$_3$, C$_2$H, CN, H, and H$_2$. For all three ablation rates, the agreement with Moss is good.

![Figure 7. Temperature distributions along the stagnation-line with and without radiation and ablation.](image1)

![Figure 8. Wall directed radiative flux along the stagnation-line with and without radiation and ablation.](image2)

A comparison of the radiative flux at the wall predicted by various researchers is shown in Figure 10 for various ablation rates. For the radiation calculation, Gupta et al.10 and Sutton75 applied the RAD/EQUIL code76, Moss8 applied the LRAD-3 code77, and Garrett et al.6 applied the RATRAP code1. The results of the various studies, including the present study, agree within about 10% for the entire range of ablation rates.
The excellent agreement shown in Figures 7 – 10 with previous viscous shock layer results for this case, which includes extreme ablation and radiation coupling, provides a level of confidence in the present analysis. To the knowledge of the authors, this is the first analysis of the present Mars return case using a shock-capturing Navier-Stokes flowfield (although a similar case without ablation was treated in this way by Gollan et al.78, and a lower velocity and density Mars-return case was treated by Hartung et al.79, also without ablation).

VI. Apollo 4 Peak Heating Analysis

The Apollo 4 flight experiment at \(t = 30,032 \) s is studied assuming the stagnation region flowfield is approximated with a 3-m sphere80. The two-temperature thermochemical nonequilibrium model in LAURA is applied. A freestream velocity of 10.252 km/s and a density of 3.41x10-4 kg/m3 are applied. Following Park11, a wall temperature of 2500 K is assumed, and the total ablation rate is assumed to be composed of 60% pyrolysis gas and 40% char. The elemental mass fractions are specified for the char as81 C:H:O:N = 0.75:0.00:0.25:0.00 and for the pyrolysis gas as C:H:O:N = 0.547:0.093:0.341:0.019. The silicon present in the char, according to Ref. 81, is treated in the present analysis as carbon. The \(m\)-dot values considered were varied from the value of 0.0086 suggested by Park11 to a value four times greater. Coupled radiation is included in the results presented here unless stated otherwise.

The number densities along the stagnation-line near the wall (only 3 cm of the 16 cm shock layer is shown), resulting from \(m\)-dot = 0.0086, are shown in Figure 11 for the ablation species and Figure 12 for the air species. It is seen that CO, H\textsubscript{2} and C\textsubscript{3} are the most abundant of the ablation species molecules at and very near the wall, which is significant because they each have strongly absorbing VUV band systems. The impact of these band systems on the radiative heating will be shown later in this section.

The elemental mass fractions near the wall are shown in Figure 13 for \(m\)-dot values of 0.00, 0.0086, and 0.017. This shows that nitrogen is reduced to accommodate the injected carbon and hydrogen, while the oxygen content is actually slightly increased because it composes a significant fraction of the pyrolysis gas. Note that even for the \(m\)-dot equal to zero case, the elemental mass fractions of N and O are not constant through the boundary layer as a result of multicomponent diffusion. The resulting temperature profiles near the wall for these three \(m\)-dot cases are shown in Figure 14. For the case with no ablation (\(m\)-dot = 0.0), the \(T\textsubscript{tr} \) and \(T\textsubscript{ve} \) profiles remain essentially identical throughout the boundary layer, while for the ablation cases there is noticeable separation at the boundary layer edge.
The impact of coupled ablation and radiation flowfields on the radiation and convective heating are shown in Figures 15 and 16, respectively, for an m-dot equal to 0.0086. Focusing of the stagnation region ($z < 0.5$ m), Figure 15 shows that the introduction of coupled ablation reduces the radiative heating by 7 - 9% (depending on whether coupled radiation is considered), while coupled radiation reduces it by 30%. Together, the coupled radiation and ablation reduce the uncoupled radiation by 140 W/cm2, or 37%, at the stagnation point ($z = 0$). For convective heating, Figure 16 shows that coupled ablation provides a significant decrease, while the influence of coupled radiation is minimal. The small influence of coupled radiation on the convective heating predicted in this study, with and without coupled ablation, is in disagreement with the results of Park11. Together, the coupled radiation and ablation reduce the uncoupled convective heating by 90 W/cm2, or 38%, at the stagnation point. Note that the uncoupled ablation cases apply an equilibrium catalytic wall boundary condition. Considering both the convective and radiative heating, coupled radiation and ablation provide a decrease from 620 to 390 W/cm2, or 37%, at the stagnation point.
The influence of varying $m\cdot d$ on the radiative heating is shown in Figure 17. Even for the largest $m\cdot d$ of 0.0344, the radiation is reduced by only 19\% at the stagnation point (relative to the $m\cdot d = 0.0$ case). Details of this reduction are discussed in the next paragraph. For the convective heating, the influence of varying $m\cdot d$ is shown in Figure 18. As expected, increasing $m\cdot d$ significantly decreases the convective heating. The three circles in this figure indicate the stagnation point convective heating predicted with the thin-film blowing correction (with $\lambda = 0.5^{44,82}$, which is applied to the $m\cdot d = 0.0$ case to approximate the influence of ablation. Each of the circles corresponds to the $m\cdot d$ value and actual coupled ablation prediction (represented by the lines) located directly below it. The blowing correction is seen to result in convective heating values 15 to 50\% larger than the coupled ablation predictions. This discrepancy indicates that the blowing correction, as applied with $\lambda = 0.5$, is inadequate at the present conditions.

