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ABSTRACT 

Many earth science modeling applications employ continuous input data fields derived 

from satellite data. Environmental factors, sensor limitations and algorithmic constraints 

lead to data products of inherently variable quality. This necessitates interpolation of one 

form or another in order to produce high quality input fields free of missing data. The 

present research tests several interpolation techniques as applied to satellite-derived leaf- 

area index, an important quantity in many global climate and ecological models. The 

study evaluates and applies a variety of interpolation techniques for the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Leaf-Area Index Product over the time 

period 2001-2006 for a region containing the conterminous United States. Results 

indicate that the accuracy of an individual interpolation technique depends upon the 

underlying land cover. Spatial interpolation provides better results in forested areas, 

while temporal interpolation performs more effectively over non-forest cover types. 

Combination of spatial and temporal approaches offers superior interpolative capabilities 

to any single method, and in fact, generation of continuous data fields requires a hybrid 

approach such as this. 



1. INTRODUCTION 

The acquisition of continuous gridded fields of many land surface properties is a critical 

challenge within global climate and ecological modeling. As models move toward fmer 

and finer spatial resolutions, there is increasing reliance on satellite-derived data products 

for model initialization or forcing (e.g., Oleson and Bonan, 2000; Niemeyer and Vogt, 

2001). Leaf-area index (LAI), or the leaf area per unit ground area, is especially 

important in many global terrestrial processes for computing the exchanges of energy, 

water and other gases (Running et al., 1986). 

Despite the increasing need however, quality and availability of LAI data products are 

variable, whether considered at the global scale or pixel scale, due to such factors as 

persistent cloud cover, elevated aerosol loading, or sparse observations owing to 

insufficient repeat frequency of the satellite sensor. Products that are of consistently poor 

quality or are unavailable over large regions cannot be used at all. In such instances, the 

parameter of interest may be estimated using an appropriate interpolation technique. 

Certainly, low quality inputs would be expected to negatively impact any derived 

products using those data. It is also important to avoid spurious assumptions in the 

interpolation process so that the resulting estimate does not actually reduce the usability 

of the data. 

Various interpolation techniques of differing degree of complexity and applicability exist 

(e.g., Hartkamp et. al, 1999). These can be based on statistical or deterministic, and 

spatial or temporal approaches, and include such methods as kriging (Cressie, 1991), 



inverse distance weighting (Shepard, 1968), cubic splines (e.g., MitasSova and Hofierka 

(1993); Alexandrov et al. (2001)), and spectral analysis (e.g., Kondrashov and Ghil, 

2006). Alternatively, if the requirements of the data user permit, it is possible to alleviate 

some missing data issues by spatiotemporal filtering, or by coarsening spatial or temporal 

resolution by aggregating the original data into products with lower fi-equency sampling. 

However, there is no clear understanding as to which approach produces the best results 

for a given land cover type or season. Consequently a systematic evaluation of the 

strengths and weaknesses of some of the more common methods is warranted. 

The intent of the current research is to develop a systematic approach for interpolating 

missing data fi-om a time series of MODIS LA1 data product over the continental United 

States. The methodology relies entirely on remote sensing data products, avoiding the 

drawbacks of "look-up" methods or ancillary requirements. A variety of individual and 

hybrid techniques is tested using actual satellite observations as "truth" in a data denial 

experiment. Results are evaluated by comparing the interpolated data to the original data 

for each interpolation approach. 

2. DATA AND METHODS 

2.1. Study Area 

The study area for this research consists principally of the conterminous United States, 

plus southern Canada, northern Mexico and some Caribbean land mass, as shown in 

Figure 1. The intent is to use a geographic domain of sufficient extent that regional 



effects are relevant. Areas outside the United States are not considered germane in the 

sense that they are merely included by default as the minimum geographic bounding box 

necessitates their inclusion. 

The region is characterized primarily by mid-latitude climatology and vegetation types, 

although the northern and southern extremes extend into the boreal and subtropical zones. 

