
Takahisa Kobayashi
ASRC Aerospace Corporation, Cleveland, Ohio

Donald L. Simon
Glenn Research Center, Cleveland, Ohio

Aircraft Engine On-Line Diagnostics Through Dual-
Channel Sensor Measurements: Development of an 
Enhanced System

NASA/TM—2008-215229

June 2008

GT2008–50346



NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA Scientifi c and Technical Information (STI) 
program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI program provides access 
to the NASA Aeronautics and Space Database and 
its public interface, the NASA Technical Reports 
Server, thus providing one of the largest collections 
of aeronautical and space science STI in the world. 
Results are published in both non-NASA channels 
and by NASA in the NASA STI Report Series, which 
includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counterpart of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientifi c 

and technical fi ndings that are preliminary or 
of specialized interest, e.g., quick release 
reports, working papers, and bibliographies that 
contain minimal annotation. Does not contain 
extensive analysis.

 
• CONTRACTOR REPORT. Scientifi c and 

technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 

papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or cosponsored by NASA.

 
• SPECIAL PUBLICATION. Scientifi c, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

Specialized services also include creating custom 
thesauri, building customized databases, organizing 
and publishing research results.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question via the Internet to help@

sti.nasa.gov
 
• Fax your question to the NASA STI Help Desk 

at 301–621–0134
 
• Telephone the NASA STI Help Desk at
 301–621–0390
 
• Write to:

           NASA Center for AeroSpace Information (CASI)
           7115 Standard Drive
           Hanover, MD 21076–1320



Takahisa Kobayashi
ASRC Aerospace Corporation, Cleveland, Ohio

Donald L. Simon
Glenn Research Center, Cleveland, Ohio

Aircraft Engine On-Line Diagnostics Through Dual-
Channel Sensor Measurements: Development of an 
Enhanced System

NASA/TM—2008-215229

June 2008

GT2008–50346

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Prepared for the
Turbo Expo 2008 Gas Turbine Technical Congress and Exposition
sponsored by the American Society of Mechanical Engineers
Berlin, Germany, June 9–13, 2008



Acknowledgments

This research was funded by the NASA Aviation Safety Program as a task under
the Integrated Vehicle Health Management Project

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Level of Review: This material has been technically reviewed by technical management. 

This report is a preprint of a paper intended for presentation at a conference. 
Because changes may be made before formal publication, this preprint is made available 

with the understanding that it will not be cited or reproduced without 
the permission of the author.



 
 
 
 
 

ABSTRACT 
In this paper, an enhanced on-line diagnostic system which 

utilizes dual-channel sensor measurements is developed for the 
aircraft engine application.  The enhanced system is composed 
of a nonlinear on-board engine model (NOBEM), the hybrid 
Kalman filter (HKF) algorithm, and fault detection and 
isolation (FDI) logic.  The NOBEM provides the analytical 
third channel against which the dual-channel measurements are 
compared.  The NOBEM is further utilized as part of the HKF 
algorithm which estimates measured engine parameters.  
Engine parameters obtained from the dual-channel 
measurements, the NOBEM, and the HKF are compared 
against each other.  When the discrepancy among the signals 
exceeds a tolerance level, the FDI logic determines the cause of 
discrepancy.  Through this approach, the enhanced system 
achieves the following objectives: 1) anomaly detection, 2) 
component fault detection, and 3) sensor fault detection and 
isolation.  The performance of the enhanced system is 
evaluated in a simulation environment using faults in sensors 
and components, and it is compared to an existing baseline 
system. 

 

 
INTRODUCTION 

Reliability is an important aspect in maintaining safety and 
efficient operation of aircraft gas turbine engines.  To ensure 
reliability, aircraft engine electronic control systems are 
equipped with some level of redundancy for backup purposes 
in case of a failure.  This redundancy has evolved from a 
simple hydro-mechanical backup to a dual-channel full 
authority digital electronic control (FADEC) [1-3].  In the dual-

channel FADEC setup, a single engine parameter is measured 
by a dual-channel sensor,† and the FADEC receives the 
redundant measurements through dual channels.  If a single 
channel fails, this failure is accommodated by utilizing the 
measurement on the other channel. 

Such an accommodation action can be taken only if the 
identity of the faulty sensor and its failed channel are known.  
Thus, in order to fully utilize the available redundancy for 
sensor fault accommodation, the ability to diagnose the sensors 
on-line (real-time, in-flight) is required.  The sensor fault 
detection and isolation process is initiated by cross-checking 
the redundant measurements of each dual-channel sensor.  If 
both channels agree within a pre-established tolerance, the 
measurements on both channels are acceptable.  If not, the 
cross-check fails, and one of the dual channels is considered 
faulty.  A challenge arises in the subsequent process of 
identifying the faulty channel.  Even if redundant 
measurements do not agree with each other, both of them may 
pass the range and rate checks [4].  Such a failure is called an 
in-range sensor fault and causes some difficulty in determining 
which channel is the failed one. 

For the diagnosis of an in-range sensor fault, an analytical 
third channel is necessary as a referee in the decision making 
process [4].  In the triplex-channel setup, the redundant 

                                                           
† A dual-channel sensor is defined in this paper as a device which 

produces two measurements of the same engine parameter.  The redundant 
measurements are referred to as channel A and channel B measurements.  It is 
assumed that failures can occur in either one or both channels of the sensor. 
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measurements of a dual-channel sensor are compared against 
the referee (analytical third channel).  The channel that 
disagrees most with the referee is likely the faulty channel.  The 
analytical third channel is embedded within the FADEC in the 
form of an analytical representation of the real engine.  This 
analytical representation is called an on-board engine model 
(OBEM).  The OBEM captures the real engine’s nominal 
behavior to some extent and provides expected engine output 
values in real time.  In Ref. [5], a linear on-board engine model 
(LOBEM), which is composed of piecewise linear models 
generated at multiple operating conditions over the flight 
envelope, was utilized for the development of a baseline system 
for aircraft engine on-line diagnostics.  This baseline system 
established the level of diagnostic performance which is 
potentially achievable in the field. 

In this paper, an on-line diagnostic system that utilizes 
advanced techniques is developed to achieve a higher level of 
diagnostic performance. This system is referred to as an 
enhanced system, and it utilizes a nonlinear on-board engine 
model (NOBEM) and the hybrid Kalman filter (HKF) 
algorithm [6].  The NOBEM functions as the analytical third 
channel that provides expected engine output values in real 
time.  The NOBEM is further utilized as part of the HKF 
algorithm.  Based on the parameters generated by the NOBEM, 
the HKF estimates the engine output values which are used in 
the diagnostic process.  Similar to the baseline system, the 
enhanced system achieves the following objectives: 1) anomaly 
detection, 2) component fault detection, and 3) sensor fault 
detection and isolation.  The performance of the enhanced 
system is evaluated to determine its advantages over the 
baseline system. 

