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This paper proposes a methodology for the analysis and design of systems
subject to parametric uncertainty where design requirements are specified
via hard inequality constraints. Hard constraints are those that must be
satisfied for all parameter realizations within a given uncertainty model.
Uncertainty models given by norm-bounded perturbations from a nominal
parameter value, i.e., hyper-spheres, and by sets of independently bounded
uncertain variables, i.e., hyper-rectangles, are the focus of this paper. These
models, which are also quite practical, allow for a rigorous mathemati-
cal treatment within the proposed framework. Hard constraint feasibility
is determined by sizing the largest uncertainty set for which the design
requirements are satisfied. Analytically verifiable assessments of robust-
ness are attained by comparing this set with the actual uncertainty model.
Strategies that enable the comparison of the robustness characteristics of
competing design alternatives, the description and approximation of the
robust design space, and the systematic search for designs with improved
robustness are also proposed. Since the problem formulation is generic and
the tools derived only require standard optimization algorithms for their
implementation, this methodology is applicable to a broad range of engi-
neering problems.
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I. Introduction

Design under uncertainty arises in numerous disciplines including engineering, economics,

finance and management. Achieving balance between robustness and performance is one of
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the fundamental challenges faced by scientists and engineers. Trade-offs must be made to

reach acceptable levels of performance with adequate robustness to uncertainty.

Literature in stochastic programming1 and stochastic approximations2 with applications

to structural safety3,4 and probabilistic controls,5 provides several mathematical tools for op-

timization under uncertainty. The algorithms at our disposal can be classified according to

the way they enforce inequality constraints that depend on the uncertain parameters. Hard

Constraints6–10 are those that, for a given uncertainty model, must be satisfied for all possible

realizations of the uncertain parameter (a realization is any possible parameter value within

the uncertainty model). Strategies to solve the resulting semi-infinite optimization problem

usually require nested searches where approximations to the worst-parameter-realization6,11

are made in a inner optimization loop and a growing number of constraints, which depend

on this approximation, are sequentially added to the outer loop. These strategies however,

not only become computationally intractable for uncertain parameters of large dimension;

but more importantly, are unable to provide guarantees of constraint satisfaction. On the

other hand, Soft Constraints are those that can be violated by some parameter realizations.

Chance-constrained programming,1 sampling-based techniques,12–14 asymptotic approxima-

tions5,15 and penalty-based optimization1,10 are some of the strategies commonly used to

handle soft constraints.

For high risk decisions, the achievement and verification of strict constraint feasibility

are crucial tasks. This paper addresses these needs by developing a methodology for robust-

ness analysis and robust-design based on the calculation of certain indicators, called Critical

Parameter Values and Parametric Safety Margins (PSMs). The ideas proposed do not re-

quire sampling/partitioning the parameter space. Instead, they are based on the numerical

solution to an optimization problem. Hence, the resulting assessments are as verifiable as

the convergence to the global minimum. The reference by Crespo et al.16 supports the

developments to be presented herein.

This paper is organized as follows. An overview of the content is introduced first. This

is followed by the motivation and introduction of the mathematical framework. Tests of

robustness and extensions to robust design follow. Two simple examples are used to illustrate

the scope of the methods proposed. A few concluding remarks close the paper.

II. Overview

The concern in this paper is the robustness analysis and robust-design of a system de-

scribed by a parametric mathematical model. The parameters which specify the system are

grouped into two categories: uncertain parameters, which are denoted by the vector p, and

design parameters, which are denoted by the vector d.
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The uncertainty model of p is composed of a support set ∆p, and a designated point

p̄ ∈ ∆p which will be used as an anchor point for defining expansions and contractions of

the support set. The value of the uncertain parameter p is not specified but is assumed to

belong to ∆p. In practical applications, the choice of ∆p is usually made by a discipline

expert. However, the theory presented herein acknowledges that such a choice may be fairly

arbitrary, and addresses the need for quantifying the level of tolerance of the system to

uncertainty in p when a particular d is chosen.

For analysis purposes d is assumed to take on a fixed value, while for design purposes,

d is to be chosen. The design requirements for the system are prescribed by a collection of

constraint functions, which in general depend on both the uncertain and design parameters.

The system is deemed acceptable if all constraint functions are satisfied. For each value of

the design parameter, these constraint functions partition the uncertain parameter space into

two regions, a failure region, where at least one of the design requirements is not satisfied,

and its complement, a safe region where all requirements are satisfied.

One of the tasks of interest is to assign a measure of robustness to a design point based

on measuring how much the uncertainty support set can be expanded without encroaching

on the failure region. This requires specifying what we mean by expanding the support set.