Vegetation types consist mainly of forest types in the north, east and west, while 

grassland and cropland dominate the interior of the domain. During winter months, areas 

of missing data tend to be concentrated in the north due to fiequent presence of clouds, 

snow cover, and low sun angles. In the summer, missing data are more prevalent in the 

east and west due to cloud cover related to cyclonic activity. 

2.2. Input Data 

The input data employed in this research consist of Collection 4 MODIS land products. 

Land cover data have been derived fiom the 2001 Terra MODIS Land Cover Product 

(Fried1 et al., 2002), International Geosphere-Biosphere (Belward, 1996) data layer 

(Figure 1). Leaf-area index data are compiled for the period 2001 to 2006 fiom the 

archived Terra MODIS LAI product, MOD15A2 (Myneni et al., 2002). No additional 

inputs are necessary. The land cover data are produced on a yearly basis, while the LA1 

data are produced every eight days as composites of daily data. Quality statistics are 

included in the LAI product for each pixel (Roy et al., 2002). 



The leaf-area index data are screened to remove low quality observations. When LA1 

data do not meet the following criteria, then for the purposes of this paper, they are 

considered missing, and an interpolation is required: 

1. The main radiative transfer algorithm was used to compute LAI, not the empirical 

backup method. 

2. MODIS Land mandatory QA flags are set to "OK" or "Best" quality, and 

3. The cloud flag is labeled either as "clear" or "not defined, assumed clear." 

2.3. Methodology 

Since there is no single interpolation approach that would be appropriate for every 

circumstance, several approaches that might address the different categories of missing 

data are examined. For instance, if missing observations are scattered in a "salt-and- 

pepper" spatial pattern, techniques such as local window operations may be very 

effective. Conversely, if extensive areas of missing data are prevalent (e.g., due to 

widespread cloud cover), temporal approaches may be more effective. Regardless of the 

approach implemented, an effective sampling design must be in place in order to test the 

interpolation results. Thus, the analysis is not intended to be exhaustive of all existing 

techniques, but rather the approaches are representative of the interpolation needs for 

estimating missing LAI data. 



2.3.1. Data Denial Sampling 

A data denial approach is implemented in order to compare the estimation capabilities of 

various interpolation methods. For each IGBP land cover type, 100 samples have been 

randomly drawn over the spatiotemporal domain of the LAI time series. The samples are 

required to be of acceptable quality so that it would be sound to compare the original 

values to interpolated estimates. Then, the observations are removed fkom the LA1 fields 

so that the interpolation algorithms could be applied. 

2.3.2. Spatial Interpolation 

Per-Class Means (PCM) 

One of the simplest approaches to interpolation is to replace missing observations with 

their per-class mean. Wherever data are missing, the field is filled by the mean LAI for 

all locations sharing the same IGBP land cover type as the missing observation during the 

same time period. The size of the domain over which the per-class mean is computed can 

vary. This method is advantageous for large domains in that it is insensitive to extensive 

areas of missing data and it guarantees that all locations contain valid observations in the 

output data field. A significant drawback is that the per-class mean dampens the data 

signal, which is of greater concern as domain extent increases. The accuracy of the 

estimated value decreases with increasing domain size, although calculating the class 

means on a finer spatial scale comes at the expense of guaranteed complete spatial 

coverage of the interpolation. 



2.3.3. Temporal Interpolation 

2.3.3. I. Temporal Linear Averaging (TLA) 

Another relatively simple approach to interpolation is to replace missing data with the 

mean value of the observations recorded for that location in the preceding time period 

and the subsequent time period. In situations where only one of the two surrounding 

observations is usable, the interpolated value assumes the LAI fiom the single available 

adjacent time period. Although the TLA method includes no spatial component, it 

provides an efficient means of estimating temporal LAI interpolates since usually the 

relative change in LAI values is small between 8-day cornpositing periods for most of the 

year. Still, this technique may fail in locations characterized by persistently poor data 

quality. 