In the following section, a review of the baseline system 
and its implementation challenge is given first.  Then, the 
development of the enhanced system is described, followed by 
a discussion regarding how the influence of engine health 
degradation is accounted for by the enhanced system.  Then, 
the diagnostic approach is applied to a large commercial 
aircraft engine model.  The performance of the enhanced 
system is evaluated and compared to the performance of the 
baseline system using simulated faults in sensors and 
components. 

 

NOMENCLATURE 
BST Booster 
CFS  Component fault signature 
FADEC Full Authority Digital Electronic Control 
FDI  Fault Detection and Isolation 
HKF Hybrid Kalman filter 
HPC High Pressure Compressor 
HPT High Pressure Turbine 
LOBEM Linear On-Board Engine Model 
NOBEM Nonlinear On-Board Engine Model 
LPT  Low Pressure Turbine 
OBEM On-Board Engine Model 

P2  Engine inlet pressure 
P25  HPC inlet pressure 
Pamb  Ambient pressure 
PS3  Combustor inlet static pressure 
T2  Engine inlet temperature 
T25  HPC inlet temperature 
T3  Combustor inlet temperature 
T49  LPT inlet temperature 
Tamb  Ambient temperature 
TMHS23 BST metal temperature 
TMHS3 HPC metal temperature 
TMHS41 HPT nozzle metal temperature 
TMHS42 HPT metal temperature 
TMHS5 LPT metal temperature 
TMHSBC Combustor case metal temperature 
TMHSBL Combustor liner metal temperature 
VBV Variable bleed valve 
VSV Variable stator vane 
WF36 Fuel flow 
XN12 Fan speed, measured 
XN25 Core speed, measured 
XNH Core speed, actual 
XNL Fan speed, actual 
e  Environmental parameter vector 
h  Health parameter vector 
href  Reference health condition vector 
ucmd  Control command vector 
v  Sensor noise vector 
x  State variable vector 
y  Sensor output vector (controls/diagnostics) 
z  Sensor output vector (ambient/engine inlet) 

 
 
REVIEW OF THE BASELINE SYSTEM 

The baseline system developed in Ref. [5] is composed of 
a linear on-board engine model (LOBEM) and fault detection 
and isolation (FDI) logic as shown in Fig. 1.  The LOBEM runs 
in real-time and provides expected engine output values.  In the 
triplex-channel setup, the dual-channel measurements are 
compared against each other and also against the output of the 
LOBEM.  Based on discrepancies among the triplex channels, 
the FDI logic determines a root cause of the engine’s 
anomalous behavior. 

Since the LOBEM is developed to represent an aircraft 
engine at a specific health condition, it eventually becomes an 
obsolete representation as the real engine continues to degrade 
over its lifetime.  Utilization of such an obsolete engine model 
in the diagnostic process corrupts on-line diagnostic 
capabilities.  Thus, the LOBEM must be updated periodically 
so that it can accurately represent the real engine at a degraded 
condition.  Through the periodic update of the LOBEM, the 
baseline system is able to maintain its diagnostic effectiveness 
regardless of health degradation. 

The major implementation challenge that must be 
addressed for the baseline system is the complexity involved in 
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the update process.   In order to update the LOBEM, piecewise 
linear models must be re-generated at a degraded health 
condition.  This re-generation process may have to take place 
on a ground-based computer with human intervention.  
Furthermore, after the re-generation process, the piecewise 
linear models must be uploaded to the FADEC.  Such 
complexity raises a number of questions regarding the 
practicality of this approach. 

The complex process of updating an on-board engine 
model must be addressed before any on-line diagnostic 
algorithms that utilize the model can be viable.  In the 
following section, the enhanced system is developed to address 
the above implementation challenge. 

 
 
DEVELOPMENT OF THE ENHANCED SYSTEM FOR 
ON-LINE DIAGNOSTICS 

The structure of the enhanced system is shown in Fig. 2.  
The enhanced system is different from the baseline system in 
the following two aspects: 1) utilization of a nonlinear OBEM 
instead of a linear OBEM and 2) utilization of the HKF 

algorithm.  The NOBEM functions not only as the analytical 
third channel but also as part of the HKF algorithm [6].  The 
HKF algorithm utilizes the parameters generated by the 
NOBEM in order to estimate the engine output values.  The 
estimated engine outputs are used by the FDI logic in 
conjunction with the output of triplex channels.  The elements 
of the enhanced system are described in this section. 

FDI
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Diagnostic
Result

Fault Degradation

Engine

Control System

LOBEM

Selected feedback sensor outputs

Ay

By

LOBEMy
FDI
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FIGURE 1. STRUCTURE OF THE BASELINE SYSTEM 
FOR ON-LINE DIAGNOSTICS 

 
 

 
 
Hybrid Kalman Filter 

An aircraft engine under consideration for on-line 
diagnostics is described by nonlinear equations of the following 
form: 
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The vectors x, ucmd, and e contain state variables, control 
command inputs, and environmental parameters, respectively.  
The vector h contains health parameters that indicate the engine 
health condition.  Health parameters are efficiencies and flow 
capacities of the engine components such as compressors and 
turbines.  As they deviate from their nominal health condition, 
the performance delivered by each component degrades.  For 
given inputs, the nonlinear functions  and f g  generate the 
state derivative vector  and engine output vector y.  The 
engine outputs are measured by sensors with dual-channels A 
and B as follows: 
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The vectors  and  represent the zero-mean, normally 
distributed white noise that corrupts the measurements on dual 
channels.  

Av Bv

The enhanced on-line diagnostic system utilizes a NOBEM 
in the following form:  
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The vectors  and  contain the state and output 
variables of the NOBEM, respectively, while the vector z 
contains the measured parameters which define the flight 
condition.  The vector   contains health parameters that 
indicate the health condition of the NOBEM.  The health 
condition prescribed by this vector is called the “health 
baseline” since it is the reference health condition at which the 
NOBEM operates. 

NOBEMx NOBEMy

NOBEMh

Based on the state and output vectors of the NOBEM, the 
HKF equation is formulated as follows: 

 
FIGURE 2. STRUCTURE OF THE ENHANCED SYSTEM 
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One HKF is set up for each channel as shown in Fig. 2; the 
above equation represents the HKF for channel A.  The 
subscript “A” is replaced by “B” for the HKF on channel B.  
The vector   represents the estimate of x in Eq. (1), while 
the vector  represents the estimate of  in Eq. (2).  The 
state space matrices A and C are derived off-line through the 
linearization of the NOBEM.  During the linearization process, 
the health baseline of the NOBEM is set to a specific health 
condition (e.g., nominal health).  The matrix K represents the 
Kalman gain.  Similar to the general linear Kalman filter 
approach, the matrices A, C, and K are derived at multiple 
operating conditions, defined by altitude, Mach number, and 
power setting, in order to cover a wide operating range of the 
aircraft engine.  Once derived, these matrices are saved in table 
lookup form for real-time execution of Eq. (4). 