This is where the designated point enters in. Expansion by a factor of α can be viewed in

the following way. Imagine standing at the designated point and looking at any other point

of the support set. Denote the distance from the designated point to the other point by

δ. A Homothetic expansion16 is attained by looking in the same direction and placing the

point at a distance of αδ from the designated point. Note that if α is chosen less than 1, a

contraction of the support set is accomplished. In this paper, dilations must be interpreted as

homothetic expansions or contractions. For hyper-spherical and hyper-rectangular support

sets, we cast the problem of finding the maximal expansion of the support set in terms of an

optimization problem to which standard nonlinear constrained optimization algorithms are

applicable. The robustness of the corresponding design point is proportional to the size of

the maximal expansion.

The failure domain changes with the design point. For each different design point, a

measure of robustness can be calculated. One can then search for a design that admits

the largest expansion of the support set. We show how to cast this search in the form of

a nonlinear optimization problem. The mathematical groundwork for implementing these

ideas is presented next.
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III. Framework

The Uncertainty Model of the uncertain parameter vector p is given by the Support

Set ∆p ⊂ Rdim(p) and the Designated Point p̄ ∈ ∆p which will be used as an anchor for

defining dilations (expansions and contractions) of the support set. The uncertainty model

is specified by the analyst/designer. The intent is that the set ∆p be chosen so that the

actual value of the uncertain parameter p lies somewhere within it. A Realization of the

uncertain parameter is any value of the parameter selected from ∆p. The designated point

is the nominal parameter value. Throughout this paper the designated point is chosen to be

the geometric center of the support set.

Consider now the situation that a system depends on an uncertain parameter p and a

design variable d ∈ Rdim(d). Suppose that g : Rdim(p) × Rdim(d) → Rdim(g) is a set of con-

straint functions on the system, which have been normalized so that positive values represent

constraint violations. If these are considered hard constraints, the system corresponding to

given values of d and ∆p will be judged acceptable if, g(p, d) ≤ 0, ∀p ∈ ∆p. The Failure

Region, denoted as F(d, g) ⊂ Rdim(p), is composed of the parameters that do not satisfy all

the constraints. Specifically, the failure region for the design point d is given by

F(d, g) =

dim(g)⋃
i=1

Fi(d, g),

where, for 1 ≤ i ≤ dim(g),

Fi(d, g) =
{
p ∈ Rdim(p) : gi(p, d) > 0

}
.

The design d is Robust if F(d, g) and ∆p do not overlap. Otherwise, d is Non-Robust. In the

former case, the degree of robustness can be quantified by measuring the separation between

the two sets.

Selecting the set ∆p usually involves some engineering judgment. A natural choice for

the designated point p̄ is the geometric center of ∆p. One reasonable choice for the support

set is a hyper-sphere. The hyper-sphere of radius R centered at p̄, denoted as Sp(p̄, R), is

defined by

Sp(p̄, R) = {p : ‖p̄− p‖ ≤ R} .

Another reasonable choice might be to confine each component of p to a bounded interval.

This is especially desirable when the levels of uncertainty in p are dissimilar. This leads to

the choice of ∆p as a hyper-rectangle. If m is the vector of half-lengths of the sides of the
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rectangle, the hyper-rectangle Rp(p̄, m) is defined by

Rp(p̄, m) = {p : pi ∈ [p̄i −mi, p̄i + mi], 1 ≤ i ≤ dim(p)} .

For purposes of this paper, two uncertainty models will be called Proportional if they

have the same designated point and they are homothetic with respect to that designated

point. Therefore, one of the two support sets can be formed from the other by expansion or

contraction by some positive factor about the common designated point. Call such a factor

the Similitude Ratio and denote it by α. For instance, the hyper-rectangles Rp(p̄, m) and

Rp(p̄, αm) are proportional sets. The relationship between two proportional models, say A

and B, will be denoted as A = H(B, p̄, α).

The notions of Critical Parameter Value and PSM are now introduced. For clarity sake,

the presentation of the material will concentrate on the case where the designated point

is in the non-failure region. The converse case is considered in Section IV-D. Intuitively,

one imagines that a set proportional to the support set of the uncertainty model is being

expanded homotheticly with respect to its designated point until its boundary just touches

the boundary of the failure region. The point(s) where the expanding set touches the failure

region is (are) the Critical Parameter Value(s). The Critical Similitude Ratio is the simil-

itude ratio of that expansion, and the PSM is a metric that quantifies the size of the set

proportional to the support set that has the Critical Parameter Value on its surface. Both

the Critical Similitude Ratio, which is defined for all support sets, and the PSM, which is

defined for support sets which are hyper-spheres or hyper-rectangles, provide a measure of

robustness of a design to parameter uncertainty. The larger they are, the larger the varia-

tion from its designated point to which the uncertain parameter can be subjected without

encountering a constraint violation. The Critical Similitude Ratio is non-dimensional, but

depends on both the shape and the size of the support set. The PSM has the same units as

the uncertain parameters, and depends on the shape, but not the size, of the support set.