2.3.3.2. Temporal Cubic Splines (TCS) 

In earth science studies, splines are generally used for spatial interpolation (e.g., MitaS 

and MitaSova, 1999). Possible implementations include two-dimensional per-period 

splines or one-dimensional per-location splines. In the current research it is not practical 

to produce two-dimensional splines for each composite in the time series. Instead, 

individual splines for each location are generated, effectively performing a separate 

temporal interpolation for each pixel within the spatial domain. A primary benefit of the 

TCS method is that interpolation is possible over extensive areas of missing data within a 

single time period. Disadvantages include 1) lack of spatial context; 2) poor 



characterization of processes as gaps between valid observations increase and 3) 

unconstrained function behavior at endpoints. 

2.3.3.3. Climatology (TC) 

For locations where spatially and temporally neighboring observations are sparse, it may 

be beneficial to interpolate to climatological values. The concept of climatology in this 

context denotes the average usable LAI value observed in a given location, during a 

specific compositing period over all years in the time series. In other words, when an 

observation is missing, it is replaced by the average LAI observed over that specific 

location during the same time period from 2001-2006. This more rigorous definition of 

climatology contrasts with per-class mean climatology commonly used in earth system 

modeling. 

2.3.4. Hybrid Approaches 

Kang Method (HI)  

The approach of Kang et al. (2005) consists ofboth spatial and temporal components. 

The primary interpolation is a spatial per-class mean defined over a small window. It 

replaces missing observations with the mean of all observations in the surrounding 5x5 

pixel window where the land cover type is identical to that of the missing observation. If 

the primary method is unsuccessful, the algorithm selects the previous observation 

(interpolated or otherwise) for the location of interest. This is an attractive option as it is 

relatively uncomplicated in nature, and attempts to exploit the available spatial and 



temporal information. As the authors note, however, the interpolation algorithm is still 

susceptible to an inability to interpolate in situations where data loss is extensive in space 

and only slightly persistent in time. 

3. RESULTS 

3. I. Comparison of Data Denial Results 

The above spatial, temporal and hybrid interpolation approaches, as well as combinations 

of those approaches, were applied to the data denial experiment. Once the interpolated 

estimates for a given approach were generated for each sample withheld via data denial, 

the estimates were plotted against the true LA1 values. Next, linear regressions were 

fitted to the bivariate data. The associated R-square values for the regressions were used 

to gauge the efficacy of each interpolation method. These results are summarized in 

Table 1 for the principal land cover classes within the study area. 

The spatial per-class means approach using the entire domain (PCM) resulted in 

relatively poor estimates of missing LA1 data, particularly for the non-forest classes. 

This was unsurprising as the extent of the domain was such that vegetation phenology 

would be inconsistent across the domain for a given class. For example, wide variations 

in latitude within the domain would tend to dictate shifts in cropping types and schedules 

which would affect the results of the cropland and cropland mosaics classes. 



A second per-class mean approach narrowed the domain used for estimation to the 

immediate area (5x5 kilometers/pixels) surrounding the missing observation. This 

method (LPCM) was similar to Kang et a1 (2005) without the temporal backup 

component. It actually improved the fits in all categories relative to the results for PCM, 

as shown in Table 1. 

The temporal linear averaging (TLA) produced encouraging results, particularly for the 

non-forest classes, and for deciduous broadleaf forest. This was likely due in large part 

to the location-specific nature of the algorithm. It would be expected that land cover 

types with strong phenologies would be well characterized by an interpolation technique 

that focused on the in situ temporal evolution of the vegetation. 

Similarly, temporal cubic splines (TCS) performed well when applied to land cover types 

with well-defined phenologies. As with the TLA method, deciduous broadleaf forest and 

cropped areas were well-suited for temporal interpolation. Interpolation of the evergreen 

needleleaf and mixed forest cover types was not as accurate. This is likely due to the fact 

that these forest types tend to experience more persistent cloud cover, which would result 

in more fkequent loss of either preceding or subsequent observations, and in turn reducing 

the ability of splines to capture the temporally local variability in the vegetation. 