Ax̂

Aŷ Ay

 
 
Construction of Fault Signals 

Based on the triplex channels ( , , ) and the 
estimates of dual HKFs ( , ), various signals are 
constructed for diagnostic purposes.  The first signal is 
constructed through the comparison of measurements on 
channels A and B.  There are a total of m engine parameters 
which are measured by m dual-channel sensors.  For each 
measured parameter, the residual is computed as follows: 

Ay
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By NOBEMy
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where iσ  indicates the standard deviation of the measurement 
uncertainty of the ith sensor.  The residual in Eq. (5) is called 
the “dual-channel residual.”  The dual-channel residual for each 
sensor is compared against a pre-established threshold, .  If 
the dual-channel residual does not exceed the threshold, the 
redundant measurements on both channels are acceptable.  
Otherwise, at least one of the dual channels is faulty.  This 
process can only determine whether at least one channel of the 
dual-channel sensor is faulty, but not which channel is faulty. 

i
DRτ

In addition to the comparison between the dual channels, 
the comparison of the dual channels against the model output is 
performed as follows: 
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The residual in Eq. (6) is called the “analytical residual.” The 
analytical residual computed for each channel of each sensor is 
compared against a pre-established threshold, .  The 
NOBEM generates the expected output values of the engine 
operating without any faults.  If an analytical residual exceeds a 
threshold, it indicates the existence of an anomaly.  

i
ARτ

The analytical residual is further utilized to construct a 
component fault signal (CFS) for each of the dual channels as 
follows: 
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As discussed in Ref. [5], the CFS is computed specifically for 
the purpose of component fault detection.  The scalars α  and 
β  in Eq. (8) are the maximum ratio of the analytical residual 

to the threshold  for channel A and B, respectively, among 
the m dual-channel sensors.  These scalars correspond to the 
analytical residual of a given channel that is largest in 
magnitude with respect to its threshold.  This maximum ratio 
value is subtracted from the summation in Eq. (7).  Since a 
sensor fault causes a prominent increase in the analytical 
residual of one faulty sensor, the CFS value is unaffected by a 
single sensor fault.  On the other hand, a component fault 
generally causes an increase in the analytical residuals of 
multiple sensors, and therefore the CFS value will increase 
when a component is faulty.  As such, an increase in the CFS 
value indicates the existence of a component fault.  The CFS 
for each channel is compared against a pre-established 
threshold, 

i
ARτ

CFSτ .  When the CFS exceeds the threshold in at 
least one channel, it indicates the existence of a component 
fault.   

Up to this point, the signals generated from the triplex 
channels are computed in the same way as those used in the 
baseline system [5].  In conjunction with these signals, the 
enhanced system utilizes the following residuals generated by 
the HKF: 
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The residual in Eq. (9) is called the “estimation residual.”  The 
estimation residual computed for each channel of each sensor is 
compared against a pre-established threshold, .  When the 
engine experiences a fault, the estimation accuracy of the HKF 
becomes poor, causing some increase in the estimation 
residuals.  Such an increase, however, occurs in an 
unpredictable manner.  For instance, a fault in a particular 
sensor does not necessarily cause a large increase in the 
estimation residual of that particular sensor.  Instead, the 
estimation residuals of multiple sensors may exhibit a moderate 
increase.  This can happen since the HKF algorithm is 
formulated based on the assumption that no fault exists in the 
system.  When at least one of the estimation residuals exceeds a 
threshold in either channel, it indicates the existence of an 
anomaly in the corresponding channel.  

i
ERτ

 
 
Fault Detection and Isolation (FDI) Logic 

The various signals discussed in the previous section are 
compared against their respective thresholds.  When any of 
those signals exceeds a threshold, it indicates anomalous engine 
behavior due to a fault.  Based on the threshold violation 
occurring from the engine, the FDI logic determines a root 
cause of the problem based on the following assumptions: 

 
• Only one sensor may be faulty at a time, i.e., either one or 

both channels of this sensor may be faulty at a time. 
• Multiple components may be faulty at a time. 
• Only one of the above two conditions occurs at a time. 

 
The FDI logic indicates one of the following conditions: 1) 
sensor fault detected, 2) sensor fault isolated, 3) component 
fault detected, and 4) anomaly detected.  Each of these 
conditions is discussed in the following section, and a flow 
chart of the FDI logic is given in the Appendix. 

 
Sensor Fault Detection.  The FDI logic indicates that “a 
sensor fault is detected” when one of the dual-channel residuals 
in Eq. (5) exceeds the threshold , but all other signals 
remain below their corresponding thresholds.  This scenario 
happens depending on the fault magnitude and the threshold 
values.  In this condition, the identity of a faulty dual-channel 
sensor is determined, but the identity of its failed channel 
cannot be determined. 

i
DRτ

 
Sensor Fault Isolation.  The FDI logic indicates that “a 
sensor fault is isolated” when the dual-channel residual of a 
particular sensor exceeds the threshold , and also at least 
one of the following conditions is met: 

i
DRτ

 
• This sensor’s analytical residual exceeds the threshold i

AR  
in one channel.  The channel in which the threshold 
violation occurs is identified as the failed one. 

τ

• At least one of the estimation residuals exceeds the 
threshold i

ERτ  in one channel.  The channel in which the 
threshold violation occurs is identified as the failed one.  
When multiple estimation residuals exceed the threshold, 
all threshold violations must occur in the same channel. 

 
The first bullet is the same logic used in the baseline system.  
The second bullet is specific to the enhanced system which 
utilizes the HKF algorithm.  When one of the above two 
conditions occurs in both channels instead of only one or when 
the above two conditions occur in different channels, it is 
considered that both channels of a particular sensor are faulty. 

 
Component Fault Detection.  The FDI logic indicates that 
“a component fault is detected” when all dual-channel residuals 
remain below the threshold , and also the following 
condition is met: 

i
DRτ

 
• The CFS exceeds the threshold CFSτ  in at least one 

channel. 
 

This is the same logic used by the baseline system.  The HKF 
algorithm makes no contribution in detecting a component 
fault.  As mentioned earlier, the estimation performance of the 
HKF is corrupted in an unpredictable manner when the engine 
experiences any fault.  As a result, the estimation residuals do 
not reveal whether the fault exists in a sensor or in a 
component.  They simply reveal the existence of a fault in the 
engine.  Therefore, the estimation residuals generated by the 
HKF are not used to detect a component fault. 

