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ABSTRACT 

We report the detection and localization of X-ray emitting ejecta in the 
middle-aged Galactic supernova remnant Puppis A using five observations with 
the Suzaku X-ray Imaging Spectrometer to survey the eastern and middle por- 
tions of the remnant. A roughly 3' x 5', double-peaked region in the north center 
is found to be highly enriched in Si and other elements relative to the rest of 
the remnant. The X-ray fitted abundances are otherwise well below the solar 
values. While the ejecta-enhanced regions show some variation of relative ele- 
ment abundances, there is little evidence for a very strong enhancement of one 
element over the others in the imaged portion of the remnant, except possibly 
for a region of 0 and Ne enhancement in the remnant's south center. There is no 
spatial correlation between the compact [0 1111 emitting ejecta knots seen opti- 
cally and the abundance enhancements seen in X-rays, although they are located 
in the same vicinity. The map of fitted column density shows strong variations 
across the remnant that echo earlier X-ray spectral hardness maps. The ioniza- 
tion age (as fitted for single temperature models) is sharply higher in a ridge 
behind the northeast-east boundary of the remnant, and is probably related to 
the strong molecular cloud interaction along that boundary. The temperature 
map, by comparison, shows relatively weak variations. 

Subject headings: 1SM:supernova remnants, X-rays:ISM, X-rays:individual (Pup- 
pis A) 

1. Introduction 

In recent years, X-ray spectral imaging has revealed X-ray emitting ejecta even in a 
number of very old (~10 ,000  yr) remnants where most of the X-ray emission is from shock- 
heated interstellar or circumstellar matter (e.g, Hughes et al. 2003, Park et al. 2003, 
Hendrick et al. 2003, 2005, Borkowski et al. 2006). Puppis A is a middle-aged supernova 
remnant whose X-ray emission is dominated by shock-heated interstellar material. It resides 
in a very complex interstellar environment including large atomic and molecular clouds 
(Dubner & Arnal 1988, Reynoso et al. 1995) and a large-scale interstellar density gradient 



(Petre et al. 1982). It is, however, one of a handful of remnants in which fast-moving (N  1500 
km/s) ejecta knots enriched in oxygen have been identified optically (Winkler & Kirshner 
1985), and is thus a promising target for the identification of hot, X-ray emitting ejecta. The 
goal of the Suzaku observations reported here is to search for and to  localize X-ray emitting 
ejecta in Puppis A. 

The presence of 0-enriched ejecta in Puppis A clearly indicates that the progenitor 
was a massive star that synthesized the oxygen hydrostatically, a conclusion that is further 
confirmed by the presence of an X-ray emitting compact central source, believed to be a 
neutron star (Petre et al. 1996, Winkler & Petre 2007). The optically emitting oxygen 
knots are found in the central and eastern regions of Puppis (Winkler & Kirshner 1985). 
More global oxgyen ejecta enrichment had been indicated by high-spectral resolution X-ray 
observations with the Focal Plane Crystal Spectrometer (FPCS) on the Einstein Observatory 
(Canizares & Winkler 1981). The 0 enrichment suggested by the Einstein FPCS could not 
be localized by it, however, as the spectra were accumulated over rather large regions of the 
remnant (3' x 30' and 6' diameter). The identification and localization of gas with enriched 
element abundances requires adequate spectral imaging. Einstein Solid-State Spectrometer 
observations with a 6' aperature did not find evidence for ejecta enrichment (Szymkowiak 
1985 PhD thesis), but a later survey by the ASCA Observatory (Tamura 1995 PhD thesis) 
did produce evidence for localized ejecta enrichment, mostly of Ne in the west and northwest. 
Chandra observation of a small 8' square field at the eastern edge of the remnant, where the 
shock is interacting with molec~~lar and interstellar clouds, hinted at small pockets of gas 
enriched with ejecta (Hwang, Flanagan, & Petre 2005). 

In this paper, we present a partial X-ray imaging and spectral survey of the Puppis A 
supernova remnant with the CCD detectors on the Suzaku Observatory. Five observations 
cover about two-thirds of this large 50' diameter remnant to the east and center, including 
the locations of the optically emitting 0 ejecta knots. Compared to  ASCA, Suzaku has only 
slightly improved angular resolution, but much better sensitivity and spectral resolution, 
particularly at low energies. The Suzaku XIS also surpasses the Chandra CCDs for sensitivity 
and spectral resolution at low energies, a feature that is particularly important for studying 
the X-ray emitting 0 and Ne ejecta. 

2. Observations and Analysis 

Five observations of Puppis A were performed with the CCD-based X-ray Imaging Spec- 
trometer (XIS) at the beginning of the A01 guest observing phase of the Suzaku Observatory. 
The XIS features four separate imagers, one illuminated from the back (XISl), the other 



three from the front (XISO, XIS2, subsequently defunct, and XIS3). Details can be found in 
Mitsuda et al. (2007). 

The exposure times were optimized for observation of the oxygen emission lines (0 VII 
resonance at 574 eV, the dominant component of the He-like 0 triplet in Puppis A, and 
0 VIII Lya at 653 eV; see Winkler et al. 1981). The observations, which are summarized 
in Table 1, cover most of the bright eastern and central portions of the remnant, but not 
the west. Given the very soft spectrum of the source and the overall high count rates of 
the Bright Eastern Knot (BEK), Northeast (NE) and Interior (I) fields, data from the Hard 
X-ray Detector on Suzaku were not telemetered, in favor of data from the XIS. Additionally 
for these three observations, 4s burst mode was used for the FI chips in order to  further 
reduce the telemetry load (in this mode, the detector does not collect data for 4 s out of 
the normal 8 s data cycle). Shorter exposures also reduce the impact of pulse pile-up in the 
detector, which is likely to be an issue at the 10% level in the bright regions of the remnant. 
The observations were carried out without the use of charge injection to moderate the effects 
of radiation damage on the CCDs. We use the initial release version 0.7 of the data, after 
performing the data screening recommended in the Suzaku Data Reduction Guide1. 