The use of climatological values (TC) produced results inferior to both of the preceding 

methods for nearly all of the cover types. Even so, predictive capability was better for 

non-forest classes than for forest classes, which makes sense given the temporal nature of 



the climatology. It may be that intraannual variability was so important for the non-forest 

classes that the interpolation methods which focused on immediate temporal variation 

were more effective for those vegetation types. It was somewhat surprising that the 

results for the forest classes were so discouraging, and this was likely related to 

interannual variability. Unfortunately, due to the relatively short temporal record of 

MODIS (2001 being the first complete year), there were insufficient data to develop a 

true climatology for each pixel location and therefore to test whether interannual and 

intraannual variability differed in a statistically meaningful way. 

The method of Kang et al. (2005) (HI) produced encouraging results for nearly all of the 

land covers listed in Table 1, although not much different fiom the LPCM approach. 

However, it was able to provide greater coverage of interpolation estimates than the local 

per-class mean approach alone, particularly when missing data occurred over extensive 

regions. By exploiting both the spatial and temporal information in the LA1 dataset, the 

technique was able to estimate missing data values over a broad range of vegetation 

types. The use of spatial information would be expected to provide improved estimating 

capability over cover types that do not exhibit pronounced seasonality. 



To this point, the HI method produced promising results, although it did not guarantee 

that every missing observation could be interpolated. Areas of extensively andlor 

persistently poor quality data (e.g., cloud cover in mountainous regions) could not be 

interpolated by the stock algorithm. As such, several modifications were tested in order 

to produce LA1 fields completely free of missing data. 

The first modification involved the expansion of Kang's spatial window from 5x5 to 9x9 

(H2). The intent was to capture more spatial data in the vicinity of missing observations. 

Based on earlier results, this would yield improved interpolations, particularly over 

forested locations., This did not turn out to be the case for the evergreen needleleaf forest 

class, as indicated in Table 1. The deciduous broadleaf forest class fared somewhat 

better, but still showed a decline in interpolation efficacy when compared with the 

original H1 method. The fits for those classes actually degraded, while for mixed forest, 

there was little change. The results for the non-forest classes were mixed - there was 

marked improvement for grassland, a slight improvement for cropland, and slight 

declines for the rest of the vegetation types. 

The next hybrid method variant focused on enhancing temporal aspects of the HI 

algorithm. Instead of examining the previous observation when the primary spatial 

technique failed, the secondary technique used the TCS splining technique. Interestingly, 

there was very little difference in results between this approach (labeled H3), and the 

original HI method (see Table 1). Given the additional computational resources required 



to fit splines for each pixel as opposed to the original HI algorithm, this approach was 

rejected. 

In an effort to strike a balance between the simple temporal component of HI (previous 

time period) and splines, it was determined that a hybrid of localized 5x5 per-class means 

(LPCM) with temporal linear averaging might improve interpolation, particularly for 

vegetation classes with strong seasonality. As shown in Table 1, this hybrid method 

(labeled H4), improved interpolation for deciduous broadleafforest as compared to the 

original HI method, but there was little difference otherwise. In fact, results were 

actually degraded for the grassland class, as compared to the interpolations generated 

using just the LPCM algorithm with no temporal component at all. 

Finally, the H4 method was augmented with a tertiary interpolation component, domain- 

wide PCM. This change did not alter the statistical results significantly, (method H5 

shown in Table I), however it did guarantee valid data values at every location in the 

domain. Figures 2-3 depict data denial results obtained for two land cover types. For 

evergreen needleleaf forest (Figure 2),  the linear relationship, with an R-square value of 

0.78, indicated a reasonably good fit for the interpolation over a wide range of LAI 

values. In the case of grassland (Figure 3), the range of LA1 was narrower , and the R- 

square value of 0.71 was only slightly lower than for the forest class. 