It also should be noted that the enhanced system only 
indicates the existence of a component fault without identifying 
the specific faulty components.  To determine the identity of 
faulty components, the measurements must be further 
processed through an algorithm, such as a bank of Kalman 
filters which was demonstrated in Ref. [7]. 
 
Anomaly Detection.  The FDI logic indicates that “an 
anomaly is detected” when it determines that something is 
abnormal, but it is unable to classify the anomaly into one of 
the three categories previously listed.  This occurs when all 
dual-channel residuals remain below the threshold , and 
also at least one of the following conditions is met: 

i
DRτ

 
• At least one of the analytical residuals exceeds the 

threshold i
ARτ  in either channel. 

• At least one of the estimation residuals exceeds the 
threshold i

ERτ  in either channel. 
 

Again, the first bullet is the same logic used in the baseline 
system, whereas the second bullet is specific to the enhanced 
system.  The analytical residuals and estimation residuals are 
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affected by faults in sensors and components.  Therefore, the 
specific identity of a fault cannot be inferred from the threshold 
violation of these signals.  In this case, the FDI logic only 
indicates the existence of an anomaly. 
 
 
INFLUENCE OF ENGINE HEALTH DEGRADATION 

The on-line diagnostic system is designed to detect and 
isolate a fault as early as possible while avoiding false alarms.  
To achieve this objective over the lifetime of an aircraft engine, 
it is necessary to account for the influence of engine health 
degradation on engine behavior.  Engine health degradation is a 
normal aging process that occurs in all aircraft engines as a 
result of usage, whereas a fault is an abnormal event that 
happens unexpectedly.  Engine health degradation is not 
considered as a fault, but its influence on the engine 
performance grows over time.  Since the off-nominal engine 
behavior induced by health degradation is undistinguishable 
from the anomalous engine behavior induced by a fault, the on-
line system eventually loses its diagnostic effectiveness if 
health degradation is not accounted for in the diagnostic 
process.  An example of such loss of diagnostic effectiveness 
due to health degradation is discussed in Refs. [8,9] for the case 
of sensor fault diagnostics based on neural networks. 

The health condition of an engine is defined by the vector 
h in Eq. (1) which contains health parameters.  The health 
condition at an instant of time can be expressed as follows: 

 
hhh k Δ+=     (10) 

 
The vector  represents health degradation.  Since health 
degradation progresses gradually over the lifetime of an engine, 

 is treated as a constant vector in the time scale at which the 
on-line system operates (i.e., real-time operation).  The 
subscript k indicates the time index of a much longer time scale 
at which the change in health degradation takes place (i.e., k 
may increment once every few flights or few days).  The vector 
Δh represents a component fault that can occur abruptly at any 
instant of time.  The on-line diagnostic system aims to detect 
this component fault when it happens.  If there is no component 
fault, health degradation defines the health condition of the 
engine at a given instant. 

kh

kh

As discussed earlier, the NOBEM in Eq. (3) operates at a 
specific health condition (e.g., nominal health condition) 
defined by the vector , and this health condition is 
called the health baseline.  As long as the health baseline and 
the true health condition of the real engine are in close 
proximity, the NOBEM accurately represents the real engine’s 
performance.  As the engine continues to degrade, the 
difference between the true health condition and the health 
baseline increases.  With such an increase of health condition 
mismatch, the NOBEM becomes a poor representation of the 
real engine and consequently corrupts the diagnostic capability 

of the on-line system.  To address this problem, the NOBEM 
must be adjusted or updated periodically so that it can operate 
in the vicinity of the true health condition of the real engine. 

NOBEMh

The update process for the NOBEM is completed by 
setting the health baseline as follows: 

 

kNOBEM hh ˆ=     (11) 
 

The vector  represents the estimate of health degradation .  
As demonstrated in Ref. [10], health degradation is estimated 
by a trend monitoring algorithm periodically over the course of 
the engine’s life, and it is assumed that this health estimate is 
provided to the on-line system.  This update process through 
Eq. (11) also completes the necessary step for updating the 
HKF; it is not needed to update the linear component of the 
HKF (A, C, K in Eq. 4).  Therefore, the NOBEM and the HKF 
are updated in a relatively simple manner, and this simplicity is 
a major advantage of utilizing the NOBEM, instead of the 
LOBEM.  As discussed in Ref. [5], in order to update the 
LOBEM to a new health baseline, the piecewise linear models 
must be re-generated at the new health condition.  Such 
complexity can raise a number of practical issues in utilizing 
the LOBEM. 

kĥ kh

The periodic update of the health baseline is critical to 
maintaining the enhanced system’s diagnostic effectiveness 
over the lifetime of an engine.  Through this update, the 
influence of health degradation on analytical residuals, CFS, 
and estimation residuals is kept to a minimum.  The 
significance of this update was demonstrated in Ref. [10].  The 
dual-channel residuals are the only signals that are not affected 
by health degradation. 
 
 
APPLICATION OF THE ENHANCED ON-LINE 
DIAGNOSTIC METHODOLOGY 

The enhanced on-line diagnostic system requires a 
nonlinear engine model that can be executed in real time.  In 
this section, a description of an aircraft engine model is given 
first.  This engine model is used as the NOBEM of the 
enhanced system.  The same engine model is also used to 
represent a real engine in the evaluation study presented later.  
Then, a description of the HKF is given, followed by a 
discussion of selecting the threshold values used by the FDI 
logic. 
 
 
Engine Model 

The engine model used in this paper is a nonlinear 
simulation of an advanced high-bypass turbofan engine, a 
typical power plant for a large commercial aircraft.  This engine 
model has been constructed as a component-level model, which 
consists of the major components of an aircraft engine.  The 
engine model captures highly complex engine physics while 
being designed to run in real time.  Engine performance 
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deviations from the nominal health condition are modeled by 
adjustments to efficiency and flow capacity scalars of the 
following five components: fan (FAN), booster (BST), high-
pressure compressor (HPC), high-pressure turbine (HPT), and 
low-pressure turbine (LPT).  There are a total of 10 
adjustments that are called health parameters.  The engine state 
variables, health parameters, actuator variables, and 
environmental parameters are shown in Table 1. 

There are a total of 11 measured parameters (y and z) that 
are available to the digital control unit of this engine.  Table 2 
shows seven measured parameters (y) along with their standard 
deviations given in percent of steady-state values at the ground 
maximum power condition.  These parameters are measured by 
dual-channel sensors with channels A and B.  In this paper, the 
same statistical characteristics are used for both channels.  The 

control action and diagnostics are based on those sensed 
variables.  Table 3 shows four additional measured parameters 
(z) along with their standard deviations given in their actual 
engineering units.  These four parameters indicate the ambient 
and engine inlet conditions, and they are used to operate the 
enhanced on-line diagnostic system over the flight envelope.  
Faults in these parameters are not considered in this paper. 

