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Popular Summary

Human demand for food influences the water cycle through diversion and
extraction of fresh water needed to support agriculture. Future population growth and

economic development alone will substantially increase water demand and much of it for
agricultural uses.

For many semi-arid lands, socio-economic shifts are likely to exacerbate changes
in climate as a driver of future water supply and demand. For these areas in particular,
where the balance between water supply and demand is fragile, variations in regional
climate can have potentially predictable effect on agricultural production. Satellite data
and biophysically-based models provide a powerful method to quantify the interactions
between local climate, plant growth and water resource requirements. In irrigated
agricultural lands, satellite observations indicate high vegetation density while the
precipitation amount indicates otherwise. - This inconsistency between the observed
precipitation and the observed canopy leaf density triggers the possibility that the
observed high leaf density is due to an alternate source of water, irrigation.

We explore an inverse process approach using observations from the Moderate
Resolution Imaging Spectroradiometer (MODIS), climatological data, and the NASA’s
Simple Biosphere model, SiB2, to quantitatively assess water demand in a semi-arid
agricultural land by constraining the carbon and water cycles modeled under both
equilibrium (balance between vegetation and prevailing local climate) and non-
equilibrium (water added through irrigation) conditions. We postulate that the degree to
which irrigated lands vary from equilibrium conditions is related to the amount of
irrigation water used.

We added water using two distribution methods: The first method adds water on
top of the canopy and is a proxy for the traditional spray irrigation. The second method
allows water to be applied directly into the soil layer and serves as proxy for drip
irrigation. Our approach indicates that over the study site, for the month of July, spray
irrigation resulted in an irrigation amount of about 1.4 mm per occurrence with an
average frequency of occurrence of 24.6 hours. The simulated total monthly irrigation
for July was 34.85 mm. In contrast, the drip irrigation resulted in less frequent irrigation
events with an average water requirement about 57% less than that simulated during the
spray irrigation case. The efficiency of the drip irrigation method rests on its reduction of
the canopy interception loss compared to the spray irrigation method. When compared to
a country-wide average estimate of irrigation water use, our numbers are quite low. We
would have to revise the reported country level estimates downward to 17% or less.



The numbers estimated from this work reflect an ideal physiologically-based
target for efficient irrigation practices and could provide an objective basis for irrigation
water use, especially in those regions where water is already scarce.
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Irrigation requirement estimation using MODIS vegetation
Indices and inverse biophysical modeling

A Case Study for Oran, Algeria

L. Bounoua, M. L. Imhoff and S. Franks

Abstract

We explore an inverse modeling process using the Simple Biosphere model-SiB2 forced
by satellite observed biophysical data and climatological data to quantify water demand
in a semi-arid agricultural area by constraining the carbon and water cycles modeled
under both equilibrium, balance between vegetation and prevailing local climate, and
non-equilibrium, water added through irrigation, conditions. We postulate that the degree
to which irrigated dry lands vary from equilibrium climate conditions is related to the
amount of irrigation water used. The amount of water required over and above

precipitation is considered as an irrigation requirement.

We added water using two distribution methods: The first method adds water on top of
the canopy and simulates the traditional spray irrigation. The second method allows water

to be applied directly into the soil layer and serves as proxy for drip irrigation.

Results show that for the month of July, spray irrigation resulted in an additional amount

of water of about 1.4 mm per occurrence with an average frequency of occurrence of 24.6
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hours. The simulated monthly irrigation for July was 34.85 mm. In contrast, the drip
irrigation resulted in less frequent irrigation events, about every 48 hours, with an
average water requirement amount of 0.6 mm per occurrence or about 43% of that
simulated during the spray irrigation case. The simulated total monthly irrigation under
this method for July is 8.8 mm; a remarkable 26.05 mm less than the spray irrigation
method. When compared to a country-wide average estimate of irrigation water use,
our numbers are quite low. According to our results, we would have to revise the

reported country level estimates downward to 17% or less.