2.1. Imaging Analysis and Results 

For all five fields, the full-CCD spectra are qualitatively similar. They fall off rapidly 
above energies of 3-4 keV, with no evidence for harder emission, and have numerous strong 
emission line features. These are the Hea blends of 0 (dominated by the resonance line), Ne, 
Mg, Si, and S, plus weak Fe L features near 827 eV corresponding to Fe XVII (cf. Winkler 

Table 1. A01 Suzaku XIS Observations of Puppis A 

Field Obs ID Date Coordinates Exposure Time (ks) FI Burst Mod 

Bright Eastern Knot (BEK) 501086010 2006 Apr 17 125.9422, -42.9626 16.8 4s 
Northeast (NE) 501087010 2006 Apr 17-18 125.7579, -42.7332 20.7 4s 
Interior (Int) 501088010 2006 Apr 17 125.5915, -42.9172 20.3 4s 
Southeast (SE) 501089010 2006 Apr 18 126.0121, -43.2023 29.8 4s, none 
South (S) 501090010 2006 Apr 18-19 125.6826, -43.1664 31.2 none 



et al. 1981). Figure 1 shows the BI illuminated XIS1 spectrum for the South field as an 
example, with the prominent emission lines and blends labelled. In this and all other spectra 
considered here, the channels are binned to provide a t  least 25 counts per channel. 

We produced energy-selected images of all the notable line features in the integrated 
spectrum, as we11 as regions of continuum emission, as summarized in Table 2. We perform 
a simple correction for the detector exposure by making the individual line images for each 
detector for each observation, then trimming several pixels at all four edges and dividing 
by the average exposure time; i.e., we do not correct for vignetting. No attempt was made 
to subtract background as the images are all bright. The final mosaicked images have 8.4" 
pixels and are scaled to a fiducial exposure time, taken to be the 16.8 ks exposure time for 
observation 50108600. The Si He@ and S Hea images have the fewest photons and so were 
binned by a further factor of four in each dimension to  improve signal-to-noise. 

The combined mosaicked line images for all four XIS detectors are shown in Figure 2; 
the images mosaicked separately for the BI and FI detectors are not shown but are similar 
to those in the Figure. The continuum images are also not shown, but are similar to the line 
images in general morphology. Spatial variations in the line emission are further highlighted 
by difference images, five of which are shown in Figure 3. These difference images are line 
images with the broadband image normalized to it and subtracted. While we refer to the 
images in Figure 2 and 3 as "line images", they are in reality simply energy-selected images 
that include any emission in the relevant energy range, whether from line or continuum. 
In Figure 2, the 0 VII image is overlaid with surface brightness contours of the ROSAT 
High Resolution Imager mosaic of the entire remnant (Petre et al. 1996) and the 52000 
coordinates. Coordinates are also given for the images in Figure 3 to facilitate identification 
of morphological features discussed below. 

The so-called Bright Eastern Knot (BEK), located just inside the bottom of the straight 
eastern "shock front, is prominent in all the images. Its brightness peaks at roughly (J2000) 
a=126.04, S=-42.97 (see Figures 2 and 3). It is known to be a complicated interaction 
between the supernova remnant shock and multiple interstellar clouds (Petre et al. 1982, 
Hwang et al. 2005). Given that the eastern part of the BEK has lower temperature and 
ionization age conducive to stronger 0 line emission (Hwang et al. 2005), it is not surprising 
that 0 emission is seen to be relatively prominent at the easternmost edge of the BEK, and 
Ne and Fe L emission is strong in a larger region extending towards the remnant interior 
(Figure 3). We also point out some of the other morphological features that we will later 
discuss in more detail. These include the elongated region extending southward from the 
BEK region (SE Arm, roughly a=126.05, S=-43.15), and the low surface brightness region 
that is just west of it (SE Low SB). Extending north by northwest from the BEK is the 
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Fig. 1.- The XIS1 spectrum for the South field of Puppis A with the prominent emission 
lines and blends labelled. 

Table 2. Image Pulse Height and Energy Cuts 

Image Pulse Heights Energies (keV)* Total Counts ( lo4)  

Cont 0 
C Hea 
0 VII Hea (Res) 
0 VIII Lya 
Cont 1 
Fe L (Fe XVII) 
Ne IX Hea 
Ne X Lya 
Cont 2 
NIg XI Hea 
Cont 3 
Si XI11 Hea 
Si XI11 He0 
S XV Hea 
Cont 4 

*The energies are computed for a gain of 3.65 eV per pulse height channel. 



northeast shock front (NE SF); seen by Suzaku, it is bright in the images of Ne, Mg, Si, S, 
but not of 0 .  The relative prominence of lines of higher energy as opposed to oxygen lines 
is consistent with the harder spectra seen interior to the NE SF in ROSAT observations 
(Aschenbach et al. 1994, Hwang et al. 2005). The remnant's interior is populated with 
additional patchy clumps of emission. The most striking of these is seen most prominently 
in the Si images, just inside the northernmost apex of the remnant in the Si images (it is also 
seen clearly in Ne, Mg, and S emission; we call this the "Si Knot" (a=125.70, b=-42.76). 
Incidentally, the neutron star in Puppis A is visible in Si and S, and in negative in the Ne 
IX difference image, at the lower right of the image mosaics (i.e., in the lower center of the 
remnant at a=125.48, b=-43.01). 