The mathematical background for these notions is presented next.

Denote by ∂ the set boundary operator. Let d be a given design and let ∆p, p̄, and g be

prescribed in advance. Any p̃ lying in ∂H(∆p, p̄, α̃)∩∂F will be the Critical Parameter Value

for this design, uncertainty model, and constraint set. Note that the Critical Parameter

Value might not be a realization of the uncertain parameter; i.e., p̃ might not belong to

∆p. Further note that the Critical Parameter Value might not be uniquely determined; i.e.,

∂H(∆p, p̄, α̃)∩∂F might contain several points. Figures 1 and 2 show sketches with relevant

metrics for hyper-spherical and hyper-rectangular supports respectively.

A design point is deemed to be in the Feasible Design Space if it satisfies all the constraints

when the uncertain parameter assumes the value of the designated point. The Robust Design
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Space is the set of designs satisfying the hard constraints for all points of the uncertainty

set of a given uncertainty model. Each member of the Robust Design Space set is a robust

design. Note that if the Robust Design Space exists, it is a subset of the Feasible Design

Space. Formal definitions of the PSMs for hyper-spherical and hyper-rectangular supports

are provided in Section IV, as are expressions for the calculation of these PSMs. In general,

the PSM is uniquely specified by the design point d, the support set ∆p, the designated

point p̄, the constraint functions g, and the similitude ratio α̃. The PSM is proportional

to the degree of robustness of d to uncertainty in p. If the PSM assumes the value of zero,

there is no robustness since at least one of the constraints is active for p̄, i.e. since p̄ is on

the boundary of the failure region there exist arbitrarily small perturbations from p̄ leading

to a constraint violation. The convention is that designs within the Feasible Design Space

assume non-negative PSM values, otherwise they are negative.

IV. Robustness Analysis

Problem Statement: Does the design d satisfy the hard constraints g(p, d) ≤ 0 for

each p ∈ ∆p?

When the structure of the support set is restricted, robustness tests can be established.

A general test applicable to compact sets is available16 in the literature. Robustness tests

for hyper-spherical and hyper-rectangular support sets are considered next. These strategies

are then used to handle supports with other geometries. In what follows we assume that

g(p̄, d) < 0 and ∂Fj =
{
p : gj(p, d) = 0

}
for 1 ≤ j ≤ dim(g).

A. Hyper-Spheres

Hyper-spherical support sets result from uncertainty models where uncertainty is described

by norm bounded perturbations from the nominal parameter value p̄. This implies that

∆p is a hyper-sphere and p̄ is its geometric center. Problems with this class of support

sets are the simplest since the Critical Parameter Value is calculated by solving a set of

minimum norm problems in p-space. The Critical Parameter Value, denoted hereafter as p̃,

for ∆p = Sp(p̄, R) is the p value on the surface of the failure region that minimizes ‖p− p̄‖,
i.e.,

p̃ = argmin
p

{‖p− p̄‖ : p ∈ ∂F} . (1)

This optimization problem is restated as

p̃ = p̃(i), (2)
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where

i = argmin
1≤j≤dim(g)

{
‖p̃(j) − p̄‖

}
, (3)

and

p̃(j) = argmin
p

{
‖p− p̄‖ : gj(p, d) = 0

}
. (4)

Hence, the Critical Parameter Value problem is solved for each individual constraint function,

and the answer is selected which is closest to the designated point. Note that the equality

constraint in Equation (4) is a particular case of p ∈ ∂Fj. By applying certain properties16

in this equation, the constraint gj = 0 can be replaced by gj ≥ 0.

The Spherical PSM corresponding to the design d for ∆p = Sp(p̄, R) is defined as

ρS(p̄, p̃, d)
∆
= ‖p̃− p̄‖, (5)

where p̄ is the designated point of the uncertainty model and p̃ is a corresponding Critical

Parameter Value. If α̃ is the similitude ratio corresponding to the set containing the Critical

Parameter Value on its surface, ρS = α̃R.

A simple robustness test for hyper-spherical supports sets can now be formulated.

P-Test: The design d satisfies the hard constraints prescribed by ∆p = Sp(p̄, R) and

g(p, d) ≤ 0 if and only if ρS ≥ R. This condition is equivalent to α̃ ≥ 1.