The numbers estimated from this work reflect an ideal physiologically-based target for
efficient irrigation practices and could provide an objective basis for irrigation water use,

especially in regions where water is already scarce.
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Introduction

Human demand for products of photosynthesis strongly influences the water cycle
through land transformation and the diversion and extraction of fresh water needed to
support agriculture. Even though water is abundant on our planet only about 3% of it is
fresh and even less than 1% of it is available for human use (Gleick, 1996). Most
(approximately 70%) of what is available is used for irrigation and agriculture followed
by the industrial sector using around 22% while only 8% is left for all domestic use.
With the growing demand for food and fiber, the scarcity of available fresh water is the
subject of conflicts where political boundaries dissect natural watersheds and aquifers. It
is expected that even if present water consumption remains unchanged, about 66% of the

world population will live in water stressed conditions by 2025 (UNEP, 1996).

Over the next 25 years, population growth and economic development alone will
substantially increase water demand and much of it for agricultural uses. For many
regions on Earth, such as the semi-arid lands of central and northern Eurasia and North
Africa, socio-economic shifts are likely to eclipse changes in mean climate as a driver of
the future relation between water supply and demand (Vorosmarty et al., 2000). For
these areas in particular, where the climatically driven balance between supply and
demand is fragile, short-term variations in regional climate can have immediate and
potentially predictable effect on agricultural production (Brown et al., 2007). Asidé from

monitoring stress, methodologies are needed that can measure and even predict
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vulnerability to water scarcity based on a connection between land use and biophysical

response to climate.

Climate, soil properties, crop type and agricultural practices are some of the primary
factors influencing water demand both in terms of the source of water and amount used.
A powerful way to quantify the interaction between climate, plant growth, and water
resource requirements is the use of satellite observations and supporting biophysical
modeling and climate data (Bounoua et al., 2000; Bounoua et al., 2002). Biophysical
models can provide quantitative estimates of carbon and water flux as a function of
satellite-derived vegetation parameters such as plant functional type, canopy structure,

and leaf area in combination with data on soil properties and climate.

Here we explore an inverse process approach using observations from the Moderate
Resolution Imaging Spectroradiometer (MODIS), climatological data, and the Simple
Biosphere model SiB2 of Sellers et al. (1996a) to quantitatively assess water resource
demand in a semi-arid agricultural area by constraining the carbon and water cycles
modeled under both equilibrium (balance between vegetation and prevailing local
climate) and non-equilibrium (water added through irrigation) conditions. We postulate
that the degree to which irrigated dry lands vary from equilibrium conditions is related to

the amount of irrigation water used.

Methodology
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The method begins with the realistic assumption that, in its “natural” state vegetation
density is in quasi-equilibrium with its local climate, soil and nutrient resources
(Bounoua et al., 2004). Satellite driven land surface models, such as SiB2 and others,
have proven useful for quantifying water and carbon flux for vegetated land cover in this
equilibrium state (Dickinson et al., 1984; Sellers et al., 1996a; Sellers et al., 1997). In
SiB2, the photosynthetic activity of the quantity of living vegetation indicated by the
satellite data is modulated by the local climatology in a way that is ‘consistent with
observations and ecological theory of resource use efficiency (Cowan, 1977). However,
irrigated agricultural lands in arid and semi-arid areas are not in equilibrium with the
local climate. As such, despite the high satellite vegetation index (VI) observed for these
areas, the modeled photosynthetic activity will be “suppressed” by the lack of adequate
precipitation provided by that climate (Pongratz et al., 2006; Imhoff et al., 2004). We
postulate that the degree to which the satellite observed vegetation indices of irrigated
lands vary from what would be expected under equilibrium conditions is related to the
amount of irrigation water used. Given the cover type, by inverting the satellite driven
biophysical model, it is possible to explore the relationship between observed vegetation
Leaf area index (LAI) in the equilibrium state and the amount of additional water
required to deviate from it by increasing the water input in the model as a unique function

of the root zone water content.

