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A Simple Stochastic Model for Generating Broken Cloud Optical Depth 

and Top Height Fields 

Abstract 

A simple and fast algorithm for generating two correlated stochastic two- 

dimensional (2D) cloud fields is described. The algorithm is illustrated with two broken 

cumulus cloud fields: cloud optical depth and cloud top height retrieved from Moderate 

Resolution Imaging Spectrometer (MODIS). Only two 2D fields are required as an input. 

The algorithm output is statistical realizations of these two fields with approximately the 

same correlation and joint distribution functions as the original ones. The major 

assumption of the algorithm is statistical isotropy of the fields. In contrast to fractals and 

the Fourier filtering methods frequently used for stochastic cloud modeling, the proposed 

method is based on spectral models of homogeneous random fields. For keeping the 

same probability density function as the (first) original field, the method of inverse 

distribution function is used. When the spatial distribution of the first field has been 

generated, a realization of the correlated second field is simulated using a conditional 

distribution matrix. This paper is served as a theoretical justification to the publicly 

available software that has been recently released by the authors and can be freely 

downloaded from http://i3rc.gsfc.nasa.gov/Public codes clouds.htm. Though 2D rather 

than full 3D, stochastic realizations of two correlated cloud fields that mimic statistics of 

given fields have proved to be very useful to study 3D radiative transfer features of 

broken cumulus clouds for better understanding of shortwave radiation and interpretation 

of the remote sensing retrievals. 



1. Introduction 

In order to better understand and predict shortwave radiation in realistic cloudy 

atmospheres, we need to specify 3D distribution of cloud liquid water. Also, statistical 

cloud retrievals that include 3D radiative transfer require a large number of 3D cloud 

fields (Evans et al., 2007). Realistic cloud fields and spatial distributions of cloud liquid 

water can be obtained from either dynamical or stochastic cloud models. Based on cloud 

dynamics, physical (or dynamical) cloud models such as a large eddy simulation (LES) or 

a cloud resolving model (e.g., Ackerman et al., 1995) are physically consistent but 

require specification of a lot of atmospheric parameters and often are computationally 

expensive. On the other hand, stochastic cloud models based on aircraft, satellite or 

ground measurements of cloud structure are computationally inexpensive though they are 

mostly 2D since currently there are no techniques to measure a full 3D cloud structure. 

For the last two decades many different cloud stochastic models have been 

developed. We break them into two classes. The first class of cloud models uses only a 

few parameters to simulate the main aspects of the realistic cloud fields like mean, 

standard deviation and correlation often assumed to be a power-law. These models are 

very simple and are generally used to test hypothesis and better understand cloud- 

radiation interaction. These are the fractionally-integrated cascade model (Scherzer and 

Lovejoy, 1987), the bounded cascades (Cahalan, 1994; Marshak et al., 1994), the 

fractional Brownian motion (Voss, 1995), the Fourier filtering of Gaussian noise (Barker 

and Davies, 1992; Evans, 1993; Varnai 2000), the Poisson distribution of cloud elements 

(Zuev and Titov, 1995) to name a few. These models generally produce an unbroken 

(overcast) 2D x-y field of cloud optical depth or cloud liquid water path. To obtain the 
' desired cloud fraction, a simple threshold can be used (e.g., Barker and Davies, 1992; 

Marshak et al., 1998). 

The second class of cloud stochastic models provides a statistical reconstruction 

of an observed field and generates the detailed cloud structure. They are also called 

statistical cloud generators (Venema et al., 2006, Schmidt et al., 2007). These cloud 

models are usually 3D rather than 2D. For cumulus clouds, Evans and Wiscombe (2004) 

use time-height radar data to generate 2D realizations of cloud liquid water that are 



generalized to 3D fields assuming statistical homogeneity and horizontal isotropy. For 

stratocumulus clouds, Di Giuseppe and Tompkins (2003) generate 3D cloud liquid water 

fields combining stochastic horizontal models based on power spectrum and Fourier 

filtering (at each height) with realistic vertical profiles of total water and temperature. 