A sketch showing relevant quantities is displayed in Figure 1. The Robust Design Space

corresponding to ∆p = Sp(p̄, R) is given by {d : ρS ≥ R}, whose boundary is the iso-

spherical-PSM manifold ρS = R.

B. Hyper-Rectangles

When each component of the uncertain parameter is confined to a prescribed interval, the

support set is a hyper-rectangle. Note that this geometry allows for the manipulation of

sets of parameters having different units and levels of uncertainty. Recall that if p̄ is the

geometric center of the hyper-rectangle, and m is the vector of half-lengths of its sides, the

resulting hyper-rectangle is denoted as Rp(p̄, m). A robustness test for supports with this

geometry is introduced in this section. The mathematical background for this is presented

next.
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Figure 1. Relevant metrics for a circular support.

1. Q-transformation

Let ∆p = Rp(p̄, m) be the support of p. The Q-Transformation, denoted as q = Q(p), is

given by

q
∆
=

max{|k|}k
‖k‖

(6)

where

k = diag{m}−1 (p− p̄) . (7)

The corresponding inverse transformation, p = Q−1(q), is given by

p = p̄ +
‖q‖diag{m}q

max{|q|}
. (8)

The Q-Transformation transforms Rp(p̄, m) into a unit hyper-sphere in q-space centered

at the origin. Q maps sets proportional to the hyper-rectangle to sets proportional to the

hyper-sphere while preserving the similitude ratio, i.e.,

Q(H(Rp(p̄, m), p̄, α)) = H(Sq(0, 1),0, α) = Sq(0, α).

Notice that the Q-transformation introduces derivative discontinuities. These discontinu-

ities occur at points corresponding to p-space points where the faces of hyper-rectangles

proportional to the support set meet.

The Q-transformation enables the easy manipulation of hyper-rectangular sets, e.g., sam-

pling their volumes, surfaces, and determining if a given p is within the set. More impor-

tantly, it allows the identification of the corresponding Critical Parameter Value by solving
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a set of minimum norm problems in q-space. Specifically, the Critical Parameter Value can

be found by solving

p̃ = p̃(i), (9)

where

i = argmin
1≤j≤dim(g)

{
‖Q(p̃(j))‖

}
, (10)

and

p̃(j) = argmin
p

{
‖Q(p)‖ : gj (p, d) = 0

}
. (11)

Hence, the Critical Parameter Value problem is solved for each individual constraint function,

and the answer is the one whose norm in q-space is the smallest. As before, properties of

the Critical Parameter Value allows us to replace the equality constraint with an inequality

constraint.

The Rectangular PSM corresponding to the design d for ∆p = Rp(p̄, m), is defined as

ρR(p̄, p̃, m, d)
∆
=

∥∥∥∥∥Q−1

(
‖Q(p̃)‖ · 1√

dim(p)

)
− p̄

∥∥∥∥∥ , (12)

which is equivalent to α̃‖m‖.
A sketch showing relevant quantities is displayed in Figure 2. Note that p̂ = p̄+ α̃m and

q̂ = Q(p̂). As always, H(R, p̄, α̃) is the maximum set proportional to the support set of the

Figure 2. Relevant metrics for a rectangular support.

uncertainty model which contains no constraint violation points. The rectangular-PSM is

related to the diagonal measure of this hyper-rectangle. This provides comparability between

rectangular-PSMs measured, for example, for different design points and therefore different

constraint geometries and different locations of the Critical Parameter Value. Note that
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H(R, p̄, α̃) is inscribed in a hyper-sphere centered at p̄ of radius equal to its rectangular-

PSM.

2. Infinity Norm Formulation

An alternative way to search for the Critical Parameter Value for hyper-rectangular sup-

ports is presented here. This formulation allows us to circumvent the problems caused by

discontinuities in the gradient of the Q-Transformation.

Recall that the infinity norm in a finite dimensional space is defined as ‖x‖∞ = supi{|xi|}.
Let us define the m-scaled infinity norm as ‖x‖∞m = supi{|xi|/mi}. A distance between the

vectors x and y can be defined as ‖x− y‖∞m. Using this distance, the unit ball centered at

p̄ is just R(p̄, m).

In this context, for a given d, the Critical Parameter Value for the vector of constraint

functions g(p, d) and for an uncertainty model with support set R(p̄, m) and designated

point p̄, results from using the m-scaled infinity norm in Equation (1). This optimization

problem is restated as

p̃ = p̃(i), (13)

where

i = argmin
1≤j≤dim(g)

{
‖p̃(j) − p̄‖∞m

}
, (14)

and

p̃(j) = argmin
p

{‖p− p̄‖∞m : gj(p, d) = 0}. (15)

Hence, the Critical Parameter Value problem is solved for each individual constraint function,

and the answer is selected which is closest to the designated point in the m-scaled infinity

norm. The reader should realize the similarities among the sets of Equations (2-4), (9-11),

and (13-15). Rewriting this using the definition of the m-scaled infinity norm gives

p̃(j) = argmin
p

{
max

1≤k≤dim(p)

|pk − p̄k|
mk

: gj(p, d) = 0

}
.