For this study we used the MODIS 1 km Leaf area index 16-day composite (MOD15A2)
to describe the vegetation phenology and climate data to drive the biophysical model for

the year 2005. The climate data required to drive the Simple Biosphere model consisted
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of surface shortwave and long wave radiations, surface wind speed and temperature and
large scale and convective precipitation. The climatological climate data were obtained

from the National Center for Environmental Prediction (NCEP) reanalysis.

The Simple Biosphere Model

We used the Simple Biosphere model-SiB2 (Sellers et al,, 1996a) for the inverse
modeling component in this study. In SiB2, the vegetation distribution (Defries &
Townshend 1994) as well as its spatial and temporal phenology is described using global
satellite observations (Sellers et al., 1996b). Each vegetation class is assigned a set of
parameters including: 1) time-invariant parameters such as morphological and optical
properties and 2) time-varying physiological parameters describing the vegetation’s
phenology. In the version of SiB2 used in this study, we obtain LAI from the MODIS
instrument (MOD15A2) to derive the biophysical fields such as the fraction of
photosynthetically active radiation absorbed by the green leaves of the canopy (FPAR),
the greenness fraction, the roughness length, the zero-plan displacement and the
vegetation bulk aerodynamic resistance needed for the model (Sellers et al., 1996b). Fpar
is used directly in an integrated photosynthesis-conductance model (Collatz et al., 1991,
1992) to calculate the photosynthesis and transpiration rates. Fpar is prescribed from
satellite observations; it then affects the surface water and energy balance but does not
respond to it. The LAI is used in the calculation of albedo as well as the transpiration and
interception loss components of the evapotranspiration. Vegetation physiology also

responds to climate conditions, mostly temperature and precipitation. Therefore a
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perturbation to the either the climate or the physiological drivers is expected to result in a
positive or negative feedback depending on the intensity of the perturbation. For
example, an increase in LAI will produce more leaves on the canopy and will increase
fpar which in turns increases photosynthesis, conductance to water and transpiration. If
the increase in LAI however is not consistent with the amount of water available for
plant’s photosynthesis, it will cause the stomata to close and so result in water stress. The
model photosynthetic uptake of CO, from the atmosphere is coupled with a water loss
from the leaf interior and from soil water trough the stomates. The capacity of vegetation
to convert soil moisture into latent heat flux is determined by the vegetation density, leaf
area index, and stomatal conductance. The former is derived from satellite data and
prescribed while the latter depends on atmospheric conditions and the amount of water
available in the root zone, thus establishing the required strong and realistic coupling
between the climate forcing and the soil hydrology. The photosynthetic-conductance
sub-model is controlled by a soil moisture stress factor that reduces the carbon
assimilation and consequently conductance and transpiration when root zone water is
below a vegetation type dependant threshold. The water stress function depends on the
root zone soil moisture potential and the critical water potential as defined by (1), both of

which are soil and biome type dependent.

1
S(w2) = T (1)

Where w; is the soil moisture in the root zone layer expressed as a fraction of saturation,

w. and v, represent the critical water potential and the root zone soil moisture potential
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expressed in meters, respectively; and where y,= ww,” with y; being the soil moisture
potential at saturation and b an empirical parameter (Sellers et al., 1996a). The soil
moisture stress function is then used to scale photosynthesis and the stomatal
conductance. In SiB2, the water stress varies between 1 and 0, with 1 representing no
stress. It inhibits photosynthesis by half when the soil moisture potential reaches the

critical value.