3.2. Application of H5 to MODIS imagery 

A second set of analyses was conducted to analyze the sequential interpolation of the LAI 

fields using the H5 approach for a typical compositing period over the continental United 

States. The goal was to examine which component of the interpolation scheme, LPCM, 

TLA, or domain PCM, was used to estimate the missing data. Results are depicted 

graphically in Figures 4-5. Figure 4(a) displays the available MODIS LAI data product 

following the criteria established in Section 2.2 for the eight-day compositing period 

fiom May 17 - May 24, 2006, when green-up was either in progress or had already 

completed, depending on location within the study area. The figure indicates that 

missing data were scattered throughout the continent but especially in the eastern section, 

where large patches of missing data occurred, particularly over the Appalachian 

Mountains, and the far northeast. This was attributed to an extensive stretch of cloud 

cover that prevented satellite-based estimates over a large region at that time. Figure 4(b) 

shows a breakdown of which component of the H5 technique was used in estimating the 

interpolated data. For most of the continent, the isolated missing data were estimated 

using the LPCM component, followed by TLA. In the mountains, however, clouds 

persisted beyond the adjacent dates, and the algorithm resorted to using domain-wide 

PCM. In the far northeast, clouds were less persistent and the temporal linear averaging 

component was used. Figure 4(c) displays the resulting complete interpolated LA1 field 

using the entire H5 approach. 



It was also of interest to analyze the interpolation results outside the growing season. 

Figure 5(a) contains screened MODIS LA1 data for the eight-day period fiom December 

3 - December 10, 2006. Significant areas of missing data were apparent in the northern 

extent of the study area, as well as over the central and western United States. Again, it 

was expected that the temporal component of the interpolation scheme would be 

dominant, but the results indicated otherwise. As illustrated in Figure 5(b), data missing 

from the northern and central regions of the study area were mainly interpolated using 

domain-wide PCM. In wintertime, particularly at high latitudes, it can be difficult to 

acquire sufficient satellite observations to perform effective LAI retrievals due to cloud 

cover, snow cover and low sun angles. If this situation was persistent, domain-wide 

PCM would be the only of the presented methods that could generate interpolates. Figure 

5(c) displays the complete LAI field, including interpolates. 

An analysis of the temporal variability in the mechanism of interpolation uncovered a 

distinctive seasonal pattern for each component of the hybrid method. Figure 6 illustrates 

these patterns. During the early and late phases of the growing season, use of original, 

non-interpolated data was at its highest frequencies (usually 70 - 90%), and LPCM was 

responsible for interpolating nearly all of the missing observations. At midsummer, 

interpolation requirements increased, mostly due to declining data quality in the eastern 

U.S. associated with the peak of summertime cyclonic activity. 
a. 

ARer the end of the growing season, data quality declined considerably, due mainly to the 

presence of cloud and snow cover in northern regions of the study area, as well as low 



sun angles. Figure 5(a) illustrates this graphically. Because these conditions can be 

persistent, the domain-wide PCM component became crucial, often accounting for 30% 

or more of the study area. 

Figures 7 and 8 also depict the temporal variability in interpolation component, but for 

individual land cover classes. Figure 7 shows the temporal variability for evergreen 

needleleaf forest over the study area. The basic patterns were similar to those for the full 

domain, although frequency of interpolation was greater for this class. As indicated in 

Figure 1, evergreen needleleaf forest tends to be located in areas of significant cloud 

cover (e.g., windward side of mountain ranges) and snow cover (northern U.S. and 

Canada). The LPCM method's frequency was elevated somewhat, but the domain-wide 

PCM interpolation component reached wintertime maxima of greater than 70% at times. 

For grassland, the frequency of interpolation decreased as compared to the domain as a 

whole. As illustrated in Figure 1, most grassland in the study area is located in relatively 

dry regions of the continent. The decrease in precipitation fi-equency led to higher quality 

data, particularly during the summer. 



4. DISCUSSION 

From the results generated using the various interpolation methods, it became clear that 

no single interpolation technique was superior in all ways (see Table 1). However, 

several patterns were evident. The TLA method was particularly effective for estimating 

missing observations within land covers that exhibit strong seasonality. For the cropland 

and cropland mosaic classes in particular, spatially-based interpolations would be 

expected to introduce errors, as crop characteristics may differ considerably even at the 1- 

km scale. 