From radar time-height series using Fourier transform technique, Hogan and Kew (2005) 

generate realistic 3D cirrus cloud with fallstreak structure changing vertically the slope of 

the power spectrum. Venema et al. (2006a,b) generate a surrogate cloud field with liquid 

water distribution and spatial correlation (through power spectrum) statistically similar to 

the observed one. Venema et al., (2006b) also compare radiative properties of LES 

clouds with its surrogate fields and Venema et al., (2006a) provide an excellent review of 

different cloud generators. Finally, we mention the Scheirer and Schmidt (2005) 

generator that reproduces cloud fields of liquid water and effective radius using aircraft 

data. Schmidt et al. (2007) used cloud fields simulated by the last three generators as 

input to a 3D radiative transfer model to compare its output with the radiative flux 

measurements. 

The current paper describes a simple stochastic model that belongs to the second 

class of cloud stochastic models. For given 2D fields of cloud optical depth and cloud 

top height, the model generates realizations of these two fields with the same correlation 

function and joint distribution as the original ones. In contrast to Evans and Wiscombe 

(2003), it does not generate 3D cloud liquid water fields but rather provides the x-y fields 

of cloud optical and geometrical thicknesses (assuming a constant cloud based). To 

simulate the required autocorrelation function, it uses spectral models of homogeneous 

random fields (Prigarin, 1995, 200 1) rather than commonly used Fourier filtering (e.g., 

Evans, 1993; Di Giuseppe and Tompkins, 2003; Evans and Wiscombe, 2004; Hogan and 

Kew, 2005; Venema et al., 2006b). Another distinguishable feature of this paper is that it 

provides a theoretical background to the publicly available software that has been 

recently developed and released by the authors. (To download, go to 

http://i3rc.gsfc.nasa.gov/Public codes clouds.htm and click on PDF-based stochastic 

cloud model or go directly to 

htt~://ser~eim.~ri~arin.~oo~lepa~es.com/SimCloudField2.WEB.ziw). Note that at 

present, the software runs only on Windows PCs. 



The plan of the paper is as follows. Next section briefly discusses two stochastic 

models of broken cloudiness that are based on a truncated Gaussian homogeneous field. 

The (auto)correlation function of a 2D field defines its structure. Section 3 describes how 

to generate a quasi-Gaussian field with a given autocorrelation function that is retrieved 

from the covariance of the indicator function of the original field. Section 4 then explains 

how to modify the field to reproduce the observed distribution. Finally in Section 5 we 

generate the second field using joint distribution of the given fields of cloud optical depth 

and cloud top height. Section 6 illustrates the theory with MODIS data while Section 7 

summarizes the main steps of the proposed algorithm and discusses its applications. 

Section 8 gives a brief summary of the results. At the end, the Appendix demonstrates 

the relations between the covariance functions of a Gaussian random filed and its 

indicators. 

2. Quasi-Gaussian model of broken cloudiness 

Let us assume that our cloud field has a constant cloud base at height Ho and a 

variable cloud top described by 

Here v(x,y) is a homogeneous Gaussian field with zero mean and unit variance, and a 

normalized correlation function K(x,y) (with K(0,0)=1). The point (x,y,z) belongs to a 

cloud if Ho s z I w(x,y). A value w(x,y) = Ho simply means that there is a cloud gap in 

the horizontal point (x,y). The cloud top field w has two parameters: a and d. Parameter 

a > 0 stretches the cloud top field vertically and parameter d defines the truncation level 

(compare with Marshak et al., 1998). 

Simultaneously with Eq. (la) we consider another model [Kargin and Prigarin, 

19881 of cloud top, 

We will call Eqs. (la) and ( lb)  by model A and B, respectively. Figure 1 illustrates the 

difference between the two models. We can see that for model A, positive d corresponds 

to a broken cloud field while negative d rather corresponds to a more "overcast" cloud 



with a few gaps. It can be easily shown that cloud fraction A, has a different value for 

both models, namely: 

for model A, 

for model B, where 

is the cumulative normal distribution function which ranges between 0 and 0.5 for 

negative d and between 0.5 to 1 for the positive ones. 

For both models we can determine the average number of clouds per unit area, m,. 