The critical part of the model that is of interest to this study is its hydrology. The SiB2
hydrological module distributes the incoming precipitation into a canopy interception
component and a through fall component. The canopy interception can either evaporate at
potential rate or contribute to the through fall when canopy holding capacity is exceeded.
The combination of the direct through fall and water dripping from the canopy is added
to the ground liquid water store. There, the water can either evaporate or infiltrate into a
shallow surface layer if the ground storage capacity is exceeded. If the infiltration rate is
in excess of the infiltration capacity of the soil, the excess water contributes to surface
runoff. Similarly water from the surface layer can either evaporate or infiltrate into the
root zone layer from which it can be used by plants for transpiration through
photosynthesis, flow back up into the surface layer, contribute to runoff or infiltrate into
the deep soil layer. From the deep soil layer water can diffuse up to the root zone or

contribute to runoff though drainage (Fig. 1).

Model Inversion for Estimation of Water Balance, Irrigation Water Volume, and

Vulnerability
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To explore the potential vulnerability of an area with respect to water resources, we
invert the SiB2 photosynthesis-conductance model and examine the relationship between
climate and the water stress function for a local semi arid land using observed vegetation
phenology. For each time step under the prevailing climatology the value of the soil
moisture potential is compared to the critical value, and water is added as needed to the
prevailing climatology to reduce the water stress following the stream of procedure
illustrated in Figure 2. Water input through precipitation is increased over and above the
amount of observed precipitation until the water stress function is minimized. This
provides a lower bound for the amount of additional water input required to sustain the
canopy leaf density. It is important to note that over the test region there was no rainfall
during the 2005 summer and therefore the amount of water added was exactly that
needed to sustain the vegetation density. We define the critical minimum water stress
value as the value allowing normal physiological activity under normal rainy conditions
when the vegetation physiological activity is not stressed. For most crop types, this
critical value is about 0.9 and corresponds to about 80 to 85% of the maximum
assimilation rate. For water stress values below this critical threshold, vegetation
undergoes some inhibition of the assimilation rate. However, assimilation can also be

reduced by high temperatures even under irrigated conditions.

Discussion and Results: a case study for Oran, Algeria
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Satellite data were used to estimate the biophysical fields of a crop canopy in Oran, a
semi-arid region in the North Africa;n country of Algeria for the year 2005. In our
simulations, the cropland is assigned SiB2 land cover type 12 corresponding to cropland
/C3-grasses. Fields of observed leaf area index (MOD15A2) from MODIS were used to
compute the fraction of the photosynthetically active radiation, the greenness fraction, the
bulk aerodynamic resistances for vegetation, and the roughness length at 16-day interval.
The site is located at around 35° 40'N, 0° 45'W and its climate is typically characterized
by moderately wet, cool winters and dry, warm summers. The annual climatological
precipitation is around 400 mm occurring mostly between October and May and the
monthly mean temperatures range between 5°C to 15°C in winter and 15°C to 30°C in
summer (WMO). The growing season over this region parallels the precipitation,
however vegetation activity is completely inhibited during the dry summer. The site is
selected to test the newly developed algorithm because of data availability and most
importantly because there is an evident discrepancy betweeri the observed high leaf area

index during the summer and the precipitation distribution, thus suggesting irrigation.

The normal course of the phenology represented by the observed LAI is presented in
Figure 3; whereas the climatological precipitation and the modeled water stress are
shown in figure 4. The LAI time series shows an annual cycle with relatively high values
except for a short period between February and the middle of March corresponding to the
harvesting of cool weather crops. Remarkably however, during the summer when no
rainfall is recorded (Figure 4) there is still a significantly high LAI value suggesting that

the cropland is irrigated. Most irrigation over the region uses ground water withdrawals
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from aquifers. The observed precipitation shows the last rainfall occurrence by mid-June
and no rainfall occurrence during the month of July while the simulated water stress
indicates maximum stress (low value) starting around the end of June. We use this
inconsistency between the observed phenology and precipitation to both identify the need
for supplemental water and quantify the minimum amount needed to sustain the observed
LAI and the photosynthetic function of the crops. We focus our discussion on the month
of July as it is the driest month over the region and discuss two irrigation scenarios that

we compare to a control simulation.