The nonlinear engine model is used in the subsequent 
sections to represent a real engine in Eq. (1).  The engine 
operates at given health conditions, and its flight condition is 
specified by the three environmental parameters listed in Table 
1.  This engine operates in closed loop with a control system 
described in Ref. [6].  In the current control architecture, the 
power lever angle (PLA) is converted to desired corrected fan 
speed (an indicator of thrust).  The control system adjusts 
actuation variables to cause the corrected measured fan speed 
to match the desired value.  The closed-loop system runs at the 
frequency of 50 Hz. 

 
 

TABLE 1.  ENGINE MODEL VARIABLES 
State Variables  XNL, XNH, TMHS23, TMHS3 

TMHSBL, TMHSBC, TMHS41 
TMHS42, TMHS5 
 

Health 
Parameters 

 FAN efficiency, FAN flow capacity 
BST efficiency, BST flow capacity 
HPC efficiency, HPC flow capacity 
HPT efficiency, HPT flow capacity 
LPT efficiency, LPT flow capacity 
 

Actuators  WF36, VBV, VSV 
 

Environmental 
Parameters 

 Altitude, Mach Number, 
Ambient Temperature 

 
 

TABLE 2. STANDARD DEVIATIONS OF CONTROLS AND 
DIAGNOSTICS SENSORS (σ IN % OF STEADY-STATE 
VALUES AT GROUND MAXIMUM POWER CONDITION) 

Sensors  (y) σ (%) 
XN12 0.25 
XN25 0.25 
P25 0.50 
T25 0.75 
PS3 0.50 
T3 0.75 

T49 0.75 
 
 

TABLE 3. STANDARD DEVIATIONS OF AMBIENT AND 
ENGINE INLET SENSORS (σ IN ACTUAL UNITS) 

Sensors  (z) σ 
Tamb 5.0º F 
Pamb 0.1 psi 
T2 5.0º F 
P2 0.1 psi 

The nonlinear engine model is also used as the NOBEM.  
The NOBEM operates at the flight condition defined by the 
three measured parameters: Tamb, Pamb, and T2.  From these 
measurements, the NOBEM calculates altitude, Mach number, 
and temperature deviation from the standard day condition.  
The NOBEM receives the three control commands generated 
by the control system. 

In the current study, the same engine model is used to 
represent a real engine and the NOBEM.  Typically, there will 
be a mismatch between the real engine and its mathematical 
representation due to unmodeled and incorrectly modeled 
physical phenomena.  Such a mismatch can be a cause of false 
alarms.  To account for the influence that the mismatch may 
have on the diagnostic system, the health condition mismatch 
between the engine and the NOBEM is utilized to set the 
threshold levels.  The health condition mismatch captures in 
some degree the mismatch that exists in the real environment. 
 
 
Hybrid Kalman Filter Design 

The HKF is composed of the NOBEM and the linear 
component (A, C, K in Eq. 4).  The NOBEM operates as 
described in the previous section.  The NOBEM is the core of 
the enhanced system since it functions not only as the 
analytical third channel but also as part of the HKF algorithm.  
The linear component, which is integrated with the NOBEM in 
the HKF structure, is derived off-line from the NOBEM 
through the following steps.  First, the NOBEM is linearized at 
specific operating conditions.  At each linearized point, a 
Kalman gain matrix K is computed based on the matrix pair [A, 
C].  Then, the piecewise linear matrices are saved in table 
lookup form.  As the real engine moves from one operating 
condition to another, the piecewise linear matrices are 
interpolated based on a scheduling parameter. 

The same HKF design that appeared in Refs. [6,11] is used 
in this paper.  The linear component was generated by 
linearizing the NOBEM along the steady-state power setting 
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line at a cruise flight condition.  During the linearization, the 
health baseline was set to the nominal health condition.  For the 
interpolation of the piecewise linear matrices, the HKF’s 
estimate of corrected fan speed is used as the scheduling 
parameter.  When the HKF was implemented in a simulation 
environment, it was discretized to run at the frequency of 50 
Hz.  The parameters used by the HKF are corrected based on 
the engine inlet condition T2 and P2 [12]. 
 
 
Selection of Threshold Values 

In the enhanced on-line diagnostic system, various signals 
are constructed based on the triplex channels ( , , 

) and the HKF estimates ( , ), and they are 
compared against the thresholds.  Since the enhanced system 
classifies the root cause of the problem based on the threshold 
violations occurring from the engine, the selection of threshold 
values is an important task in order to achieve the desired 
diagnostic performance. 

Ay By

NOBEMy Aŷ Bŷ

There are many thresholds that need be determined for the 
enhanced system.  First, the threshold  for the dual-channel 
residual in Eq. (5) must be determined for each of the m 
sensors.  Similarly, the threshold  for the analytical residual 
in Eq. (6) must be determined for each of the m sensors.  The 
same threshold value is used for both channels of each sensor.  
Furthermore, the threshold 

i
DRτ

i
ARτ

CFSτ  for CFS in Eq. (7) must be 
determined, and the same threshold value is used for both 
channels.  The total number of thresholds mentioned so far is 
2m+1, and these thresholds are also used by the baseline 
system [5].  For comparison purposes, the same threshold 
values used by the baseline system are used by the enhanced 
system. 

The enhanced system utilizes additional signals that are 
constructed from the HKF’s estimate.  For the estimation 
residual in Eq. (9), the threshold  must be determined for 
each of the m sensors.  The same threshold value is used for 
both channels of each sensor.  Therefore, the total number of 
thresholds for the HKF-based signals is m.  The threshold 
values are determined through Monte-Carlo simulation; the 
engine and the HKF are run with different levels of health 
condition mismatch between them.  This mismatch causes the 
estimation residuals to vary over some range.  The thresholds 
are set to values higher than the maximum values that the 
estimation residuals can reach due to the mismatch used in the 
Monte-Carlo simulation.  The process of determining the 
threshold values is discussed in detail in Refs. [6,11]. 

i
ERτ

The total number of thresholds for the enhanced system is 
3m+1.  In the current setup, all signals (dual-channel residuals, 
analytical residuals, CFS, and estimation residuals) are 
processed by a low-pass filter with a cutoff frequency of 1.0 
rad/sec (0.16 Hz) and then compared against the thresholds.  A 
threshold violation is declared when any of the signals 

persistently exceeds its corresponding threshold.  For this 
study, a threshold violation is declared when a threshold is 
exceeded 25 consecutive time steps (0.5 sec).  This persistency 
test is carried out to ensure the existence of a fault.  Based on 
the threshold violations occurring from the engine, the FDI 
logic determines the root cause of the anomaly.  The low-pass 
filter design and persistency test are adjusted based on the 
engineering judgment of the designer.  The performance of the 
diagnostic system will vary with those design factors. 
 