Obviously m, will depend on d and autocorrelation function K. For isotropic fields, one 

obtains (e.g., Sveshnikov, 1968, Eq. (45.51), pg. 441) 

where i=l for model A and i=2 for model B. Here k > 0 is the second derivative of K(x,y) 

with respect to x or y (which are equal for isotropic fields). Figure 2 shows the 

dependence of m, on cloud fraction A, for both models and isotropic fields. We see that 

number of clouds first increases with cloud fraction and then decreases. This is because 

cloud fraction A, itself monotonically decreases with the truncation level d while number 

of clouds m, first increases with d then decreases (see Fig. 1). Note that for model A, 

number of clouds m, for A, > 0.5 ( d 4 )  is not defined. Generalization of Eq. (3) to 

anisotropic fields is straightforward [Prigarin and Marshak, 20051. 

To summarize, both cloud models A and B are uniquely determined by 

parameters a and d and a correlation function K. To simulate a cloud field with a given 

cloud fraction A,, we first solve Eq. (2) for the truncation level d. Then one needs to 

generate the correlation function K(x,y) based on some additional information on 

correlation in a real cloud field. Finally, parameter a is determined from a simple one- 



point statistics of the cloud top field. The most difficult part of such an approach is the 

choice (or generation) of the correlation function K, it will be discussed in the next 

section. 

3. Correlation function 

The correlation function defines the geometrical structure of a cloud field, the size 

and distribution of individual clouds and space between them. Perhaps the simplest 

and/or the most deterministic isotropic cloud field used in the first stochastic models can 

be defined by a Bessel function of the first kind, Jo (see, Gikhman and Skorokhod, 1977, 

pg. 87). In this case, the correlation function 

where parameter p is responsible for cloud sizes (the larger p the smaller an average 

cloud is.) It is easy to see that 

Thus to define p, one uses Eq. (3) that relates the average number of clouds per unit area, 

m,, and second derivative k. Because p is fixed, the use of correlation function (4) is very 

limited and cloud fields based on it are unrealistic (see Fig. 3 as an example). 

To generalize (4), Prigarin et al. (1998) used the radial spectral density of a 

Gaussian field, z(p), and representation of correlation function as an integral over all 

cloud sizes p of a product between z(p) and Jo, 

Here, z(p) 2 0 and iz(p)dp = 1 . Varying z(p), in general, one can get "any" correlation 
0 

function of a random isotropic field on the plane. 

Below we briefly describe a general procedure of generating correlation function 

K(x,y) based on observations leaving the details for Appendix. As an illustration, in 



Section 6 we apply our algorithm to a broken cloud scene retrieved from Moderate 

Resolution Imaging Spectrometer (MODIS). 

Let I(x,y) be an indicator function (a binary cloud mask) that takes value 1, if 

there is a cloud above point (x,y), and 0 otherwise. Based on observations, we can 

estimate the mathematical expectation of I,  which is a cloud fraction A,, i.e., 

and its covariance function, 

KI(~,Y) = E[I(x,y) Z(0,0)1 - (8) 

It is known (Ogorodnikov and Prigarin, 1996, pg. 65) that the covariance function K,(x,y) 

of the indicator field Z(x,y) and correlation function K(x,y) of a Gaussian field v(x,y) are 

nontrivially related (see, Appendix). This relationship allows us to retrieve correlation 

function K(x,y) from the measured covariance function K,(x,y). The main steps of the 

retrieval are described in Appendix. Note that the truncation level d is uniquely defined 

from Eqs. (2) and (7). 

4. Geometrical thickness with a given density 

Equations (la) and (lb) alone do not allow us to control the distribution of cloud 

geometrical thickness, w(x,y)-H,. Determined by Eqs. (la) and (1 b), this distribution is a 

scaled up (a > 1) or down (a < 1) truncated (by a parameter d) Gaussian distribution; its 

density is defined by 

1 
where q(x) = -exp(-x2 1 2) is a standard Gaussian density. However, the observed 

2 n  

distribution of cloud thickness does not necessarily satisfy Eq. (9). In general, one has to 

modify Eqs. (la) and (lb) in order to reproduce the observed distribution. We describe 

below a modification of a Gaussian model that allows reproduction of any given 

distribution. This modification is based on the method of inverse distribution function 

widely used in statistical modeling (e.g., Ogorodnikov and Prigarin, 1996, pg. 65-71). 



Let g(h) (h > 0) be a density of the observed distribution of cloud thickness. We 

denote its distribution function by 

It is easy to see that if 

is the distribution function with density fl(h) defined in Eq. (9) with a = 1 and 6 is a 

random variable distributed with the density f, thenG-'~(e)  will have a density of the 

observed distribution of cloud geometrical thickness. Indeed, if F is the distribution 

function of 6 then F(5) is uniformly distributed on the interval (0,l) (see, for example, 

Gentle, 2003, p. 42) and thus G"F(6) will have density g. 

