Predicting Material Performance in the Space Environment from Laboratory Test Data, Static Design Environments, and Space Weather Models

Joseph I. Minow and David L. Edwards
NASA, Marshall Space Flight Center

ICPSME, Toronto, Canada 20-23 May 2008
Introduction

• Materials are evaluated for use in space environments by laboratory exposure to VUV/UV, AO, and charge particle environments to determine effects on material properties

• Standard “static” design environments are typically used to establish exposure periods and the corresponding photon, AO, and charged particle fluence to meet mission requirements

• Questions:
 – How well do static models represent the real environment?
 – What is the contribution of “space weather” events to material exposure environments?

• Today’s presentation will
 – Examine VUV/UV environments used in laboratory tests with emphasis on surface exposures
 – Examine importance of “space weather” event contributions to environment
VUV/UV Penetration Depth

- Long wavelengths penetrate deeper into polymers

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>50% depth (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>----</td>
</tr>
<tr>
<td>250</td>
<td>128</td>
</tr>
<tr>
<td>224</td>
<td>65</td>
</tr>
<tr>
<td>200</td>
<td>22</td>
</tr>
<tr>
<td>190</td>
<td>17</td>
</tr>
<tr>
<td>184</td>
<td>14</td>
</tr>
</tbody>
</table>

- VUV wavelengths where solar variability is strongest primarily impacts material surfaces

[Dever et al., 2002]
Solar Spectrum and Models

- Static models
 - NRLEUV
 - EUVAC
 - EUV81
 - ASTM E490

- Climatology
 - Solar2000 (S2K)
 - Space Environment Technologies
 - Tobiska et al.
 - constant 122.5 – 1x10^6 nm
 - variable 0.5 – 121.5 nm
 - Δt = 1 day

- Space weather
 - Flare Irradiance Spectral Model
 - LASP/CU Boulder
 - Chamberlin et al.
 - 0.1 – 194 nm
 - Δt = 1 minute

[Source: Tobiska and Nusinov, 2004]
Solar XUV/EUV/UV Variability

Solar2000
• Static ASTM E490
• Variable XUV/EUV

Reference Spectrum
• Mean S2K

• Nomenclature
 XUV 0.1 ≤ λ < 10
 EUV 10 ≤ λ < 200
 UV 200 ≤ λ < 400

 VUV 20 ≤ λ < 200

[ISO_DIS_21348_E_revB, 2008]
Solar XUV/EUV/UV Variability

Solar2000
• Static ASTM E490
• Variable XUV/EUV

Reference Spectrum
• Mean S2K

\[I_{\lambda_a - \lambda_b} = \frac{\sum_{k=1}^{n} I(\lambda_k) d\lambda_k}{\sum_{k=1}^{n} d\lambda_k} \]

Mean S2K

\begin{figure}
\centering
\includegraphics[width=\textwidth]{solar_xuv_euv_uv_variability.png}
\caption{Mean S2K with wavelength ranges: 5 to 100 nm, 100 to 250 nm, 250 to 400 nm.}
\end{figure}
Solar UV/VUV Variability

- Solar intensity in terms of UV Suns based on mean S2K design model

- Solar source yields UV Suns exceeding unity when mean model is used as reference spectrum

\[\text{UV Suns}_{\lambda_a - \lambda_b} = \frac{I_{\lambda_a - \lambda_b, \text{source}}}{I_{\lambda_a - \lambda_b, \text{reference}}} \]
Solar UV/VUV Variability

Solar2000
- Static ASTM E490
- Variable XUV/EUV

Reference Spectrum
- 90% S2K
Solar XUV/EUV/UV Variability

Solar2000
- Static ASTM E490
- Variable XUV/EUV

Reference Spectrum
- 90% S2K
Solar UV/VUV Variability

- Solar intensity in terms of UV Suns based on 90% S2K design model

- Conservative model yields fewer UV sun values exceeding design models
ASTM E490 and Solar Variability: Spectrum

- S2K model intensity exceeds ASTM-E490 at Lyman-α wavelengths

- S2K as ASTM-E490 for wavelengths longer than Lyman-α

- Materials sensitive to wavelengths shorter than Lyman-α may underperform in space environment if
 - qualified only to ASTM-E490
 - degradation dominated by <200 nm environment
UV Suns based on Solar2000 exceed the ASTM-E490 environments for all solar cycles from 1950 through 2004 for wavelengths shorter than Lyman-α.

ASTM under represents the solar spectrum?
UV source: UARS

Solar2000 XUV/EUV data measured on orbit [Tobiska and Bouwer, 2006]:
- TIMED
- SOHO
- SORCE
- SNOE
Flare Irradiance Spectral Model (FISM)

- Empirical solar irradiance model developed by LASP/CU [Chamberlin et al., 2007]
 - Resolution
 \[\Delta \lambda = 1 \text{ nm} \quad 0.1 \text{ nm} < \lambda < 194 \text{ nm} \]
 \[\Delta t = 60 \text{ seconds} \]
 - Data sources
 - Solar Extreme Ultraviolet Experiment (SEE)/TIMED
 - Solar Stellar Irradiance Comparison Experiment (SOLSTICE)/UARS

- FISM developed to provide VUV solar spectral irradiances for input to ionosphere, thermosphere models
 - 100% coverage from 1986 to present

FISM URL:
http://lasp.colorado.edu/LISIRD/fism.htm
Solar VUV 2005

Solar minimum

FISM 2005

Wavelength (nm)

Time (UTC)

Log_{10} W/m²-nm

-2

-3

-4

-5

-6
Solar VUV 2005

Solar minimum

FISM 2005

Time (UTC)
• Static design models typically used to establish laboratory test protocols for determining material response to the UV/VUV space environment
 – Need to be careful with choice of reference model if test results are to be used for qualifying materials for extended use in space

• Space climatology and space weather models provide a useful technique for evaluating projected on-orbit performance to a “static” design specification

• Solar2000 and FISM models are useful tools for
 – Characterizing dynamic changes in on-orbit solar VUV environments
 – Developing appropriate design environments for screening materials to VUV environments