 
PERFORMANCE EVALUATION 

In this section, the performance of the enhanced system is 
evaluated in the same way the baseline system was evaluated in 
Ref. [5].  The evaluation is conducted in a simulation 
environment using faults in sensors and components.  The 
simulation setup for the enhanced system is shown in Fig. 2.  
The nonlinear engine model is used to represent the real 
engine.  Since accommodation of sensor faults is beyond the 
scope of this paper, the measurements on channel A are used as 
feedback inputs to the control system regardless of fault 
existence.  Sensor faults are injected into channels A and B 
individually to investigate the effect of control action. 

The enhanced system is evaluated at a cruise condition, 
and the threshold values at this operating point are shown in 
Table 4.‡  It should be noted that the threshold values for the 
estimation residuals are relatively small.  This is due to the fact 
that the Kalman filter, in general, accurately estimates the 
measured parameters even in the presence of uncertainty; the 
Kalman filter tends to tune its state estimate in order to 
maintain its output estimate in good agreement with the 
measured parameters. 

With the threshold values in Table 4, the enhanced system 
should possess a level of robustness similar to that of the 
baseline system.  This aspect is investigated in the following 
section using engine health degradation as uncertainty that can 
cause false alarms. 

 

                                                           
‡  For full flight envelope evaluation, different threshold values should be 

used at different operating points, and the adaptive threshold approach 
discussed in Ref. [6] could be used during transient operation. 

 
TABLE 4. THRESHOLD VALUES AT CRUISE CONDITION 

Sensors DRτ (σ) ARτ (σ) ERτ (σ) 
XN12 ± 2.0 ± 3.6 ± 0.4 
XN25 ± 2.0 ± 5.0 ± 0.7 
P25 ± 2.0 ± 1.5 ± 0.9 
T25 ± 2.0 ± 1.4 ± 0.7 
PS3 ± 2.0 ± 1.7 ± 0.8 
T3 ± 2.0 ± 1.6 ± 0.6 

T49 ± 2.0 ± 1.6 ± 0.7 
    

2.1=CFSτ     
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Robustness to Engine Health Degradation 
The enhanced system has been developed with some 

degree of robustness to uncertainty that exists in the real 
application environment.  Such robustness, however, is not at 
the level that can prevent the enhanced system from diagnosing 
health degradation as a fault.  In this section, it is determined 
how much the engine can degrade before the enhanced system 
starts indicating the existence of a fault. 

In this study, the health baseline of the NOBEM is set to 
the nominal health condition, while the engine degrades 
gradually over its lifetime along a degradation profile as 
discussed in Ref. [10].  A degradation profile defines the health 
condition   in Eq. (10) at the kth sample point which may 
increment once every few flights or few days.  The engine fully 
deteriorates at the 300th sample point. 

kh

For the health degradation profile used in Ref. [5], the 
enhanced system indicated the existence of a component fault 
when the health condition of the engine reached the 38th sample 
point of the degradation profile.  For the baseline system, it was 
the 37th sample point at which the engine’s health degradation 
was detected as a component fault.  The level of health 
degradation at this point is far from the condition where a 
maintenance action is necessary.  Thus, the diagnostic result, if 
trusted, can lead to an unnecessary maintenance action or 
inspection.  To avoid such an undesirable scenario, the health 
baseline of the NOBEM must be periodically updated as shown 
in Eq. (11). 

The above study was further continued using different 
degradation profiles in order to compare the robustness of the 
enhanced system to that of the baseline system.  For each 
degradation profile tested, the enhanced system indicated the 
existence of a component fault or an anomaly at the same or 
similar sample point as the baseline system did.  This means 
that the two systems possess a similar level robustness to health 
degradation.  The robustness to health degradation or other 
uncertainties can be adjusted by modifying the threshold 
values.  The thresholds for the enhanced system have been set 
so that the robustness of the enhanced system is similar to that 
of the baseline system.  With this setup, fault detection and 
isolation capabilities of the two systems can be compared in a 
fair manner. 
 
 
Sensor Fault Diagnostics 

The capability to detect and isolate a biased sensor is 
evaluated in this section.  A bias is injected into channel A or B 
of a single sensor at a time.  The health condition of the engine 
and the health baseline of the NOBEM are set to the nominal 
health.  In the presence of a sensor bias, the closed-loop system 
is trimmed at a cruise operating condition.  Then, the 
simulation in Fig. 2 is run at steady-state for 100 seconds.  
When any of the signals (dual-channel residuals, analytical 
residuals, CFS, and estimation residuals) exceeds a threshold 
for 25 consecutive time steps, a threshold violation is declared.  

Based on the threshold violations occurring from the engine, 
the FDI logic determines the root cause. 

Table 5 shows the sensor fault diagnostic result when a 
bias is injected into channel A (closed-loop configuration).  The 
Anomaly Detection column shows the level of bias at which 
the enhanced system detects the existence of an anomaly.  At 
this point, the nature of the anomaly cannot be determined; the 
anomaly could be a sensor or a component fault.  The Sensor 
Fault Detection column shows the level of bias at which the 
enhanced system detects a faulty dual-channel sensor.  At this 
point, the identity of the faulty sensor is determined, but the 
identity of the faulty channel cannot be determined.  The 
Sensor Fault Isolation column shows the level of bias at which 
the enhanced system identifies the faulty channel of a faulty 
sensor. 

It can be seen in Table 5 that the sensor fault detection is 
achieved at the bias magnitude of 1.8σ across all sensors.  The 
same result was obtained for the baseline system.  This is due 
the fact that the threshold for dual-channel residuals is set to 
the same value for all sensors (Table 4).  The enhanced system 
outperforms the baseline system in anomaly detection; it 
detects an anomaly when a sensor bias of smaller magnitude 
exists.  While the baseline system uses the analytical residuals 
to detect an anomaly, the enhanced system uses the estimation 
residuals in addition to the analytical residuals.  The estimation 
residuals which are generated by the HKF algorithm help to 
detect an anomaly of smaller magnitude.  These signals also 
help the enhanced system to isolate a fault in the XN12 and 
XN25 sensors.  For the rest of the sensors, fault isolation is 
achieved at the same level that the baseline system achieved. 