The influence of the ablation species on the radiative heating is studied further in Figures 19 and 20, which show the influence of adding the radiation mechanisms from the identified species (only the dominant contributing species are shown). The flux obtained by ignoring the ablation species in the radiation calculation is represented by the dashed line, and the increment obtained by adding the radiation from the identified species is shown by the
arrows. The dash-dotted line represents the flux obtained accounting for all of the ablation species. For the integrated flux from the $0 \rightarrow 6$ eV range shown in Figure 19, the ablation species are seen to cause a relatively small increase (note the limits of the vertical scale) in the flux. The largest contributors to this increase are CN and C, while C$_3$ actually absorbs slightly. For the integrated flux between 6 – 18 eV, Figure 20 shows the flux reduction indicated previously in Figure 17. The photoionization of C causes a significant fraction of this absorption, while the vacuum ultraviolet band systems of CO, C$_3$, and H$_2$ also contribute noticeably.

![Figure 19. Influence of including the radiation mechanisms of various species on the stagnation-point radiative flux between 0 and 6 eV.](image19)

![Figure 20. Influence of including the radiation mechanisms of various species on the stagnation-point radiative flux between 6 and 18 eV.](image20)

To complete this analysis of the Apollo 4 radiative heating, a comparison is made with the radiometer flight data, which measured the radiative intensity between 0.4 and 6.2 eV at the stagnation point. As pointed out by Park11, the radiometer window was located in an open cavity 8 cm from the wall. The assumption is made here that the gas in the open cavity was in equilibrium at the wall temperature (2500 K), pressure (0.34 atm), and elemental mass fractions (C:H:O:N=0.37:0.01:0.28:0.34) for the m-dot = 0.0086 case. The resulting cumulative intensity, considering coupled ablation and radiation, is shown in Figure 21. Excellent agreement is seen between the prediction at the radiometer and the radiometer measurement. The absorption in the radiometer cavity is indicated by the difference between the prediction at the wall and at the radiometer window. The absorption in the radiometer cavity is due almost entirely to the C$_3$ Swings band system.

If carbonaceous species were not present in the radiometer cavity, as Park11 suggests, then the absorption would be negligible and the present results would then over predict the data by about 7 W/cm2/sr. This agreement is still relatively good, and agrees closely with the results of Park11. As mentioned in Section III, the present predictions apply an atomic line model that includes additional lines from the Opacity Project that are not present in the NIST database. These lines contribute 2.5 W/cm2 to the present case between 0.4 and 6.2 eV. Also, the negative nitrogen ion photodetachment contribution is included, which contributes 1.4 W/cm2/sr for present case. The accuracy of the modeling data for these additional lines, as well as the negative ion cross section, is questionable and these contributions are often ignored completely, although they are included in HARA for conservatism. If these contributions are ignored along with the radiometer cavity absorption, good agreement with the flight data is obtained. However, previous comparisons with the Fire II flight data83 support the inclusion of these contributions.

![Figure 21. Cumulative intensity above 0.4 eV for the Apollo 4 case with coupled ablation (m-dot = 0.0086) and radiation.](image21)
VII. Conclusions

The influence of ablation on the radiative heating for lunar and Mars return conditions was studied using state-of-the-art flowfield (LAURA) and radiation (HARA) models. In addition, a simplified shock layer model was studied to clearly indicate the radiation characteristics of an ablation contaminated boundary layer. This simplified model showed that with ablation the boundary layer in the 0 – 6 eV range was capable of providing a net emission for a wide range of temperatures. The 6 – 18 eV range, however, was shown to provide significant absorption for all cases, which actually became stronger with the increase of ablation species. These counteracting influences (the increased flux between 0 – 6 eV and the decreased flux between 6 – 18 eV), and the sensitivity of their net result to temperature and gas composition, explain how previous studies predicted both increases and decreases in the radiation with the introduction of ablation. Also shown using this simplified model was that the SRB treatment of molecular band systems in the VUV results in spectrally integrated radiative flux values within 3% of the computationally expensive LBL model.

A 22-species LAURA flowfield model, with coupled ablation and radiation, was applied to a Mars return case, which was widely studied in the 1970s using viscous shock layer techniques. Excellent agreement with the results of Moss\(^9\) was found for stagnation-line temperature, ablation species, and radiative flux profiles. Furthermore, good agreement with numerous previous VSL studies was shown for the wall radiative flux values predicted with various ablation rates. The influence of coupled radiation and ablation for these cases was large; thus, this good agreement provided a level of validation for the recently developed coupled ablation and radiation procedure in LAURA.

The influence of coupled ablation and radiation on the radiative and convective heating for the Apollo 4 peak-heating case was examined. Increasing the ablation rate, \(m-dot\), from 0.0 to 0.0344 was shown to decrease the radiative heating by 15% while decreasing the convective heating by 85%. The introduction of coupled radiation was found to decrease the radiative heating by 30% while having a negligible influence on the convective heating. Excellent agreement between the present predictions and the Apollo 4 radiometer data was shown. This good agreement included absorption from the open radiometer cavity, which was assumed to contain gas at the temperature, pressure, and elemental composition of the wall.

References