The water stress for this canopy, without irrigation, is shown as a control (Figure 4) along
with the observed precipitation. It is interesting to note that the last significant rainfall
event before summer (0.38 mm hr') occurs on June 24 and was associated with a low
water stress value of 0.97. It took about 20 days after that date for the water stress
function to drop to 0.25 (high stress) on July 15. Following this rainfall, the stomatal
conductance and assimilation rates were maintained relatively high during the beginning
of the month, then started to decline progressively to an almost complete inhibition at the

end of the month (Figure 5).

The soil moisture content in the shallow surface layer is rather a fast response variable
and drops to a constant low value soon after the last rainfall. In contrast, the root zone
water content exhibited a slow decline (Figure 6).. The root zone depth for cropland is
specified to a maximum 1 m to include several types of crops; and the actual amount of

water in the layer is expressed as a fraction of saturation. Crop rotation is a common
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practice for the study site, ranging from cool weather crops during early fall to wheat
which usually starts by mid-November over this region. During summer, tall leafy crops
are dominant. Examination of the assimilation rate and the root zone soil moisture
illustrates the tight interplay between the two model variables and shows the assimilation
rate closely following the root zone soil moisture. There was no rainfall during July and
consequently the only water diffused to the atmosphere was extracted by plants from the
root zone during the process of photosynthesis. Because the assimilation remains
positive for this relatively dense canopy undér a long period with no precipitation, we
conclude that during the control simulation, the model’s vegetation physiological activity

is not in balance with its local climate.

It is the inconsistency between the observed precipitation and the observed canopy leaf
density that triggers the hypothesis that the observed high leaf density is due to an
alternate source of water resources possibly through irrigation. In addition to identifying
a potentially irrigated canopy, we then used the SiB2 biophysical model to estimate the
amount of water needed to sustain the observed LAI (figure 3) at its high point under
local climate conditions. Water is then added as needed at each time step during daytime
where the model computed water stress is below the critical value indicating that the
water content in the root zone can not sustain an unstressed level of photosynthesis
between 12-13 pmoles.m.s™, typical for the cropland in this semi arid region. The
amount of water required over and above precipitation (if any) is considered as an

irrigation requirement.

10
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We added water using two distribution methods: The first method, hereafter referred to as
expl, adds water similar to large scale rainfall; that is the water is added on top of the
canopy and covers the entire grid cell uniformly. This implies that some of the irrigation
water is intercepted by the canopy and is lost back to evaporation at potential rate. This
method is a proxy for the traditional spray irrigation. The second method, referred to as
exp2, allows water to be applied directly into the first soil layer and serves as good proxy

for modern drip irrigation.

The response of the water stress function to irrigation for exp!/ is shown in Figure 7a.
Irrigation has maintained a water stress level slightly above the 0.9 threshold and
provided a maximum amount of about 1.4 mm of water per occurrence with an average
frequency of occurrence of 24.6 hours. The simulated total monthly irrigation for July is
34.85 mm. The minimum and maximum temperatures averaged for June, July and
August over the study site are 19.7 °C and 33.44 °C, respectively and the water vapor
deficit is high. The additional irrigation had an important effect on the surface water and
energy budgets. Since water is added directly on top of the canopy, it first saturates the
canopy interception store, fills the surface layer and then infiltrates into the root zone.
The water content in the first layer almost mirrors the irrigation pattern. This is due to
this layer’s relatively small water holding capacity. As wéter is added however, the
moisture content in the root zone slowly builds up and maintains values significantly
higher than those obtained during the control simulation (Figure 7b). Since both the
canopy and the soil are wet during and after irrigation, water is lost to the atmosphere

through. interception, especially from the canopy which is exposed to high atmospheric

11
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temperatures and vapor pressure deficit (Figure 8). This result in cooling and moistening
the canopy air space; however at this spatial scale evaporation does not have a significant
effect on local climate.