Line-to-continuum ratio images ("line equivalent width or EQW) can be used to make 
a quick assessment of whether enhancements in the images are particularly due to enhanced 
line emission. The continuum underlying the line emission is first estimated (either by inter- 
polation or extrapolation from the continuum in nearby energy regions, or by extrapolating 
from a single adjacent continuum region), then it is subtracted from the "line" image before 
taking the ratio (the procedure is essentially that used by Hwang et al. 2000). We examined 
EQW images for 0 VIII Lya, Ne Hea, Mg Hea and Si XI11 Hea with particular reference 
to the emission enhancements at the BEK, the northeastern shock front, and the various 
interior knots. None of the EQW images is bright at the BEK, which is in line with our 
understanding that the BEK is associated with shocked interstellar clouds. The northeast 
shock front is also absent from the EQW images for the same reason. Of all the features 
seen in the EQW images, the strongest by far is the roughly 3' x 5' Si Knot seen in the Si, 
Ne, Mg, and S images. It completely dominates the Si EQW image which is shown in Figure 
4. (This image is binned by a factor of four relative to the Si Hea line image in Figure 
2.) We do not show the 0, Ne, or Mg images here, in favor of the abundance maps from 
spectral fitting to be discussed below, but note that 0 and Ne EQW also appear high in a 
few regions, particularly in the southern portion of the Si Knot and in the SE Low SB region 
adjacent to the SE Arm. 

Element abundances aside, we also briefly consider the 0 VII Res/O VIII Lya ratio 
image as an example of a single-element line-ratio image that can be used to diagnose con- 
ditions in the X-ray emitting plasma (Figure 4; the analogous image for Ne is similar and 
not shown). Ideally the ratio should be for line emission only, but we have taken the ratio 
without subtracting the continuum; the true continuunl level is difficult to determine at this 
spectral resolution, and the 0 VII line in particular is rather weak. The image highlights the 
SE Low SB region that extends southward from the BEK, as well as the eastern edge of the 
BEK, but cannot tell us to what extent the 0 VII enhancement is caused by temperature, 
iollization age, or column density differences. Imaging spectral observations with Chandra 



Fig. 2.- Energy selected line image mosaics of all four XIS detectors combined. From left 
to  right: (top) 0 VII Res, 0 VIII Lya, Fe L (Fe XVII) (middle) Ne IX Hea, Ne X Lya, 
Mg XI Hea (bottom) Si XI11 Hea, Si XI11 HeP, S XV Hea. The final two images have been 
binned f~lrther by a factor of four to improve the signal-to-noise level. The 0 VII image is 
labelled with 32000 coordinates and overlaid with surface brightness contours of the ROSAT 
HRI mosaic (Petre et al. 1996) to indicate the full extent of the remnant. The neutron star 
can be seen in the images in the bottom row. 



Fig. 3.- Selected line images from Figure 2, with scaled broadband image subtracted. White 
' 

indicates excess emission compared to broadband; black indicates a deficit of emission. For 
reference, the spectral regions presented in Figure 6 are shown in the panels for Ne IX (top: 
0 Knot Center and bottom: Ne Knot South) and Si XI11 (counterclockwise from top: Si 
Knot North, NE SF, BEK, SE Arm and SE Low SB) 



Fig. 4.- Left: Line-to-continuum, or "equivalent width" image for Si XI11 Hea. Right: Line 
ratio image for 0 VII Res/O VIII Lya. 



indicate that the BEK is composed of at least two physical components, with the eastern- 
most of these at lower temperature, lower ionization, and higher column density (Hwang et 
al. 2005). Except for the higher column density, these would contribute to the observed 
enhancement of 0 VII/O VIII at  the eastern edge of the BEK. Likewise for the low surface 
brightness region, further constraints from spectral analysis are needed to understand the 
enhancement observed. 

3. Spectral Analysis 

While the EQW images provide an easily accessible overview of where in the remnant 
the line emission is enhanced, a quantitative interpretation is not possible from these images 
alone. First, it must be known how temperature, ionization, and element abundances affect 
the line strengths relative to  the continuum, and this depends on the underlying spectral 
model assumed. Moreover, the parameters of any model are not expected to be uniform 
throughout the remnant. Second, the continuum estimation can be accurate only if the 
"continuum" regions are truly line-free to  start with, but this is not usually a safe assump- 
tion for lines such as those of 0 or Ne that lie at energies where the spectra are dense with 
line emission. Finally, a two-point interpolation is the only feasible method to estimate and 
subtract the continuum here, but it lacks sophistication and probably accuracy. EQW im- 
ages are thus most likely to be useful if the line emission is very strong and well-isolated; for 
example, in tracing the qualitative large-scale morphology of known, strong ejecta enhance- 
ments as in Cas A (Hwang et al. 2000). They are less reliable when searching for relatively 
modest ejecta enhancements. To support the conclusions of the imaging analysis, it is thus 
necessary to turn to the X-ray spectra, as we do next. 

We extracted spectra across the portion of the remnant imaged by Suzaku in a grid 
following the procedure used by Hwang et al. (2005) for Chandra observations of the BEK. 
Spectra were extracted for 259 square and rectangular regions of angular size 100-200", with 
each spectrum containing at least 10,000 counts. We focus on the spectral results for the BI 
chip. 

The spectra were binned to 25 counts per channel and were fitted using XSPEC with 
nonequilibrium ionization (NEI) models for a plane parallel shock, modified by interstellar 
absorption using cross sections from Morrison & McCammon (1983). The models are char- 
acterized by the temperature and the limiting ionization ages; we take the lower limit for 
the ionization age to be fixed at net = 0 cmU3 s and have fitted only for the upper limit. 
Element abundances were varied for 0, Ne, Mg, Si (with S, Ar, and Ca linked to Si), and 
Fe (with Ni linked to Fe). 



