Lab-scale study of the calcium carbonate dissolution and deposition by marine cyanobacterium *Phormidium subcapitatum*.

S.G. Karakis\(^1\), E.G. Dragoeva\(^1\), T.I. Lavrenyuk\(^1\), A. Rogochiy\(^1\), L.M. Gerasimenko\(^3\), D.S. McKay\(^2\), and I.I. Brown\(^1,2\)

\(^{1}\)Odessa National University, Odessa, 65026, UKRAINE; \(^{2}\)NASA JSC, Houston, TX, 77058, USA; \(^{3}\)Institute of Microbiology, RAS, Moscow, Russia.

Background Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens *et al.* 1985; Kazmierczak *et al.* 1986; R. Riding 1992). However, the effect of [Na\(^+\)] on calcification in marine cyanobacteria has not been discussed in detail although [Na\(^+\)] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na\(^+\)] on CaCO\(_3\) deposition and dissolution by marine cyanobacterium *Phormidium subcapitatum*.

Methods Marine cyanobacterium *P. subcapitatum* has been cultivated in ASN-III medium. [Ca\(^{2+}\)] fluctuations were monitored with Ca\(^{2+}\) probe. Na\(^+\) concentrations were determined by the initial solution chemistry.

Results It was found that the balance between CaCO\(_3\) dissolution and precipitation induced by *P. subcapitatum* grown in neutral ASN III medium is very close to zero. No CaCO\(_3\) precipitation induced by cyanobacterial growth occurred. Growth of *P. subcapitatum* in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca\(^{2+}\) concentration within a Na\(^+\) concentration range of 50 – 400 mM. Calcium carbonate precipitation occurred during the log phase of *P. subcapitatum* growth while carbonate dissolution was typical for the stationary phase of *P. subcapitatum* growth. The highest CaCO\(_3\) deposition was observed in the range of Na\(^+\) concentrations between 200 – 400 mM. Alkaline pH also induced the clamping of *P. subcapitatum* filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO\(_3\) followed by enlargement of those particles’ size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10 – 100 mM Na\(^+\); calcite in the solution containing 200 mM Na\(^+\); and aragonite in the solution containing with 400 mM Na\(^+\). Typical present-day seawater contains xxmM Na\(^+\). Early (Archean) seawater was likely less saline.

Conclusion The division of marine cyanobacterium *P. subcapitatum* is associated with periodic deposition and dissolution of CaCO\(_3\), the rhythms and intensity of which are dependent on concentrations of both OH\(^-\) and Na\(^+\). Thus, the role of present-day marine cyanobacteria in the global carbonate cycle might be reduced to aggregation and re-crystallization of available CaCO\(_3\) particles in marine water rather than long-term precipitation and accumulation of CaCO3 deposits. For lower Na\(^+\) concentrations, precipitation of carbonates by cyanobacteria would be even less significant. These results suggest that the lack of calcified cyanobacteria in stromatalite-bearing Precambrian sequences can be explained not only by high dissolved inorganic carbon concentrations but also by lower salinity, as well as possible lower pH compared to present-day oceans.