Interpolation of forest classes was most accurate with the use of spatial techniques. This 

was borne out by the results for all of the variants of the HI method, which used a 5x5 

LPCM as its primary interpolation algorithm. Temporally-based techniques generally 

fared more poorly. 

In the current research, kriging (Cressie, 1991) might have been used for one-dimensional 

temporal interpolation, two-dimensional spatial interpolation or multidimensional 

spatiotemporal interpolation. However, kriging would involve considerable manual 

effort to select the optimal model and associated parameters. A one-dimensional 

interpolation would require a separate model for each location, and a two-dimensional 

approach would necessitate separate models for each time period. Multidimensional 

kriging of a dataset of this size would have been impractical due to computational 

constraints. 



The use of domain-wide PCM to assure complete coverage in the LAI fields is 

problematic, as shown in the results in Table 1. Over a domain of this size, these means 

are not necessarily representative of local conditions, particularly with respect to those 

classes that exhibit considerable seasonality. The modeling communities typically 

require complete fields, with no missing data. As one of the primary reasons for 

generating these fields is for modeling studies, it is essential to force the interpolating 

algorithm to produce an LAI value at each location during each period of the time series. 

Alternative methods for doing so merit hrther investigation. 



5. CONCLUSIONS 

Interpolation of satellite data for modeling purposes is essential for producing data fields 

of acceptable quality for modeling applications at continental spatial scales. Satellite data 

products are inherently of variable quality due to environmental factors and sensor 

limitations. Additionally, algorithmic constraints ofien result in data of questionable 

quality. 

From the results presented here, it is difficult (if not impossible) to produce complete data 

fields using a single simple approach to interpolation. Each of the stand-alone methods 

tested has weaknesses. A hybrid approach offers a means whereby complete fields can 

be generated under any input data scenario. 

Consequently, it is recommended, at least for the use of MODIS-derived LAI data 

products, that a hybrid technique be used for interpolation of all LAI data because of the 

varying characteristics of the land cover classes and the causes of missing data. For 

forest classes, the approach would be first to use a 5x5 LPCM method, followed by TLA, 

followed by a domain-wide PCM to ensure there are no missing data. This is essentially 

similar to Kang et al. (2005) but with an adjustment to the secondary method fiom simply 

using the previous observation to employing temporal linear averaging and adding a 

teritiary fallback of domain-wide per-class means. For non-forest classes, the data denial 

analysis indicates one should also use a hybrid approach but switch the order of the first 

two components. This results in substantial improvements over HI. 



The use of domain-wide PCM as a backup method is not optimal due to its 

overgeneralization, but it is necessary. In an ideal situation, the fallback component 

would be less prone to problems related to generalization. This is an area for hture 

research. 
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Figure Captions 

Figure 1: MODIS Land Cover Product data mapped to the conterminous U.S. domain of 
this study. Cover types are labeled with the IGBP legend. 

Figure 2: Data denial results for evergreen needleleaf forest using the LPCWTLNPCM 
hybrid method, H5. The R-squared value for the linear fit is 0.78. 

Figure 3: Data denial results for grassland using the LPCWTLNPCM hybrid method, 
H5. The R-squared value for the linear fit is 0.71. 

Figure 4: Interpolation of MODIS LAI Product over the study site during the growing 
season, May 17 - May 24, 2006. The original data field is screened to remove low 
quality observations, with missing data over land mapped in black (a), interpolated via 
the various methods of the H5 hybrid approach (b) and output as a complete data field 
(c). Locations that are never interpolated, such as water and barren land are mapped in 
white. 

Figure 5: Interpolation of MODIS LAI Product over the study site after the growing 
season, December 3 - December 10, 2006. The original data field is screened to remove 
low quality observations, with missing land data mapped in black (a), interpolated via the 
various methods of the H5 hybrid approach (b) and output as a complete data field (c). 
Locations that are never interpolated, such as water and barren land are mapped in white. 

Figure 6: Interpolation method fi-equency, full domain. 

Figure 7: Interpolation method fi-equency, evergreen needleleaf forest. 

Figure 8: Interpolation method frequency, grassland. 
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