Iron-tolerant cyanobacteria: ecophysiology and fingerprinting

I.I. Brown¹, D. Mummey², J. Lindsey³, D.S. McKay¹

¹ NASA Johnson Space Center, Houston, TX, 77058, USA
² University of Montana, 59812, USA
³ Lunar and Planetary Institute, Houston TX 77058, USA

Although the iron-dependent physiology of marine and freshwater cyanobacterial strains has been the focus of extensive study, very few studies dedicated to the physiology and diversity of cyanobacteria inhabiting iron-depositing hot springs have been conducted. One of the few studies that have been conducted [B. Pierson, 1999] found that cyanobacterial members of iron depositing bacterial mat communities might increase the rate of iron oxidation in situ and that ferrous iron concentrations up to 1 mM significantly stimulated light dependent consumption of bicarbonate, suggesting a specific role for elevated iron in photosynthesis of cyanobacteria inhabiting iron-depositing hot springs.

Our recent studies pertaining to the diversity and physiology of cyanobacteria populating iron-depositing hot springs in Great Yellowstone area (Western USA) indicated a number of different isolates exhibiting elevated tolerance to Fe³⁺ (up to 1 mM). Moreover, stimulation of growth was observed with increased Fe³⁺ (0.02 – 0.4 mM).

Molecular fingerprinting of unialgal isolates revealed a new cyanobacterial genus and species Chroogloeocystis siderophila, an unicellular cyanobacterium with significant EPS sheath harboring colloidal Fe³⁺ from iron enriched media. Our preliminary data suggest that some filamentous species of iron-tolerant cyanobacteria are capable of exocytosis of iron precipitated in cytoplasm.

Prior to 2.4 Ga global oceans were likely significantly enriched in soluble iron [Lindsay et al, 2003], conditions which are not conducive to growth of most contemporary oxygenic cyanobacteria. Thus, iron-tolerant CB may have played important physiological and evolutionary roles in Earths history.