The “max” can be eliminated and the objective function made differentiable by introducing

the similitude ratio α defined earlier

〈p̃(j), α̃(j)〉 = argmin
p,α

{α : gj(p, d) = 0, |pk − p̄k| ≤ αmk, 1 ≤ k ≤ dim(p)}. (16)

This eliminates non-differentiabilities in the objective functions. Assuming that the con-

straint functions g are continuous, the problem at hand is turned into an “inequality con-

straint only” optimization problem, which is more “optimizer friendly”, by changing the
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constraint on gj from gj = 0 to gj ≥ 0 since the optimum must occur on ∂F . For a fixed

d, if i is given by Equation (14) and α̃ = α̃(i), p̃ = p̃(i) is the Critical Parameter Value

and Rp(p̄, α̃m) is the largest hyper-rectangle proportional to Rp(p̄, m) which fits inside the

non-failure region of the p-space. Another interpretation is that α̃ is the radius of the largest

unit sphere (in the m-scaled infinity norm metric) centered at p̄ which fits inside the p-space

feasible set for the given design d.

With these concepts at hand, a robustness test for hyper-rectangular support sets is for-

mulated as follows

Q-Test: The design d satisfies the hard constraints prescribed by ∆p = Rp(p̄, m) and

g(p, d) ≤ 0 if and only if ‖Q(p̃)‖ ≥ 1. This condition is equivalent to ‖p̃− p̄‖∞m ≥ 1, and to

ρR ≥ ‖m‖.

Recall that the Critical Parameter Values are p values, not necessarily realizations of p, at

the verge of violating at least one of the constraints. The Robust Design Space corresponding

to ∆p = Rp(p̄, m) is given by {d : ρR ≥ ‖m‖}, whose boundary is the iso-rectangular-PSM

manifold ρR = ‖m‖.

C. Bounding Sets

We next look at how the techniques developed so far can be leveraged to provide robustness

tests for support sets with other geometries. The tests and margins above enable a rigorous

assessment of hyper-spherical and hyper-rectangular sets. In this section we use these ge-

ometries as bounding sets of support sets having arbitrary shapes. Studies on the bounding

sets will be used to infer properties of the support set. Conservatism is unavoidably intro-

duced since the design requirements apply to the actual support set, not to the bounding set.

Bounding Test: Let the support set ∆p be of arbitrary shape. Define an outer bounding

set Op as one satisfying ∆p ⊆ Op. If the design d satisfies the hard constraints for the

bounding set Op, the design d satisfies the hard constraints for ∆p; i.e., the design is robust.

On the other hand, if the design d does not satisfy the hard constraints for as much as one

realization p ∈ ∆p, the design d does not satisfy the hard constraints for ∆p; i.e., the design

is not robust.

The P- and the Q-tests can be used to determine the robustness of hyper-spherical and

hyper-rectangular bounding sets. Obviously, conservatism is reduced by using tighter bound-

ing sets. Constraint violations caused by parameter values in the intersection between Op

and the complement set of ∆p might cause a robust design to fail the Bounding Test. Con-

11 of 23

American Institute of Aeronautics and Astronautics



servative approximations to the Robust Design Space for arbitrarily shaped support sets can

be easily calculated using PSMs. For instance, if Op = Sp(p̄, R), the design set {d : ρS ≥ R}
is a subset of the actual Robust Design Space.

D. Designs outside the Feasible Design Space

Thus far we have only considered the case in which the designated point is in the Feasible

Design Space. An extension to the converse case, for which g(p̄, d) has at least one positive

component, is introduced next. One situation in which a need for this extension might arise

is if an automated, optimization driven design procedure varies the design parameter so much

that constraint boundaries move enough to make p̄ a constraint violation point. If p̄ ∈ F c

(where the super-script c denotes the set complement operator), the Critical Parameter Value

for hyper-spherical support sets is given by

p̃ = argmin
p

{‖p− p̄‖ : p ∈ F c} , (17)

= argmin
p

{‖p− p̄‖ : gi(p, d) ≤ 0, i = 1, · · · , dim(g)} .

Expressions for hyper-rectangular support sets are obtained by using ‖Q(p)‖ instead of

‖p− p̄‖ in Equation (17). The corresponding PSMs result from multiplying the right hand

side of Equations (5) and (12) by minus one. Therefore, designs outside the Feasible Design

Space will have negative PSMs. Results must be interpreted accordingly.