The spectral models must be converted to pulse-height spectra for comparison to  the 
data. This conversion is carried out with an effective area file giving the total efficiency 
to detect a photon of a given energy, and a response matrix for the distribution of photon 
energy with pulse height. Both of these responses can vary depending on the region of the 
detector used and the specific observation conditions. An important time-dependent effect 
is the reduction in XIS low energy efficiency caused by the build-up of contaminants on the 
optical blocking filter (Koyama et al. 2007). This effect is included in the effective area 
calculation (Ishisaki et al. 2007). CCDs are also damaged by radiation with the passing 
of time causing degradation in the energy resolution and gain. While this effect is now 
ameliorated by charge injection, charge injection was not used for these early observations. 
We compensate by fitting the spectrum with an overall scaling factor for the gain (usually 
0.993 to 0.996). 

The observations were spread out over only two days, and there was no discernable 
change in the response matrices computed for the various observations. We use the matrix 
appropriate for an observation using the entire CCD chip because the current matrices do 
not reproduce differences in response across the detector. 

The effective areas are another story. Ideally, the effective area should be computed 
for the specific region on the detector used for a.given spectrum, but this requires time- 
consuming ray-tracing simulations for each spectrum. This was impractical for us given 
limitations in computer power and the large number of spectral regions involved. The good 
signal-to-noise level of our data allowed us to use relatively small spectral regions, but this 
makes the effective area compuations even more time-consuming. We therefore compared 
the results of spectral fits using several ray-tracing simulations of the effective area: five 
for relatively large regions (3' radius) on the detector (center, top and bottom to the left 
and to the right) and also a smaller 2' grid region. Using the same spectrum and response 
matrix, but different effective area files, we find that the temperatures remain very consistent; 
abundances and ionization ages vary from a few to 10 percent, and the column density 
variation by less than twenty percent. For all the fits presented in this paper we used the 
simulation for a 3' radius region on the center of the detector, which amounts to neglecting 
the energy- and spatial-dependent effects of vignetting and the contaminant on the optical 
blocking filter. The vignetting removes photons from the edge of the detector and is more 
severe at high energies, while the contamination removes photons from the center of the 
detector and is more severe at  low energies (see Ishisaki et al. 2007). The two effects 
tend to compensate, but the overall effect is complicated. Since the spectrum of Puppis A 
peaks at around 1 keV, neither effect should be too severe. Given that the variation in the 
spectral parameters across the remnant is significantly larger than the spread in spectral 
parameters that we find from using different effective area computations, we consider this to 



be an acceptable simplification. The biggest limitation imposed by the lack of fully correct 
effective area calculations throughout the remnant is that we are not able to obtain accurate 
model emission measures. 

Given the uncertainties in the spectral response described above, we do not give nu- 
merical values of the spectral parameters obtained for the entire grid. Rather we present an 
overview of the fitted temperatures, ionization ages, column densities, and abundances in 
Figure 5, with the smoothed Suzaku broadband mosaic image contours overlaid for reference. 
The fitted parameters are represented for each region by the color scale. Spectra and the 
fitted model parameters are shown in Figure 6 and Table 3 for a small sample of interesting 
spectral regions. 

Figure 5 shows that the quality of the fits is generally fair, with all but a few values of the 
X2 per degree of freedom falling below 2. While not formally acceptable in a statistical sense, 
we consider it acceptable given that the model is simple and many of the spectra a few tens 
of thousands of counts or more. Column densities are distributed mostly between about 0.13 
to 0.35 ~ 1 0 ~ ~  crnP2, and are at the higher end of this range in the north and center, away 
from BEK. The regions of high absorption generally correspond to the spectrally harder 
regions in the ROSAT images (Aschenbach 1994). The upper ionization age is typically 
0.5 - 2.5 x 1011 ~ m - ~ s ,  but is particularly high along a relatively narrow ridge behind the 
straight portion of the NE SF on to the inside of the BEK. Since the gas near the shock 
front should have been shocked relatively recently, these high ionization ages (which exceed 
3 x lo1' ~ m - ~ s )  are consistent with high gas densities. The lowest ionization ages occur in 
the SE Low SB region, as might be expected since the low surface brightness indicates low 
gas densities. The temperature map is somewhat patchy, but more uniform than the others, 
with temperatures distributed fairly uniformly between 0.5-0.8 keV. 

The abundance maps all show a prominent double peak at  the Si Knot in the north 
central region. Two strong peaks are seen in Mg, Si and Fe, but the southernmost of these 
is more prominent in 0 and Ne. All the fitted element abundances have their peak values in 
this region; these are all above solar, except for Fe. Ne and Si have higher peak abundance 
values than the other elements, but Ne abundances are skewed higher than the other elements 
throughout the remnant. In most of the remnant, 0, Mg, Si, and Fe abundances are generally 
between 0.3 to 0.6-0.7 solar, but the Ne abundances fall mostly between 0.55-0.85 solar. Ne 
and Nlg lines are blended with Fe L emission, so their abundances are somewhat more model- 
dependent than those of elements with cleaner line emission, such as Si. It should also be 
noted here that sub-solar abundances are the norm in Puppis A when the spectra are fitted 
with single-component models. For example, Tamura (1995) typically required abundances 
from 0.1 to O.G solar for the ASCA spectra. 



Fig. 5.- Maps of the fitted parameters for plane-parallel shock models, overlaid with 
smoothed contours of the Suzaku broadband image mosaic: x2/d.o. f ,  column density NH 

cmF2), temperature kT (keV), ionization age net ( ~ m - ~  s), and element abundances 
of 0, Ne, Mg, Si, S, and Fe by number relative to solar. The Si abundance map has the 
explosion center inferred by Winkler et al. 1985 marked as "E". 



