LOX, GOX, and Pressure Relief

DIERS Users Group 2006 Spring Meeting
May 1, 2006
Las Vegas, NV

Ken McLeod
Joel Stoltzfus
NASA White Sands Test Facility
Disclaimer

• You are responsible for the application of the principles and information presented
• Neither NASA, Jacobs Sverdrup, Muniz Engineering Inc., nor the presenter assume any responsibility for your decisions
Why Consider Oxygen Pressure Relief?
Because fires occur

- In liquid oxygen systems
- In gaseous oxygen systems
- In less than 100% oxygen

And the consequences can be severe!
Aluminum O₂ regulator
Aluminum O₂ regulator
Apollo 204 Fire
Dome-loaded Regulator Fire
LOX Bearing Tester
Tank Cylinder Valve
O_2 Fires Occur Industry Wide

- Aerospace
- Industrial gases
- Medical
- Military
- Chemical processing

- Power generation
- Scuba diving
- Metals refining
- Emergency services
- Life support
The Oxygen System Dilemma

• Can’t remove a leg of the fire triangle
• No comprehensive equations
• No comprehensive modeling packages
• How do we manage the fire hazard?
Risk Management Approach

• Minimize ignition hazards
 – Identify and control ignition sources

• Maximize best materials
 – Ignition resistant
 – Flame propagation resistant
 – Low damage potential

• Utilize good practices
 – Test materials for which there is no data
 – Conduct hazard analysis on every design/change
Adiabatic Compression Ignition

Heat generated when a gas is compressed from a low to a high pressure. Also called pneumatic impact or rapid pressurization

Characteristics

• High pressure ratio
• Rapid pressurization
 – Ball valves, cylinder valves, rupture discs
• Exposed nonmetal close to dead end
Adiabatic Compression Ignition

\[\frac{T_f}{T_i} = \left(\frac{P_f}{P_i} \right)^{(n-1)/n} \]

where \(n = C_p/C_v = 1.4 \) for oxygen

<table>
<thead>
<tr>
<th>Final Pressure (psia)</th>
<th>Pf/Pi</th>
<th>Final Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6.8</td>
<td>453</td>
</tr>
<tr>
<td>500</td>
<td>34</td>
<td>986</td>
</tr>
<tr>
<td>1000</td>
<td>68</td>
<td>1303</td>
</tr>
<tr>
<td>2000</td>
<td>136</td>
<td>1688</td>
</tr>
<tr>
<td>4000</td>
<td>272</td>
<td>2158</td>
</tr>
</tbody>
</table>

ASTM G88, Table 1
Adiabatic Compression Ignition

• Most efficient direct igniter of nonmetals
• Will not ignite metals directly
• Examples
 – Regulators attached to cylinder valves
 – Components downstream of ball valves
 – Teflon-lined flex hose
Heat generated when small particles strike a material with sufficient velocity to ignite the particle and/or the material

Characteristics
- Assume the presence of particles
- High velocity
- Impact point and residence time
- Flammable particle and target
Particle Impact Ignition
(continued)

- Most efficient direct igniter of metals
- Difficult to ignite nonmetals
- Particles can ignite at velocities of 150 ft/s
- Examples
 - First space shuttle flow control valve
Mechanical Impact Ignition

Single or repeated impacts on a material with sufficient force to ignite it

Characteristics

- Large impact or repeated impact loading
- Nonmetal at point of impact
Examples

• Poppet impact on valve or regulator seat
• Chatter on relief or check valve seat
• Special consideration in LOX
 – Hammer fitting on LOX tanker
 – Impacts on porous hydrocarbon materials or surfaces can be “explosion-like”
Galling and Friction Ignition

Heat generated by the rubbing of two or more parts together…

…like the Boy Scout fire-starting trick!

Characteristics

- Two or more rubbing surfaces
- High speed and high loads most severe
- Metal-to-metal contact most severe
 - Destroys protective oxide surfaces or coatings
 - Generates particulate
Flow Friction Ignition

Oxygen leaking across a polymer such that enough heat is generated within the polymer to cause ignition

Characteristics
• High pressure (>1000 psi)
• Leak or “weeping” flow
 – External leaks (seals)
 – Internal leaks (seats)
• Exposed nonmetal in flow path
 – Chafed or abraded surfaces increase risk
Flow Friction Ignition

Examples

• Dome-loaded regulator
• NASA MSFC chamber
Kindling Chain

Ignition of an easily ignited material that, in turn, may release sufficient heat to ignite larger, harder-to-ignite materials

Characteristics

• Active ignition mechanism (adiabatic compression, mechanical impact)
• Ignition of an easily ignited material
• Combustion of the material releases sufficient heat energy to ignite surrounding, harder-to-ignite materials
Increasing Pressure

Increases
- Mechanical stress
- Material flammability
- Compression ignition
- Combustion rates

Decreases
- Energy required for ignition
- Autoignition temperature
- Oxygen index

Independent of pressure
- Heat of combustion (heat release)
So How Do We Protect These Systems?
Relief Valve

Soft seat?