The high temperatures reached during daytime in this semi arid region have an adverse
impact on assimilation (Figure 9). For example between about July 13 and 27, the
assimilation rates is not as strong as the first 10 days of the month due to high

temperatures, nevertheless the irrigation resulted in a higher productivity than the control

case.

During the second simulation (exp2) where water is added directly to the soil, the
irrigation is much more efficient than in expl. The drip irrigation reduced the
interception loss from the canopy by a monthly average value of 4.93 Wm™ or about 24%
compared to the spray irrigation case; and because the ground is covered by thick foliage,
the ground interception is relatively small. In both experiments, however the ground
transpiration underwent a significant increase compared to the control. This partitioning
of the surface fluxes shunted a large part of the absorbed energy into canopy transpiration
which increased by about 6.5 Wm™ compared to expl and almost doubled from the
control value (Tablel). The use of the drip irrigation method results in less frequent
irrigation events (about every 48 hours) with an average water requirement amount of
about 0.6 mm per occurrence, that’s about 43% of that simulated during the spray
irrigation case (Figure 10). The simulated total monthly irrigation under this method for

July is 8.8 mm; that is a remarkable 26.05 mm less than exp/.

12
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Concluding Remarks

The model approach provided minimum water requirements for sustaining this canopy
under prevailing climate conditions. The proxy for spray irrigation (expl) yielded a
minimum water requirement of 117 mm of water per square meter (per year) while the
more economic proxy for drip irrigation (exp2) yielded a minimum requirement of 30
mm per square meter (per year). As expected, when compared to a country-wide average
estimate of irrigation water use for Algeria, our numbers are quite low (Table 2). Since
our results are based on model physiology they represent perfect water delivery
efficiency and do not include losses due to transport of the water to the plants. In actual
practice, a considerable amount of water is lost in transport and while this is factored into
calculations of irrigation efficiency it represents a large source of uncertainty in the
estimates. The range of irrigation efficiencies between 45 and 80% (UNFAO) reported
for Algeria represents an average gross irrigation figure and probably includes some
regions in the Sahara desert. Our results apply only to one coastal region away from the
desert. Nevertheless, according to our results, we would have to revise the reported
country level estimates downward 17% or less. The numbers estimated from this work
reflect an ideal physiologically-based target for efficient irrigation practices and could
provide an objective basis for irrigation water use, especially in those regions where

water is already scarce.
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These experiments lay the ground work for using satellite derived canopy measures and
biophysical models to assess irrigation requirements and irrigation water use efﬁéiency
regionally. The approach provides a physiological baseline requirement to which reported
irrigation water use can be compared in order to improve both estimates and delivery
systems. The technique can also be expanded to assess water vulnerability of both crops

and natural ecosystems as a result of climate change.
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Figure 1: Schematic functioning of the Simple Biosphere Model
(SiB2) showing the pathway for the hydrological cycle treatment.
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Figure 2: Iterative process for the determination of the minimum water
required to sustain the observed leaf density on the vegetation canopy.
Baseline in this case is the observed leaf area index (LAI) from MODIS
(updated every 16 days) and local climatology (obtained hourly from daily
observations), which includes precipitation. Water is added to reduce the
water stress function. Output is the amount of water required to maintain that
balance.
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Table 1: Canopy and ground transpiration and
interception components (W.m?)

Control Expl Exp2
canopy transpiration 41.64 73.98 80.46
ground transpiration 1.47 41.64 74.61
canopy interception 0.02 20.59 15.66
ground interception 1.36 1.87 4.29

Table 2: Water requirements as determined by expl

and exp2 compared to reported estimates at country level for Algeria.

(UNEP, 1996).
Water requirement
Water Delivery (mm.m™.yr'")
UN FAO* | Irrigation (All types) 700
EXP 1 Spray Irrigation 117
EXP 2 Drip Irrigation 30
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