The 0 and Ne abundance maps are patchier than the others. The fitted abundances are 
lowest in the SE Low SB region, and highest in the southern peak of the Si Knot; we refer 
to this as the 0 Knot Center in Table 3 (a=125.67 b=-42.84). The absence of this feature 
in the 0 EQW image (not shown here) underlines the difficulty of identifying 0 ejecta from 
the X-ray images alone; the imaging analysis is particularly difficult for lines like those of 0 
that lie in crowded spectral regions. Only by examining the spectra could we learn that the 
0 abundance is high at the Si Knot. Ne shows another relative enhancement in an extended 
region just south of the broadband contours that is also echoed more faintly by 0. This 
region is clearly visible in the Ne difference image in Figure 3, so we refer to  it as Ne Knot 
South in Table 3 (a=125.66, b=-43.12). For Mg, Si and Fe, the Si Knot is the only region 
with a definite element enhancement. 

We take a closer look at  a few spectra selected for their interest, in Figure 6. The top 
panel compares the spectrum of a region in the northern peak of the Si Knot with one in the 
NE SF. Both have strong Si line emission in the Si line image in Figure 2, but only the Si 
Knot knot has enhanced EQW (Figure 4) and enhanced Si abundance from spectral fitting. 
The Si He-like blend is indeed stronger at  the knot. From Table 3, we see that the column 
densities and temperatures are similar for the two fits, whereas the NE SF has a somewhat 
higher ionization age. All the fitted element abundances are higher by at  least a factor of 
two at the Si Knot compared to the NE SF, with Si being higher by a factor of four. Given 
that the statistical errors are quite tight, the Si Knot is clearly enriched with ejecta. 

The second panel shows two spectra with 0 and Ne enhancements-those .of the 0 
Knot Center (the southern peak of the Si Knot) and the Ne Knot South. While the 0 Knot 
Center also has higher-than-average abundances for all the elements except perhaps Fe, the 
Ne Knot South does not really show evidence for significant enhancement of elements other 
than Ne, which is especially prominent; 0 is only slightly higher than average. 

In the bottom panel of Figure 6, we compare regions without significant abundance 
enhancements-the SE Arm extending south from the BEK, the SE Low SB region, and the 
eastern edge of the BEK. The latter two are prominent in the 0 VII/O VIII ratio image, and 
the SE Low SB region also appears in the 0 VIII Lycv EQW image. Enhanced 0 VII/O VIII 
in the SE Low SB region and the BEK is affirmed by the spectra, as the 0 VII line is clearly 
stronger in these regions than in the SE arm, whereas O.VIII emission is comparably strong 
in all three regions. Enhanced 0 EQW in the SE Low SB region is not affirmed by the fitted 
0 abundance, however. The explanation would appear to be that the "continuum band" 
used to subtract the continuum contribution ("Cont 1" at 0.70-0.79 keV from Table 2) is 
relatively weaker here (due in part to lower Fe abundance), which artificially enhances the 0 
EQW. The spectral parameters given in Table 3 show that these three regions have similar 



columns, temperatures, and abundances. The primary difference is a lower ionization age for 
the SE Low SB region, which is enough to shift the ion balance in favor of He-like 0 and to 
enhance the 0 VII/O VIII line intensity ratio. Compared to other regions in the remnant, 
the SE Low SB region also has very low column density and relatively low temperature, 
which combines with the low ionization age to enhance 0 VII relative to  0 VIII. 

4. Discussion 

To summarize the observational results, Suzaku clearly detects X-ray emitting ejecta in 
Puppis A, and shows where it is located. The most striking feature of the spectral maps is 
the spatial correlation of the element abundances, especially at the location of the Si Knot. 
All the elements are found to be particularly enriched this region, with Si appearing to  show 
the most enrichment relative to other regions. Ne, and to a lesser extent 0 ( but not other 
elements), is also enriched in the south center of the remnant. 

The two peaks of the Si Knot are both regions with somewhat higher-than-average 
temperatures, but even a forced temperature of 0.6 keV closer to the remnant average requires 
clearly enhanced element abundances (Si=1.3 and 0=0.65 for the weaker northern peak of 
the knot). We consider it more likely that the temperature difference is real and is associated 
with the different composition of the knot compared to its surroundings. 

The spectral parameters also show strong patterns. The high column density to  the 
north (combined with relatively uniform temperature) echoes the patterns seen in spectral 
hardness by ROSAT. There is some hint that the fitted column densities may be correlated 
with detector position in the two northernmost fields (covering the northern peak and the 
interior southwest of it), with the center of the detector giving higher values. The other 
fields do not give the same impression, however, and the large-scale differences in column 
density are certainly robust. The ridge of high ionization age that follows the boundary of 
the northeast shock front is qualitatively consistent with the strong interaction of the blast 
wave seen in that region. Radio HI observations show a very large molecular cloud whose 
straight edge fits against the X-ray boundary of the remnant (Reynoso et al. 1995). The 
blast wave will be strongly decelerated as it propagates through the dense cloud, but the 
reflected shock will be associated with higher temperature gas (cf. Levenson et al. 2002). 
The difference in ionization age is a factor of several on the ridge compared to the region 
behind it, and implies a comparable density difference assuming that the shock times are 
roughly the same. Higher angular resolution observations would be useful to make more 
reliable quantitative estimates, but in any case, the relative narrowness of the ridge seems 
to suggest that there was a sudden increase in the ambient gas density, which presumably 



Fig. 6.- (Top) Spectra comparing strong Si line emission at the NE SF (left) and the 
northern peak of the Si Knot (right). (Middle) Spectrum of the 0 Knot Center (the southern 
peak of the Si Knot) (left) and the Ne Knot South (right). (Bottom) Spectra from SE Arm 
with low 0 VII/O VIII and 0 VIII EQW (left) and the SE Low SB region with high 0 
VII/O VIII and 0 VIII EQW (middle) and the eastern edge of the BEK (right). Fitted 
parameters are given in Table 3. 