This leads us to the following modification of Eqs. (la) and (lb): 

for model A, and 

for model B. 

In contrast to (la) and (lb), distributions of cloud thickness w(x,y)-Ho defined by 

either (12a) or (12b) match the observed probability distribution G(h). In addition, we 

recall that v(x,y) is a homogeneous Gaussian field with zero mean and unit variance; its 

correlation function K(x,y) is retrieved from the covariance function K,(x,y) of the 

observed cloud mask field I(x,y). For both models, parameter d is uniquely determined 

from the average value of I(x,y), i.e. cloud fraction A, (see (7)). 

5. Joint distribution of optical and geometrical thicknesses 

We assume here that we have two random variables: cloud optical depth z(x,y) 

and cloud geometrical thickness h(x,y). Then a pair (z,h) will be a two-dimensional 



variable and P(zl< z < z,, hl< h < h,) will be the probability that the values of z and h fall 

in the intervals (z,,z2) and (h,,h,), respectively. 

Practically (see next section), when two matrixes z and h are given from 

observations, we first subdivide all their values into M and N bins, respectively. Then we 

calculate a conditional distribution matrix, 

P(m,n) = P(z is in m's bin I provided h is in n's bin), m=1, ..., M; n=l, ..., N. (13) 

Now, if we assume that we have a realization of one variable, say h, then using the 

conditional distribution matrix P we can simulate a distribution of a second variable, 7. 

This is a straightforward procedure similar to a simulation of random number with a 

given distribution. As a result for each point (x,y) we will get both z(x,y) and h(x,y). 

Note that the order of simulation (first z and then h or first h and then z) is irrelevant for 

the reproduction of the two-dimensional distribution. 

Note that realizations of the second component generated using a conditional 

distribution matrix (13) are usually more stochastic (or noisy) than the given one. This is 

especially well pronounced if the original field has a strong spatial heterogeneity, e.g. the 

highest values are localized in several neighboring pixels. In a simulated field, these 

high values are not necessarily well localized and sometimes can be distributed through 

the whole scene making it much noisier. This problem has been discussed in more details 

in Prigarin and Marshak (2007). 

6. Illustration with MODIS data 

To illustrate the above theory with observations, we have selected a 1 km spatial 

resolution MODIS 68 km by 68 km broken cumulus cloud scene (Fig. 4a) from a less 

polluted region in Brazil, centered at 17" S and 42" W. The data were acquired on August 

9, 2001 at 10: 15 am local time. The solar zenith angle 8,=41°. This scene is part of the 

International Comparison of 3D Radiative Transfer Codes (I3RC) phase 3 (Cahalan et al., 

2005) and has been used for the analysis of the retrieved droplet size by Marshak et al. 

(2006) and for the radiative effects of broken clouds on aerosol retrievals by Wen et al. 

(2007). Cloud fraction in the scene, Ac=0.4. The MODIS image is collocated with a high 



spatial resolution (15 m) Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) image (Yamagushi et al., 1998) plotted in Fig. 4b. The solar 

azimuth angle <p,=23" (from upper right corner) as can be confirmed from the casting of 

the shadows. 

In panel (c) and (d) we have also added the retrieved cloud optical depth and 

cloud top height at a 1 by 1 km resolution. While the retrieved 1 by 1 km cloud optical 

depth is an operational MODIS product, the operational cloud top height retrievals have a 

5 by 5 km resolution. To estimate the 1 by 1 km resolution of cloud top height, as in 

Wen et al. (2007), we used the brightness temperature at 11 pm (MODIS band 31). As a 

result, panels (c) and (d) will be served as the basic scenes for our illustration. 

First, Fig. 5a shows the indicator function I(x,y) of the cloud optical depth field 

from panel 4c. Cloud fraction, as a mathematical expectation of I defined in (7, will be 

0.4. The right panel, Fig. 5b, is an indicator function of a realization of a simulated field 

that has then the same correlation function K(x,y) as the measured one. As shown in 

Appendix, to get K(x,y) we first estimated the covariance function K, defined in (8) and 

then retrieved K(x,y) with the help of the Owen function (Prigarin et al., 2004). 