• Flow friction at crack pressure may ignite the seat material kindling a stem and body fire

• Seat cold flow may promote adiabatic compression ignition
Relief Valve

Metal-to-metal seat?

• Valve chatter may generate particles resulting in particle impact ignition of a downstream fitting

• Valve chatter may gall the stem, disc or seat destroying the protective oxide layer
Rupture Discs

All rupture discs produce particles when they burst even “non-fragmenting” discs.
- Rupture disc upstream of a relief valve can result in:
 - Adiabatic compression ignition of PRV softgoods
 - Particle impact ignition of PRV seat, plug, or disc
- Particle ignition of short radius elbows immediately downstream of the disc
Utilize Good Practices

• Design for ballistic flow
 – Long radius elbows instead of standard 90’s
 – “Y’s” instead of Tees
 – Minimum fittings and pipe in discharge line

• Reduce velocity ahead of targets

• Prevent system contamination
 – Insects are extremely flammable
 – Water will freeze
 – Consider a vent cover, such as Enviro-Guard rather than a vent tee with bug screen
Utilize Good Practices

• Treat the vent system with the same care as the process system
• Assemble components using “oxygen clean” techniques
• Thoroughly clean the system and sample the system
 – System must be designed for cleaning
Maximize Best Materials

High Oxygen Pressure and Low Propagation Rate

<table>
<thead>
<tr>
<th>Material</th>
<th>Initial Pressure</th>
<th>Average Propagation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monel 400</td>
<td>8000</td>
<td>NP</td>
</tr>
<tr>
<td>Copper 102</td>
<td>8000</td>
<td>NP</td>
</tr>
<tr>
<td>Nickel 200</td>
<td>8000</td>
<td>NP</td>
</tr>
<tr>
<td>Yellow brass</td>
<td>7000</td>
<td>NP</td>
</tr>
<tr>
<td>Tin bronze</td>
<td>7000</td>
<td>NP</td>
</tr>
<tr>
<td>Red brass</td>
<td>7000</td>
<td>NP</td>
</tr>
<tr>
<td>Inconel 600</td>
<td>2500</td>
<td>0.16</td>
</tr>
<tr>
<td>304 SS</td>
<td>2500</td>
<td>0.44</td>
</tr>
<tr>
<td>316 SS</td>
<td>1000</td>
<td>0.44</td>
</tr>
<tr>
<td>Ductile cast iron</td>
<td>500</td>
<td>0.14</td>
</tr>
<tr>
<td>Nitronic 60</td>
<td>500</td>
<td>0.33</td>
</tr>
<tr>
<td>Aluminum bronze</td>
<td>500</td>
<td>1.09</td>
</tr>
<tr>
<td>Aluminum 6061</td>
<td>250</td>
<td>1.80</td>
</tr>
</tbody>
</table>

ASTM G94-05, Table X1.1
Maximize Best Materials

Friction Ignition and Heat of Combustion

<table>
<thead>
<tr>
<th>Material</th>
<th>Friction Ignition Test</th>
<th>Heat of Combustions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W/m² x 10⁻⁸</td>
<td>Cal/g</td>
</tr>
<tr>
<td>Nickel 200</td>
<td>2.29</td>
<td>585</td>
</tr>
<tr>
<td>Copper 102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin bronze</td>
<td>2.15</td>
<td>655</td>
</tr>
<tr>
<td>Red brass</td>
<td></td>
<td>690</td>
</tr>
<tr>
<td>Inconel 600</td>
<td>2.00</td>
<td>1300</td>
</tr>
<tr>
<td>Monel 400</td>
<td>1.44</td>
<td>870</td>
</tr>
<tr>
<td>Yellow brass</td>
<td>0.95</td>
<td>825</td>
</tr>
<tr>
<td>Aluminum bronze</td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td>304 SS</td>
<td>0.85</td>
<td>1900</td>
</tr>
<tr>
<td>316 SS</td>
<td>0.53</td>
<td>1900</td>
</tr>
<tr>
<td>Nitronic 60</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Aluminum 6061</td>
<td>0.061</td>
<td>7524</td>
</tr>
<tr>
<td>Ti-6Al-4V</td>
<td>0.004</td>
<td>4710</td>
</tr>
</tbody>
</table>

ASTM G94-05, Table X1.2, Table X1.5
Maximize Best Materials

Ignitability in Supersonic Particle Impact Test with 2000 µm Aluminum Particles, Oxygen Pressure 520 to 580 psia

<table>
<thead>
<tr>
<th>Material</th>
<th>Highest Temperature without Ignition of Target °F</th>
<th>Lowest Temperature with Ignition of Target °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monel K500</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Monel 400</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>Copper 102</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Yellow brass</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Inconel 600</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Tin bronze</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>Aluminum bronze</td>
<td>500, 600</td>
<td></td>
</tr>
<tr>
<td>Ductile cast iron</td>
<td>300, 400</td>
<td></td>
</tr>
<tr>
<td>316 SS</td>
<td>50, 100</td>
<td></td>
</tr>
<tr>
<td>Nitronic 60</td>
<td>0, 250</td>
<td></td>
</tr>
<tr>
<td>304 SS</td>
<td>0, 100</td>
<td></td>
</tr>
<tr>
<td>Aluminum 6061</td>
<td>None, -50</td>
<td></td>
</tr>
</tbody>
</table>