Table 3. Spectral Fits 

Region x2, x2/dof NG kT net 0 Ne Si Fe 
J2000 RA, DEC loz2 ~ r n - ~  (kev) l ~ ~ ~ c r n - ~ s  0 0 0 0 

NE SF 587.4, 1.41 0.345% 0.005 0.708 (0.707-0.727) 2.63e11 (2.56-2.72e11) 0.53 (0.51-0.56) 0.64 (0.63-0.67) 0.41 (0.38-0.43) 0.45 (0.44-0.4: 
125.89, -42.79 
Si Knot 558.6, 1.56 0.33f 0.01 0.88 (0.87-0.91) 6.5e10 (6.3-6.9e10) 0.86 (0.84-0.89) 1.27 (1.24-1.33) 1.5 (1.4-1.6) 0.94 (0.90-0.9: 

125.70, -42.76 
0 Knot Center 510.7, 1.49 0.35 (0.33-0.36) 0.77 (0.73-0.86) 7.le10 (6.2-7.2e10) 1.3 (1.1-1.4) 1.8 (1.7-2.0) 1.3 (1.2-1.3) 0.57 (0.54-0.6: 
125.67, -42.84 
Ne Knot South 271.0, 1.14 0.304~ 0.01 0.66 (0.64-0.68) 5.30e10 (5.28-5.30e10) 0.73 (0.70-0.75) 1.41 (1.35-1.46) 0.48 (0.39-0.54) 0.41 (0.38-0.4. 
125.66, -43.12 
SE Arm 479.2, 1.45 0.22f 0.01 0.50 (0.48-0.52) 1.95ell (1.62-2.03e11) 0.42 (0.41-0.45) 0.67 (0.63-0.70) 0.47 (0.43-0.51) 0.50 (0.45-9.5. 
126.05, -43.15 
SE Low SB 489.8, 1.42 0.173 (0.166-0.183) 0.64 (0.61-0.68) 8.2e10 (7.4-9.0e10) 0.35 (0.32-0.37) 0.61 (0.59-0.63) 0.43 ( 0.37-0.47) 0.39 (0.36-0.4: 
125.91, -43.14 
BEK, east edge 363.7, 1.23 0.15 (0.14-0.17) 0.58 (0.52-0.59) l l e l l  (10-13ell) 0.38 (0.35-0.40) 0.69 (0.64-0.74) 0.40 (0.34-0.49) 0.43 (0.3b0.4' 
126.08, -42.98 4.1 

'Error ranges given are 90% confidence for a single interesting parameter. 



occured at the boundary of the molecular cloud. 

The Chandra study of the BEK region in Puppis A showed that there are significant 
spectral differences even within the BEK. The eastern 0.5' of the region is a compact knot 
having different spectral parameters from the portion of the BEK to the interior. These 
differences are unfortunately not accessible to  this study, being on too small an angular scale 
compared to the angular resolution of the spectral grid. Nevertheless, it is encouraging to  
see that other, somewhat larger scale spectral features seen in the BEK region by Chandra 
are also seen by Suzaku. For example, there is a clump of high ionization age gas inside the 
main part of the BEK which corresponds well with the bottom end of the "ridge" of high 
ionization age in the Suzaku map. The increase in temperature just north of the BEK is also 
reproduced by the Suzaku analysis. The only sufficiently large angular-scale spectral feature 
that we did not see reproduced in the Suzaku spectral images is the higher column density 
gas, not only at the eastern edge of the BEK, but also at the eastern boundary above and 
below it. We do not have a complete explanation for this, but it may be related in part to  
the contaminants that build up on CCDs, since these reduce low energy sensitivity and can 
be masked as increased absorption column densities; this is relevant for both the Suzaku and 
Chandra CCDs. 

The overall subsolar element abundances also require some comment. As noted earlier, 
similarly low abundances had been obtained by Tamura (1995) in his analysis of ASCA X-ray 
spectra, but there are otherwise no indications that the interstellar medium around Puppis 
A has depleted element abundances. Dust depletion is a possibility, given the brightness 
of the remnant at  infrared wavelengths, and the excellent correlation of infrared and X-ray 
morphologies (Arendt et al. 1990). Dust is clearly present in the remnant and is apparently 
collisionally heated. The signature of dust depletion in the X-ray emission would be higher 
Ne abundance to that of 0, Mg, Si, and Fe, since Ne is not depleted onto dust grains as are 
these other elements. The Ne abundance does have a tendency to be slightly higher than 
that of 0 in Puppis A, but so is the Si abundance.' Moreover, the Ne abundance in CCD- 
resolution spectra is subject to additional uncertainty because the Ne lines are blended with 
the complicated Fe L line emission. In the south-central Ne knot of Puppis A, the fitted Ne 
abundance is near the solar value and significantly enhanced relative to the other elements; 
perhaps this is a region where dust depletion is important. The Ne abundance is nevertheless 
generally fitted at  subsolar values, however, so it would appear that the overall abundances 
are indeed subsolar, independent of any depletion of some of the elements onto dust grains. 

Element abundances obtained from an overly simple spectral model may be inaccurate, 
but there are no definite indications of additional components in Puppis A that would, 
if present and unaccounted for, result in artifically lower element abundances. Neither is 



Puppis A an isolated incidence of low abundances inferred for the ISM-phase of a supernova 
remnant. The Cygnus Loop in particular has yielded ,extremely low ISM-phase abundances 
of 0.1-0.2 solar to analysis using data from ASCA (Miyata et al. 1994), Chandra (Levenson 
et al. 2002, Leahy et al. 2004), XMM-Newton (Tsunemi et al. 2007) and Suzaku (Miyata 
et al. 2007). Finally, the interstellar medium in the Magellanic Clouds is known to have 
subsolar abundances that are in fact reproduced by Sedov models fitted to the entire remnant 
spectrum (Hughes et al. 1998)~. 