When a bias was injected into channel B (open-loop 
configuration), the result was very similar to the result shown 
in Table 5 (closed-loop configuration).  Thus, control actions 
appear to have minimal influence on the enhanced system’s 
performance at the cruise condition considered in this study.  
This was not the case for the baseline system; the baseline 
system performed differently depending on the channel being 
biased.  When a bias exists in a feedback sensor, the control 
system adjusts its commands.  As a result, the relationship 
between engine parameters changes after the occurrence of a 
fault.  This change in relationship is captured by the NOBEM 

 
 

TABLE 5. SENSOR BIAS DIAGNOSTIC RESULTS 

 
Anomaly 
Detection 

(σ) 

Sensor Fault 
Detection 

(σ) 

Sensor Fault 
Isolation 

(σ) 
XN12 --- / --- 1.8 / -1.8 2.4 / -2.3 
XN25 --- / --- 1.8 / -1.8 3.2 / -2.9 
P25 0.8 / -0.8 1.8 / -1.8 1.8 / -1.8 
T25 1.2 / -1.3 1.8 / -1.8 1.8 / -1.8 
PS3 1.1 / -1.2 1.8 / -1.8 1.8 / -1.8 
T3 1.2 / -1.2 1.8 / -1.8 1.8 / -1.8 

T49 1.4 / -1.5 1.8 / -1.8 1.8 / -1.8 
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but not by the LOBEM.  Therefore, the enhanced system is able 
to maintain its diagnostic performance regardless of control 
actions. 
 
 
Component Fault Detection 

The capability to detect component faults is evaluated in 
this section.  The health condition of the engine and the health 
baseline of the NOBEM are set to the nominal health.  A 
component fault is represented by an abrupt shift in a health 
parameter, and it results in transient operation of the closed-
loop system until the engine settles to new trim point.  After the 
injection of a component fault, the engine is run for 100 
seconds during which a diagnostic result is generated 
continuously by the enhanced system.  Because of the transient 
operation, the enhanced system may indicate the existence of 
an anomaly for a certain period and then indicate the existence 
of a component fault.  During this simulation run, if the 
enhanced system indicates the existence of a component fault at 
least once, it is considered that the component fault is detected.  
If the enhanced system does not indicate the existence of a 
component fault but indicates the existence of an anomaly at 
least once, it is considered that an anomaly is detected.  If none 
of the above occurs (i.e., the enhanced system indicates that a 
fault does not exist), it is considered that the enhanced system 
misses the component fault. 

Table 6 shows the component fault scenarios used in this 
evaluation study.  The same scenarios were used in the 
evaluation of the baseline system.  Fault scenarios 1 through 5 
represent single-component fault cases while fault scenarios 6 
through 9 represent multiple-component fault cases.  For each 
fault scenario, four levels of component damage are considered 
for evaluation.  At each damage level, the efficiency and flow 
capacity of the faulty component(s) are independently shifted 
through a random process within the range shown in the table.  
This range is considered to encompass reasonable failure 
scenarios.  All component shifts are made in the negative 
direction, except for HPT and LPT flow capacities which are 
shifted in the positive direction.  At each damage level of each 
fault scenario, 100 fault cases are generated by randomly 
shifting health parameters.  Thus, a total of 3600 component 
fault cases are used in the evaluation.  These component fault 
cases are identical to those used in the evaluation of the 
baseline system. 

Table 7 shows the result of the component fault 
diagnostics.  There are three possible diagnostic results that the 
enhanced system may produce: 1) component fault detection, 
2) anomaly detection, and 3) missed detection.  In each cell of 
the table, the number of component fault cases that resulted in 
each of the three possible conditions appears in the 
aforementioned order.  The best result that the enhanced system 
can achieve is 100/0/0.  The result 0/100/0 indicates that the 
enhanced system detects the existence of an anomaly but 
cannot determine the nature of the anomaly.  The result 0/0/100 

indicates that the enhanced system completely misses the 
component faults. 

TABLE 6. COMPONENT FAULT SCENARIOS 
Fault Scenario Faulty Components 

1 FAN 
2 BST 
3 HPC 
4 HPT 
5 LPT 
6 FAN & BST 
7 BST & HPC 
8 FAN &BST & HPC 
9 HPT & LPT 
  

Damage Level Range of Fault Magnitude 
1 [1%, 2%] 
2 [2%, 3%] 
3 [3%, 4%] 
4 [4%, 5%] 

 

The result in Table 7 shows that the enhanced system is 
able to detect the fault in HPC, HPT, and LPT.  It has some 
difficulty in detecting BST faults when the fault level is 2 or 
below.  The enhanced system encounters the most difficulty in 
detecting FAN faults.  The same tendency was exhibited by the 
baseline system.  As discussed in Ref. [6], this is due to the fact 
that the measurement shifts induced by FAN faults are difficult 
to observe through the sensor set used in this study. 

The enhanced system indicates the existence of a 
component fault in 2374 cases out of 3600 component fault 
cases (65.9%), whereas the baseline system detected the 
component faults in 2495 cases (69.3%).  In both the enhanced 
and baseline systems, the CFS is used to detect a component 
fault.  When the engine experiences a component fault, the 
relationship between engine variables changes and becomes 
“off-design” with respect to the original relationship before the 
incident.  This change in the relationship is captured by the 
NOBEM but not by the LOBEM.  In the baseline system, the 
CFS increases due to a component fault and also due to the off-
design relationship induced by the component fault.  Therefore, 
an increase in CFS is much more prominent in the baseline 
system than in the enhanced system, resulting in a better 
component fault detection capability for the baseline system. 

The enhanced system, however, outperforms in detecting 
engine’s anomalous behavior; the enhanced system indicates 
the existence of an anomaly in 421 cases whereas the baseline 
system did so in 104 cases.  This means that the enhanced 
system misses a lesser number of component faults.  The 
missed detection rates for the enhanced and baseline systems 
are 22.4% (805 cases out of 3600) and 27.8% (1001 cases out 
of 3600), respectively.  This difference is attributed to the 
estimation residuals generated by the HKF algorithm.  The 
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enhanced system uses the estimation residuals, in addition to 
the analytical residuals, to detect an anomaly.  The estimation 
residuals generated by the HKF algorithm help to detect the 
engine’s anomalous behavior induced by component faults 
more frequently than the baseline system does.  Anomaly 
detection does not reveal the nature of the anomaly.  However, 
by further investigating the data generated by on-line systems, 
the identity of the detected anomaly can be determined as 
discussed in Ref. [5]. 
 
 
DISCUSSION 

The enhanced system is different from the baseline system 
in two respects.  One is that the enhanced system utilizes the 
NOBEM while the baseline system utilizes the LOBEM.  The 
other is that the enhanced system utilizes the HKF algorithm 
while no estimation algorithm is included in the baseline 
system.  A significant benefit of utilizing the NOBEM instead 
of the LOBEM is that the NOBEM can be updated to a new 
health baseline through a much simpler process than that for 
the LOBEM.  The benefit of utilizing the HKF algorithm, 
however, is not as obvious.  Since the HKF algorithm adds 
complexity to the on-line diagnostic system, it should be 
making a contribution which justifies the cost of implementing 
the algorithm.  To determine the benefit of the HKF algorithm, 
another diagnostic system, called a sub-enhanced system, was 
evaluated.  The sub-enhanced system is identical to the 
enhanced system except that it does not utilize the HKF 
algorithm.  From another perspective, the sub-enhanced system 
is identical to the baseline system except that it utilizes the 
NOBEM as the analytical third channel, instead of the 
LOBEM.  Through the comparison of the sub-enhanced 
system’s performance to that of the enhanced system, the 
contribution of the HKF algorithm can be determined. 