Numerical methods typically used to handle soft constraints, such as sampling and relia-

bility methods, are unable to properly address the opening problem statement of Section IV.

Tools for handling soft constraints are based on the estimation of P [F ], the probability of

failure. For hard constraints this probability is zero. Sampling-based methods can wrongly

predict zero failure probabilities as a result of the numerical error incurred by using a finite

number of samples. On the other hand, methods based on asymptotic approximations such

as the First-Order Reliability Method (FORM), will not converge since the limit state surface

∂F does not exist in standard normal space.

For a given set of design requirements, different design architectures lead to different con-

straint structures. PSMs allow for the unbiased comparison of the robustness characteristics

of competing design alternatives having different design architectures. For instance, if d1 is

a design alternative within the design architecture D1 leading to the set of constraints g1,

and d2 is another design alternative within the architecture D2 leading to g2, a comparison

of the robustness of d1 and d2 can be made even though the way in which g1 and g2 depend

upon p and d is different.
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V. Robust-Design

Problem Statement: For a given support set ∆p and a given designated point p̄, find

the design d∗ whose PSM is the largest.

This problem can be posed as follows:

d∗ = argmax
d

{α̃(p̄, ∆p, d, g)} .

If α̃∗ is the Critical Similitude Ratio corresponding to d∗, the set M(∆p, p̄, α̃∗), called the

Maximum Feasible Set, is the largest set proportional to ∆p for which hard constraints

are feasible. Design strategies for hyper-spherical and hyper-rectangular support sets are

presented next. The former case will be referred to as the P-Search while the latter one as

the Q-Search.

The uniqueness of the solution to the problem statement above cannot be guaranteed

unless restrictions6,15 on the way in which g depends on p apply. It may be possible to find

designs whose Critical Parameter Value does not exist, i.e., designs leading to an unbounded

M. In these cases, d is able to eliminate the dependence of the constraints on the uncertain

parameter.

P-Search: If g ≤ 0 is a set of constraints and Sp(p̄, R) is the support set, a design with the

best robustness characteristics, namely dS , and the corresponding maximum feasible set are

given by

dS = argmin
d

{−ρS(p̄, p̃, d)} , (18)

M = Sp

(
p̄, ρS(p̄, p̃, dS)

)
. (19)

Q-Search: If g ≤ 0 is a set of constraints and Rp(p̄, m) is the support set, a design with

the best robustness characteristics, namely dR, and the corresponding maximum feasible set

are given by

dR = argmin
d

{−ρR(p̄, p̃, m, d)} , (20)

M = Rp

(
p̄,

ρR(p̄, p̃, m, dR)m

‖m‖

)
. (21)

Note that −‖q̃‖ can also be used as the objective of the optimization problem in Equation

(20). Details on the derivation of Equation (21) and on the existence of the Robust Design
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Space are available16 in the literature.

Sizing M is an important task in reliability-based design optimization. Probabilistic

techniques, typically used to handle soft inequality constraints, should not be used when the

support set of the probability density function of the uncertain parameter is a subset of M.

Otherwise, numerical error might lead to the false identification of robust designs.

VI. Examples

The methods and tools proposed herein are applicable to realistic engineering problems,

which are in general multi-dimensional, non-linear and for which explicit expressions for the

design requirements are usually unavailable. However, the examples presented next have

been chosen in order to enable the visualization and reproducibility of the results.

A. Two-dimensional Example

A two-dimensional problem in the design variables, i.e., d = [d1, d2]
T , and in the uncertain

parameter, i.e., p = [p1, p2]
T , is considered here. Let the set of constraints be prescribed by

g =


3d2 − 4p2

1 − 4d1p2 sin (p2d1 − p2
1)

− sin (p2
1p2 − sin(2p1 − 2))− d1d2p1 − p2

d1 + p2
1d

2
2 − 4p2

2p1 − 4 sin (2p1 − 2p2)

2(p1 + p2) sin(p2
1 − d2)− 2p1p2 (d2 + 2p2

1 − 2) + d1 − 6p1

 ,

and the designated point be p̄ = [1, 1]T . The contour of the corresponding Feasible Design

Space is marked with a solid thick line in subsequent figures.