4.1. Lack of Widespread 0 Enrichment 

The modest 0 ejecta enrichment seen with Suzaku is at odds with the significant enrich- 
ment of 0 and Ne relative to  Fe that was reported by Canizares & Winkler (1981; hereafter 
CW81). In most regions of Puppis A, we do not see 0 significantly enhanced relative to 
Fe, even where 0 is enhanced above its average value. This echoes earlier spectral studies 
of Puppis A with the Einstein Solid-State Spectrometer (Szymkowiak 1985) and the ASCA 
Solid-State Imaging Spectrometer (Tamura 1995), neither of which found a significant O/Fe 
enrichment anywhere in Puppis A. The FPCS has also reported enrichments of 0 relative 
to Fe for other sources, including M87 and the supernova remnant N132D. For M87, XMM- 
Newton Reflection Grating Spectrometer observations indicated a O/Fe abundance ratio 
of 0.5 (Sakelliou et al. 2002), compared to the factor of 3-5 enrichment reported by the 
FPCS (Canizares et al. 1982). For N132D, ASCA finds that O/Fe is roughly solar (Hughes, 
Hayashi, & Koyama 1998), in contrast to values of twice solar or higher as deduced from 
Einstein observations (Hwang et al. 1993). 

The Einstein FPCS observations were the first high-resolution X-ray spectra ever ob- 
tained of non-solar cosmic sources-and the FPCS observation of Puppis A was the very first 
of these. The FPCS used a number of different crystals to scan limited energy ranges around 
a feature of interest. The calibration was thus challenging, and not fully optimal because 
the calibration data files taken just prior to launch were unusable. The final calibration 
was based on extensive, earlier laboratory measurements3. For M87, the relative abundance 
estimate was based on the 0 VIII Ly a line at 654 eV and the Fe XVII line at 826 eV, 
for which two different crystals were required to scan the separate lines, adding to the cal- 
ibration uncertainties. This uncertainty is eliminated for the observations of Puppis A and 
N132D since a single crystal was used to scan the 0 VIII Ly y (816 eV) and Fe XVII lines 

2Plane-parallel shocks should provide a good approximation to Sedov models (Borkowski et al. 2001). 

3hIark Schattenburg, private commu~~ication 



for the relative abundance determination. There is added uncertainty, however, in that this 
is a crowded spectral region, and the relatively weak Ly y line had to be modelled carefully. 

For Puppis A, the assumptions made by CW81 to interpret their spectra were reasonable 
enough at the time, but updated X-ray observations and atomic physics show some possible 
pitfalls. These can be summarized as arising from (1) the assumption of a single-component 
(i.e., single temperature, single ionization age) plasma within the large FPCS apertures 
(2) comparison to a solar coronal spectrum with a temperature distribution that turns out 
not to  be appropriate for most of Puppis A (3) the assumption that Fe XVII is always the 
dominant Fe ion species when 0 VII and 0 VIII ions coexist. (1) Spectral maps of Puppis A, 
including the one in this work, clearly show a wide variety of temperatures, column densities, 
and ionization timescales throughout the remnant. (2) From the same maps, we see that 
temperatures in Puppis A are relatively high, averaging near 0.6 keV. By contrast the solar 
coronal spectrum used to calibrate the FPCS observations peaked at  roughly 0.2 keV (3) 
Evaluation of the ion populations using the NEI models in XSPEC show that 0 VII, 0 
VIII, and Fe XVII do not necessarily coexist as assumed, particularly at  temperatures below 
kT=0.2 keV and, more pertinently for this discussion, at  temperatures above kT=0.6-0.7 
keV. The same evaluation of ion populations show that they can vary by factors of at  least 
3-5 in the optically thin NEI models, particularly when ionization effects are also taken into 
account. 

Given the foregoing, we believe that the current Suzaku abundance results are more 
accurate, the high spectral resolution of the FPCS notwithstanding. 

4.2. Spatial Correlations 

Although the peak abundances for the different elements vary from subsolar (Fe) to 
nearly twice solar (Ne and Si), the abundance maps all have the same general appearance, 
with the double-peaked Si Knot being the most prominent feature throughout. At the south- 
ern peak, all the elements with line emission have element abundances that are significantly 
higher than average, and reach their highest values (in this survey). The northern peak 
of this knot is relatively weaker for 0, Ne, and Mg compared to  Si, but when the errors 
on the fitted abundances are considered (Table 3), there is no significant difference in the 
Si/O abundance ratio at the northern vs the southern peak. The presence of Si ejecta at a 
radius comparable to that of 0 ejecta is certainly interesting, because supernova ejecta may 
be either hydrostatic or explosive in origin; 0 is synthesized completely hydrostatically by 
the progehitor before the explosion, and Si in the inner layers of the exploding star. Thus 
Si originates close to the center of the explosion, but has been propelled outward in the 



northern region of Puppis A and mixed with 0 and Ne ejecta. 

Most of the fast optically emitting ejecta [0 1111 knots reported by Winkler et al. (1985) 
are in the eastern half of Puppis A observed with Suzaku. The bulk of them lie 25 to 90 
degrees east of north, at 5' to 9' from the explosion center determined from their proper 
motions (this center is indicated in the Si map subpanel of Figure 5). Many of the optical 
knots are part of a large (roughly 8' x 4') tangle of [0 1111 filaments lying to  the south and 
east of the southern peak of the X-ray Si Knot. A smaller clump of optical knots touches the 
X-ray knot at its southeastern boundary. Thus, while the optically emitting 0 ejecta are in 
the general vinicity of the 0 element abundances identified through the X-ray spectral fits, 
there is no close physical correspondence between the optical and X-ray emitting ejecta. On 
the whole, the X-ray and optically emitting 0 ejecta appear to be spatially disjoint. 