The sub-enhanced system was evaluated in the same way 
the enhanced system was evaluated.  Table 8 shows the sensor 
fault diagnostic result for the sub-enhanced system.  A 

noticeable difference between the sub-enhanced and enhanced 
systems is in their capability to isolate a bias in the XN12 and 
XN25 sensors.  In particular, a bias in the XN25 sensor must be 
quite large to be isolated by the sub-enhanced system.  For the 
rest of the sensors, the enhanced system slightly outperforms 
the sub-enhanced system; the enhanced system detects sensor 
biases of smaller magnitude as anomalies. 

TABLE 7. COMPONENT FAULT DIAGNOSTIC RESULT 
Fault 

Scenario # 
Faulty 

Components Level 1 Level 2 Level 3 Level 4 

1 FAN 0 / 0 / 100 0 / 0 / 100 0 / 8 / 92 24 / 27 / 49 
2 BST 0 / 0 / 100 0 / 56 / 44 0 / 100 / 0 83 / 17 / 0 
3 HPC 34 / 10 / 56 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
4 HPT 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
5 LPT 66 / 0 / 34 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
6 FAN/BST 0 / 0 / 100 0 / 21 / 79 0 / 99 / 1 86 / 14 / 0 
7 BST/HPC 38 / 36 / 26 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
8 FAN/BST/HPC 43 / 33 / 24 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
9 HPT/LPT 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
Each cell shows the number of component fault cases that resulted in the following three categories: 

Component fault detection, anomaly detection, and missed detection 
 
 

Table 9 shows the component fault diagnostic result for the 
sub-enhanced system.  Since both the sub-enhanced and 
enhanced systems use the CFS alone to detect component 
faults, they exhibit the identical success rate; component faults 
are detected in 2374 cases out of 3600 (65.9%).  The main 
difference between the two systems is their capability to detect 
the engine’s anomalous behavior.  The sub-enhanced system 
indicates the existence of an anomaly in 145 cases, whereas the 
enhanced system does so in 421 cases.  This difference 
translates to the missed detection rates of 30.0% for the sub-
enhanced system and 22.4% for the enhanced system.  Since 
the missed detection rate for the baseline system was 27.8%, 
the utilization of the NOBEM, instead of the LOBEM, as the 
analytical third channel worsens the fault detection capability.  

 
 

TABLE 8. SENSOR BIAS DIAGNOSTIC RESULTS FOR 
SUB-ENHANCED SYSTEM 

 
Anomaly 
Detection 

(σ) 

Sensor Fault 
Detection 

(σ) 

Sensor Fault 
Isolation 

(σ) 
XN12 --- / --- 1.8 / -1.8 3.3 / -3.4 
XN25 --- / --- 1.8 / -1.8 5.0 / -5.0 
P25 1.3 / -1.4 1.8 / -1.8 1.8 / -1.8 
T25 1.2 / -1.3 1.8 / -1.8 1.8 / -1.8 
PS3 1.5 / -1.6 1.8 / -1.8 1.8 / -1.8 
T3 1.4 / -1.5 1.8 / -1.8 1.8 / -1.8 

T49 1.4 / -1.5 1.8 / -1.8 1.8 / -1.8 
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Such a disadvantage, however, is compensated through the 
utilization of the HKF algorithm in the enhanced system. 

The difference in the diagnostic performance between the 
enhanced and sub-enhances systems is the contribution of the 
HKF algorithm.  The comparison study reveals that the HKF 
algorithm does indeed provide improved performance. 
 
 
CONCLUSION 

An on-line diagnostic system which utilizes dual-channel 
sensor measurements was developed for the aircraft engine 
application.  This system was referred to as the enhanced 
system because of its utilization of advanced technologies: the 
nonlinear on-board engine model (NOBEM) and the hybrid 
Kalman filter (HKF) algorithm.  The performance of the 
enhanced system was evaluated using simulated faults in 
sensors and components, and its advantage over an existing 
baseline system was investigated.  The enhanced system 
outperformed the baseline system in detecting anomalous 
engine behavior induced by sensor and component faults.  It 
indicated the existence of an anomaly when sensor biases of 
relatively small magnitude existed.  The enhanced system also 
indicated the existence of an anomaly more frequently than the 
baseline system when the engine experienced a component 
fault. 

The enhanced system also has a practical advantage over 
the baseline system.  In general, on-line diagnostic systems 
must be adjusted or updated as an aircraft engine degrades over 
its lifetime.  Otherwise, the on-line systems eventually lose 
their diagnostic effectiveness since they are not able to discern 
the difference between off-nominal engine behavior induced by 
health degradation and anomalous engine behavior induced by 
faults.  In order to update the baseline system, its linear on-
board engine model (LOBEM) must be re-generated at the 
estimated health condition.  On the other hand, the enhanced 
system is updated by feeding the estimated health degradation 
values into the NOBEM.  This relatively simple update process 

is a major advantage of the enhanced system over the baseline 
system.  Through this update, the diagnostic performance of the 
enhanced system is maintained over the lifetime of an aircraft 
engine. 

TABLE 9. COMPONENT FAULT DIAGNOSTIC RESULT FOR SUB-ENHANCED SYSTEM 
Fault 

Scenario # 
Faulty 

Components Level 1 Level 2 Level 3 Level 4 

1 FAN 0 / 0 / 100 0 / 0 / 100 0 / 5 / 95 24 / 20 / 56 
2 BST 0 / 0 / 100 0 / 0 / 100 0 / 38 / 62 83 / 17 / 0 
3 HPC 34 / 10 / 56 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
4 HPT 100 / 0 / 0 100 / 0 / 0  100 / 0 / 0 100 / 0 / 0 
5 LPT 66 / 0 / 34 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
6 FAN/BST 0 / 0 / 100 0 / 0 / 100 0 / 3 / 97 86 / 1 / 13 
7 BST/HPC 38 / 27 / 35 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
8 FAN/BST/HPC 43 / 24 / 33 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
9 HPT/LPT 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 
Each cell shows the number of component fault cases that resulted in the following three categories: 

Component fault detection, anomaly detection, and missed detection 
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APPENDIX 
 

FLOW CHART OF THE FAULT DETECTION AND ISOLATION LOGIC 
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