This first illustration makes use of a spherical support set, ∆p, centered at p̄. This choice

of support set might indicate the analyst’s judgment that the uncertainty in the uncertain

parameter is geometrical in nature with no distinctions made based on the direction of

perturbation from the designated point. For different design points in the Feasible Design

Space, the PSM ρS is calculated. The resulting PSMs are shown as a function of the design

point d in Figure 3. Recall that, for a given design point, its PSM is the size of the largest

perturbation to p̄ allowed before a constraint is violated. For ease of comparability, the color

scale used in Figure 3 is the same as that in subsequent figures. This figure illustrates that

the design with best robustness characteristics is able to tolerate uncertainty in p = p̄ + u

with ‖u‖ ≤ 0.53. Therefore, variations of less than 0.53 lead to non-empty Robust Design

Spaces. The boundary of the Feasible Design Space is given by the ρS = 0 contour. Notice

that multiple PSM maxima occur (there are local maxima in the vicinity of [−1, 0]T and of

[−2.2,−2.4]T ). More importantly, notice that designs further in from the boundary of the
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Feasible Design Space are not necessarily more robust. This fact is counterintuitive. For

instance, the comparison of d1 = [−2.25,−2.4]T and d2 = [−1,−1]T shows that ρS(d1) �
ρS(d2) even though d1 is much closer to a constraint limiting the Feasible Design Space

than d2. This behavior is contrary to the general perception.

Figure 3. Spherical PSMs.

Now we consider the square support set ∆p = Rp(p̄, m1), where m1 = [1, 1]T . This

choice of support set might indicate the analyst’s judgment that the uncertainties in the com-

ponents of the uncertain parameter are independent of each other, but of about the same

magnitude. The corresponding rectangular-PSM are shown in Figure 4. Larger margins are

now attained. Similarities in the distribution of PSMs arise since the offsets between the

circles, i.e., two-dimensional hyper-spheres, and the squares, i.e., two dimensional regular

hyper-rectangles, used are relatively small. Figure 5 shows the rectangular-PSM values for

Rp(p̄, m2) where m2 = [1, 4]T . This choice of support set might indicate the analyst’s judg-

ment that the uncertainties in the components of the uncertain parameter are independent

of each other, and that the level of uncertainty in the second component is about 4 times

that of the first. Considerable differences in the distribution and magnitude of the PSMs, as

compared to the previous two figures, are apparent. This indicates a strong dependence of

the robustness on the geometry of the support set.

An application of the material of Section IV-C on bounding sets is now presented. Con-
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Figure 4. Rectangular PSMs for R(p̄,m1).

Figure 5. Rectangular PSMs for R(p̄,m2).
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sider the triangular support set shown in the left of Figure 6 with a solid line. The tightest

bounding circle and rectangle are superimposed. Clearly, the rectangle better approximates

the triangular set. The Robust Design Spaces corresponding to both bounding sets, calcu-

lated via spherical-PSMs and rectangular-PSMs, are shown in the right subplot of Figure

6. The Robust Design Space for the bounding circle is filled in with black while the Ro-

bust Design Space for the bounding rectangle is colored in dark gray. As expected, the

Robust Design Space for the rectangle contains the one for the sphere. We have no such

tools for the determination of the true Robust Design Space for the triangular support set,

so we apply an approximation technique. For this, a probability density function having

the triangle as the support set is assumed. In a probabilistic model, the Robust Design

Space is given by {d : P [F ] = 0}. The approximation technique results from estimating

the equality in this expression using sampling. In theory, this approximation depends on

the support set only, not on the probability density function assumed. In practice, this is

not the case due to the numerical error caused by using a sample set of finite size. The

corresponding Robust Design Space approximation is colored with light gray in Figure 6.

The bounding-based approximations are both subsets of the sampling based approximation.

The conservatism introduced by using the bounding circle leads to a considerably smaller

Robust Design Space approximation. Note that the portion of the Robust Design Space in

the vicinity of d = [−2,−2.25]T is completely omitted by this approximation. Evidently,

the Robust Design Space corresponding to the rectangle is a better approximation since the

offset between the rectangle and the triangle is smaller. This conservatism introduced by

bounding might lead to an empty approximation of the Robust Design Space, even though

the actual Robust Design Space is non-empty. Notice however, that while sampling-based

Robust Design Space approximation is the largest, only the approximations resulting from

the bounding sets are verifiable. This is so, since when the support set is a hyper-sphere

or a hyper-rectangle, the actual Robust Design Space, providing it is not empty, can be

calculated exactly.

The tools of Section V for robust-design are used next. While the search for the de-

sign with best robustness characteristics corresponding to a circular support leads to dS =

[−1.65,−0.33]T and M = Sp(p̄, 0.53), the one corresponding to the rectangular support set

Rp(p̄, m2) leads to dR = [0.718, 0.631]T and M = Rp(p̄, 0.26m2). These sets are shown in

Figures 7 and 8 along with the corresponding Critical Parameter Values. Note that chang-

ing the design point has altered the constraint boundaries. Three Critical Parameter Values

exist in both cases. Recall that support sets proportional and larger than M lead to an

empty Robust Design Space.
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Figure 6. Left: triangular support set and outer bounding sets. Right: corresponding Robust
Design Space approximations.