It is clear from the Suzaku observations that the Si knot is the only example of significant 
Si ejecta enhancement in the eastern half of Puppis A. In a result simultaneous with the 
preparation of this paper, Katsuda et al. 2007 (in preparation) independently confirm the 
Si enhancement here using XMM-Newton data, which provides complementary coverage to 
Suzaku of the western half of the remnant. They survey a larger fraction of the remnant, but 
do not find other regions with substantial Si ejecta enrichment. If we allow that the average 
interstellar element abundances near Puppis A are below the solar value, it would appear 
that Fe is enhanced at the Si Knot as well, since the fitted Fe abundances are higher here 
than elsewhere in the remnant. The Si Knot is thus the only recognizable structure that 
contains significant amounts of any explosively synthesized ejecta, whether Si or Fe. Unlike 
the case in Cas A, where there is evidence for physical separation of the Si and Fe ejecta 
(Hughes et al. 2000), Puppis shows Si and Fe ejecta that appear to be coincident with each 
other, as well as being mixed with lower Z elements. 

4.3. Knot Ejecta Mass Ratios 

The north central knot being the cleanest sample of ejecta in the remnant, we consider 
how its element abundances compare to the predictions of nucleosynthesis models. We 
convert the fitted element abundances in Table 3, which are by number relative to the solar 
values of Anders & Grevesse (1989), to the ratio of the element mass relative to that of Si. 
The observed mass ratios are compared to various calculations of core-collapse supernova 
nucleosynthesis by Woosley & Weaver (1994), Thielemann et al. (1996), Rauscher et al. 
(2002) and Limongi & Chieffi (2003). 

Nucleosynthesis calculations are complex, and are sensitive to the treatment of the stellar 



and nuclear physics, some of which is not yet fully understood. For these reasons, models 
have yet to converge in detail on what the element mass ratios should be for a progenitor of 
given mass. The models we consider predict that a Type I1 explosion for a 25 Mo progenitor 
should produce 0.1-0.3 Ma Si ejecta, with the models of Thielemann et al. giving Si masses 
at the low end of this range. Considering the various model calculations for abundances of 
0, Ne, Mg, and Fe relative to Si, we do not find perfect agreement with the observed mass 
ratios, but progenitors between 15 and 25 Ma appear to be generally indicated. In no case 
do we find a plausible model for a progenitor more massive than 30 Ma, whereas models are 
seldom computed for masses below about 15 Ma. 

Of course, this particular knot need not even be a representative sample of the global 
ejecta abundances, but at the least it is reassuring that the high abundances of 0, Ne and 
Mg relative to Si require a core-collapse rather than a thermonuclear explosion. 

It is challenging to put tight constraints on the progenitor of Puppis A from the X- 
ray observations because the remnant is relatively old and most of the X-ray emission is 
dominated by interstellar material, some of which is highly structured as dense clouds. Even 
where ejecta are present, they are mixed with ISM, but complex models cannot always 
be reliably constrained using moderate-resolution X-ray spectra. We have only considered 
simple one-component models. Technically, the presence of a second component could skew 
the derived ejecta, but this should tend to increase the element abundances. We found 
that if we did attempt to add a second thermal component representing emission behind 
the blast wave (hence with the blast wave abundances fixed at 0.4 solar), the fitted ejecta 
abundances increased overall by a factor of two or so; the temperature and ionization age for 
the Si Knot did not change much, increasing by no more than 10-20%. We chose not to use 
two-component fits throughout because the spectra generally cut off above 2-3 keV, and we 
considered it difficult to put believable constraints on a second component. In any case, this 
is a conservative assumption for identifying ejecta enhancements, as we have pointed out. 

In spite of the remnant's advanced age, the ejecta in this mature remnant are tanta- 
lizing to pursue for the hints it may give to the explosion that formed it. Ideally, better 
angular resolution is desirable since Chandra observations (Hwang et al. 2005) have hinted 
at relatively small localized regions with abundance enhancements. These may contribute 
to the patchy, low-level enhancements seen with Suzaku. Aside from the X-ray emitting Si 
Knot, the remaining Si may either already be shocked and cooled, shocked and diluated, 
or still unshocked. If the former, we might hope to see it in optical emission, but optical 
[S 111 emission in Puppis A resembles H a  emission rather than the X-ray Si emission, and 
appears more likely to be associated with blast wave emission (P. F. Winkler, private corn- 
m~mication). Shocked and diluted Si will be difficult to detect with the significant dilution 



r 
by the ISM expected for Puppis A after 4000 years. Roughly 0.1 Ma of Si is present in a 
few hundred solar masses of interstellar material at  0.4 solar abundances. Unshocked ejecta 
might be revealed by infrared observations, but the available data are unfortunately insuffi- 
cient for identifying ejecta (Arendt et al. 1990). We hope that future observations will shed 
interesting light on the ejecta in Puppis A. 

We have benefitted from scientific discussions with Satoru Katsuda and other collabora- 
tors on the XMM-Newton observation, and from a careful reading by an anonymous referee. 
We are grateful to Hideyuki Mori for expert help in configuring the observations, Mark 
Schattenburg, Dale Graessle, and Claude Canizares for discussion of the FPCS observations 
and calibration, Takashi Okajima for discussion of the Suzaku mirrors, and Frank Winkler 
for sharing his optical images. 
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