Next we illustrate how distribution of cloud optical depth can be reproduced using 

Eq. (12a). This is Model A which is, perhaps, better agrees with the results of 

observations than model B (Prigarin and Marshak, 2005). Four realizations of cloud 

optical depth distribution are plotted in Fig. 6. All of them have approximately the same 

correlation function K(x,y) and probability density function g(7) as the original cloud 

optical depth field shown in Fig. 5c . Figure 7 illustrates these five pdfs: the original one 

and four realizations of cloud optical depth from Fig. 6. 

Now we illustrate joint distribution of optical depth and cloud top height. Figure 

8 shows a joint distribution function while Fig. 9 shows an example of two conditional 

distributions F(hlz) for ~=3.5&0.5 and ~=10&1. The distributions of cloud top height h are 

obviously different. Finally, Fig. 10 for the realization of cloud optical depth plotted in 

Fig. 6b shows three realizations of cloud top height. As we can see from Fig. 11 their 

pdfs match (approximately) the original pdf of cloud top height from Fig. 4d. 



7. Main steps of the model 

Based on the above description, a software that generates realizations of cloud optical 

depth and cloud top height from given observations have been developed and is freely 

available for download from http://i3rc.gsfc.nasa.rrov/Public codes clouds.htm (click on 

PDF-based stochastic cloud model). Note that at present, the software runs only on 

Windows PCs. 

Let us summarize here the main steps of the simulation procedure. Note that there are 

only two input files: cloud optical depth z(x,y) and cloud geometrical thickness h(x,y) (as 

shown in Figs. 4c and 4d). The main 11 steps are the following: 

1. Read input file z(x,y) ; 

2. Get cloud fraction A,, as in (7); 

3. Find the truncation level d, as in (2); 

4. Compute covariance function of the indicator field K,, as in (8); 

5. Estimate correlation function K, as in Appendix; 

6. Generate a Gaussian field, as in (1); 

7. Modify the Gaussian field, as in (12); 

8. Read input file h(x,y); 

9. Calculate joint distribution of zand h fields, as in Fig. 8; 

10. Calculate a conditional distribution matrix, as in (13); 

11. Simulate a realization of the h-field that corresponds to a realization of the T-field 

generated at step 7; 

In the software, the first 7 steps are accomplished by the executable file Ox-sp-a- 

s.exe. The input file is matrix ~(x,y). The output files are: a realization of cloud optical 

depth field, estimated autocorrelation function of the indicator field, computed 

autocorrelation function of the Gaussian field and histograms of the input and output 

optical depth fields. The executable file DISTR-M2.exe estimates a joint distribution 

function of two random fields z(x,y) and h(x,y). The output files of this program are joint 

and conditional distributions (steps 8-10). For the last step, the executable file 

X-Ysim.exe is used. It provides a realization of cloud top height field. 



8. Summary 

Cloud stochastic models proved to be an important tool to study 3D radiative effects 

in clouds, especially in broken cumulus clouds (e.g., Barker and Davies, 1992, Evans, 

1993, Marshak et al., 1998, Varnai, 2000, Evans and Wiscombe, 2004, Schmidt et al. 

2007). Here we have provided a theoretical description of a simple algorithm that 

generates realizations of two correlated stochastic two-dimensional (2D) cloud fields that 

have similar statistical characteristics as given cloud fields. Each step of the algorithm 

has been illustrated with two broken cumulus cloud fields: cloud optical depth and cloud 

top height retrieved from MODIS. While most stochastic cloud models use Fourier 

filtering of Gaussian signal to generate the required correlation (e.g., Schertzer and 

Lovejoy, 1987; Evans, 1993; Di Giuseppe and Tompkins, 2003; Evans and Wiscombe, 

2004; Hogan and Kew, 2005; Venema et al., 2006b), our algorithm is based on spectral 

models of homogeneous random fields (Prigarin, 1995, 2001). A nonlinear 

transformation of Gaussian functions (the method of inverse distribution function) allows 

us to keep distribution function similar to the one of the first original field. Realizations 

of the correlated second field are generated using a conditional distribution matrix. 