Figure 7. Maximum feasible set

B. Flutter Speed Analysis

In this example we study the flutter speed of the simple aeroelastic model shown in Figure 9.

Reference17 provides supporting information. While the aerodynamic forces and moments

are applied at the quarter chord point of the wing, the location of the center of gravity of

the system can be adjusted by changing the distance d between the movable mass m2 and
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Figure 8. Left: maximum feasible set proportional to R(p̄,m2). Right: corresponding set in
q-space.

Figure 9. Two degrees of freedom flutter model

the elastic axis A. The linearized equations of motion are given by ẋ

ẍ

 =

 0 I

−M−1K −M−1C

 x

ẋ

 , (22)
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where x = [q1, q2]
T is the state space vector and

M =

 m1 + m2 m1l + m2d

m1l + m2d IA + m2d
2

 , C = qs

 Clα/4 0

−cClα/(4u) −cCmα

 ,

K =

 k1 qsClα

0 k2 − qscClα/4

 .

In these expressions, m1 is the mass of the wing, l is the distance between A and the center

of gravity of the wing, c is the cord length, s is the wing’s reference area, IA is the moment

of inertia of the wing about A, q is the dynamic pressure, u is the free stream velocity, Clα

and Cmα are stability derivatives, and k1 and k2 are the bending and torsional stiffnesses

respectively. For simplicity sake we have assumed that d varies slowly enough to neglect the

Coriolis effect.

Figure 10. Spherical-PSMs in the nominally stable 〈u, d〉 space

The following numerical values are assumed: m1 = 0.5 kg, m2 = 0.5 kg, l = 0.1 m,

IA = 0.1 kgm2, q = 0.6125u2 kg/m3, s = 1 m2, and c = 1 m. The parameters Clα, Cmα,

k1 and k2 are considered uncertain. A non-dimensional p-space is obtained by using the
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parametrization

[Clα, Cmα, k1, k2]
T = diag{[2π, 0, 6× 105, 105]}p + diag{[0, 0.01, 0, 0]}(p− p̄),

where p̄ = [1, 1, 1, 1]T . Design requirements for flutter speed are given by the set of con-

straints gi = Re{λ(i)}/‖λ(i)‖ for i = 1, . . . , 4; where λ(i) is the i-th eigenvalue of the matrix

in Equation (22).

In this example, the Feasible Design Space is given by the 〈u, d〉 pairs for which the system

is stable when p = p̄. The distribution of spherical-PSMs in the Feasible Design Space is

shown in Figure 10. The position of the moving mass that maximizes the spherical-PSM at

each particular u is superimposed.

Figure 11. Rectangular-PSMs in the nominally stable 〈u, d〉 space

Expansions of the hyper-rectangle centered at p̄ with m = [20, 4, 5, 10] lead to Figure

(11). As before, the most robust positions of the moving mass are superimposed. Note

that the local maximum near 〈u, d〉 = 〈48,−0.06〉 makes the resulting trail discontinuous.

Note also that in the vicinity of this maximum the rectangular-PSM function ρR(u, d) is

also discontinuous. This phenomenon implies that a differential change in u or d produces

a sizable, non-small change in F , hence on the corresponding PSM. Sudden changes like

this one denote the occurrence of a bifurcation. The comparison of Figures (10) and (11)

indicates the sensitivity of the robustness metrics to the geometry of the uncertainty model.
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VII. Concluding Remarks

A methodology for robustness analysis and robust-design of systems subject to para-

metric uncertainty has been proposed. Emphasis was given to uncertainty sets prescribed

or bounded by hyper-spheres or hyper-rectangles. The tools developed herein enable the

exploration of the targeted regions of the design space where the design requirements are

satisfied for all parameter values in the uncertainty set. Formal assessments of robustness

are possible since these sets lend themselves to a rigorous mathematical treatment for which

sampling/partitioning the parameter is not required. Extensions that enable the efficient

search for designs with improved robustness characteristics have also been proposed. By siz-

ing the maximum uncertainty set for which the design requirements are still satisfied, we can

determine the transition point at which hard constraints can no longer be enforced. A com-

parison of any given uncertainty model, deterministic or probabilistic, with the maximum

set enable us to determine which numerical methods must be used. This is of paramount

importance since numerical tools typically used in reliability-based design optimization, such

as sampling and the first order reliability method, are inapplicable, ineffective, or inconclu-

sive when dealing with hard constraints. The scope of the ideas proposed is generic, making

them applicable to a broad spectrum of engineering problems.
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