ASTM G94-05, Table X2.9
Maximize Best Materials

Autoignition Temperature and Heat of Combustion

<table>
<thead>
<tr>
<th>Material</th>
<th>Autoignition Temperature</th>
<th>Heat of Combustion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon PFA</td>
<td>795 °F</td>
<td>1250 Cal/g</td>
</tr>
<tr>
<td>Teflon A</td>
<td>813 °F</td>
<td>1526 Cal/g</td>
</tr>
<tr>
<td>Rulon E (glass filled TFE)</td>
<td>801 °F</td>
<td>1700 Cal/g</td>
</tr>
<tr>
<td>Kalrez</td>
<td>671 °F</td>
<td>2090 Cal/g</td>
</tr>
<tr>
<td>PCTFE (Kel-F 81)</td>
<td>712 °F</td>
<td>2500 Cal/g</td>
</tr>
<tr>
<td>Viton B</td>
<td>554 °F</td>
<td>3089 Cal/g</td>
</tr>
<tr>
<td>PVDF (Kynar)</td>
<td>514 °F</td>
<td>3277 Cal/g</td>
</tr>
<tr>
<td>Tefzel (ETFE)</td>
<td>469 °F</td>
<td>3538 Cal/g</td>
</tr>
<tr>
<td>Viton A</td>
<td>514 °F</td>
<td>3603 Cal/g</td>
</tr>
<tr>
<td>Vespel SP-21</td>
<td>649 °F</td>
<td>6100 Cal/g</td>
</tr>
<tr>
<td>Zytel (Nylon 6/6)</td>
<td>498 °F</td>
<td>7708 Cal/g</td>
</tr>
<tr>
<td>PEEK</td>
<td>581 °F</td>
<td>6665 Cal/g</td>
</tr>
<tr>
<td>EPDM</td>
<td>318 °F</td>
<td>11299 Cal/g</td>
</tr>
</tbody>
</table>

ASTM G63, Table X1.2, Table X1.5
Maximize Best Materials

Mechanical Impact Sensitivity

<table>
<thead>
<tr>
<th>Material</th>
<th>Impact Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactions/tests</td>
<td>0 / 20</td>
</tr>
<tr>
<td>Rulon E (glass filled TFE)</td>
<td>0 / 20</td>
</tr>
<tr>
<td>PCTFE (Kel-F 81)</td>
<td>0 / 20</td>
</tr>
<tr>
<td>PVDF (Kynar)</td>
<td>79 / 100</td>
</tr>
<tr>
<td>Viton A</td>
<td>3 / 20</td>
</tr>
<tr>
<td>Zytel (Nylon 6/6)</td>
<td>21 / 60</td>
</tr>
</tbody>
</table>

ASTM G63, Table X1.4
Maximize Best Materials

Autoignition Temperature

<table>
<thead>
<tr>
<th>Material</th>
<th>Autoignition Temperature °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brayco 667 (grease)</td>
<td>801</td>
</tr>
<tr>
<td>PTFE pipetape</td>
<td>801</td>
</tr>
<tr>
<td>Fluorolube GR362 (grease)</td>
<td>801</td>
</tr>
<tr>
<td>Fluorolube LG160 (grease)</td>
<td>720</td>
</tr>
<tr>
<td>Fomblin RT-15 (grease)</td>
<td>801</td>
</tr>
<tr>
<td>Halocarbon X90-15M</td>
<td>801</td>
</tr>
<tr>
<td>Krytox 240</td>
<td>801</td>
</tr>
<tr>
<td>Oxygen System Antiseize</td>
<td>424</td>
</tr>
<tr>
<td>Utility pipe joint compound</td>
<td>421</td>
</tr>
</tbody>
</table>

ASTM G63, Table 1.3
Summary

• Problem
 – Fire hazard risk is real in O₂ Relief systems
 – Fire consequences are often severe

• Solution
 – Use Risk Management Strategy
 • Minimize ignition hazards
 • Maximize best materials
 • Utilize good practices
Summary

• Design relief system for cleanability
• Design relief system for ballistic flow
• Specify the right metals, softgoods, and lubricants
• Specify the best assembly techniques
• Have materials tested if data is not available
• Conduct a full hazard analysis
Summary

Resources

• ASTM
 – Manual 36, Safe Use of Oxygen and Oxygen Systems
 – G 88 - system design
 – G 63 & G 94 - material selection and data
 – G 93 - oxygen system cleanliness
• CGA G04, Oxygen
• NFPA 53, Manual on Fire Hazards in Oxygen-Enriched Atmospheres
• Other options
 – Material testing, NASA White Sands Test Facility
 – Joel Stoltzfus, NASA White Sands Test Facility
Conclusions

• Safe oxygen use and relief is possible
• This is not an exact science
 – Many variables are involved
 – But applicable data and knowledge exist
 – And good principles have been established
• A conservative approach is essential

 Key element is judgment!