This paper is accompanied by a software that has been just released and can be freely 

downloaded from http://i3rc.gsfc.nasa.gov/Public codes clouds.htm. The software 

generates a two-component cloud field and provides programs to simulate two- 

dimensional distributions. The software contents a program (Ox-sp-a-s) that generates 

realizations of a broken cloud field (X) with similar statistical characteristics 

(autocorrelation, density, and indicator functions) as the first given sample, a program 

(DISTR-M2) that estimates joint and conditional distributions for two given samples and 

a program (X-Ysim) that simulates sample Y while the sample X is given. At present, 

the software runs only on Windows PCs but will be later extended to other platforms. 
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Appendix. Relations for covariance functions of a Gaussian random filed and its 

indicators 

Assume that v(x) is a homogeneous Gaussian random field on the plane with 

mean zero and correlation function K(x,y)=E[v(x,y) v(0,0)]. Let us consider two indicator 

fields with respect to a fixed level d: 

0 for v(x,y)<d 
I(')(X,~)= 

1 otherwise ' 

0 for lv(x,y)l<d 
(x,y)= 

1 otherwise 

These indicators correspond to Model A (la) and Model B (lb) introduced in Section 2. 

In this Appendix we present basic relations between covariance functions of the random 

field v(x,y) and its indicators (for details, see Prigarin et al., 2004). For covariance 

functions K@)(x, y) =E [l(")(x,y) l@)(0,0)] we have 

where 

and 

is the probability density of a two-dimensional Gaussian random vector with zero mean, 

unit variance of the components and correlation coefficient p between the components. 

To find the correlation function K(x,y) of the Gaussian random field for a quasi- 

Gaussian model of broken clouds it is necessary to estimate function K(n)(x,y) that is the 

covariance function of the cloud indicator field and to solve numerically equation (Al) 

(n=l for Model A and n=2 for Model B). For computations it is reasonable to use the 

following representations of (A2) in terms of Owen's function: 

R(')(p) = @(-d)-2T(dya), R(')(~) =4@(-d)-4[T(d,a)+T(d, 1 la)], 644) 



where 0 is the standard normal cumulative distribution function, a = ,/- 
and 

1 a du 
~ ( d , a ) = - j  exp[-d2(l+u2)/2]- 

2n 0 1+u2 (A51 

is Owen's function. 
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Figure 1. A schematic illustration of models A and B. H, is a constant cloud base, d is a 

cutting threshold level. 
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Figure 2. Number of clouds per unit area, m,, as a function of cloud fraction A, for both 

models A and B . 



Fig. 3. Configuration of cloud fields (300*300 km) for model A (left) and model B 

(right) on the basis of a Gaussian random field with correlation function J, for the same 

cloud fraction A,=0.58 (p=0.5; d= - 0.20 for model A, and d=0.55 for model B). 
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Figure 4. A 68 km by 68 km region in Brazil centered at 17" S and 42" W collected on 

August 9,2001 at 1015 local time. The solar zenith angle 8,=41°; the solar azimuth angle 

cpO=23" (from the top). (a) MODIS true color RGB 1 km resolution; (b) ASTER RGB 15 

m resolution; (c) retrieved cloud optical thickness; (d) retrieved cloud top height. 



Figure 5. Indicator functions I(x,y) of a cloud field: red is cloud (I=l) while black is a 

cloud free area (I=O). Cloud fraction Ac=0.4. (left) 68 by 68 km MODIS image centered 

at (17. lo S,42.16OW) acquired on August 9,2001. (right) a realization of a simulated 

field. 



Figure 6. Four realizations of cloud optical de 

function K(x,y) and histogram g(z) as the one i 

Fig. 4c. 

,pth; all of them have the same correlation 

n Fig. 4c. Color scale is the same as in 



optical depth 

Figure 7. The original histogram g(2) and four other histograms that correspond to four 

realizations of cloud optical depth shown in Fig. 6. 
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Figure 8. Joint distribution of the given cloud optical depth and cloud top height fields. 



Figure 9. 
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Figure 10. (a) One realization of cloud optical depth from Fig. 6b. Three realizations of 

cloud top height distribution; they correspond to cloud optical depth shown in panel (a). 

All realizations have the same conditional distribution F(hlz). 
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Figure 11. A probability density function of three realizations of cloud top height shown 

in Fig. 10. The original pdf of cloud top height from Fig. 4d is also shown. 


