Thermoelectric Properties of Self Assemble TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys*, NASA-Glenn, USA;
Ali Sayir, Alp Sehirlioglu, Case Western Reserve University, USA

Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO$_2$/SnO$_2$ system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO$_2$. The phase separated microstructures are stable up to 1400 °C. Semiconducting TiO$_2$/SnO$_2$ powders were synthesized by solid state reaction between TiO$_2$ and SnO$_2$. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 °C. X-ray diffraction reveal phase separation of (Ti$_x$Sn$_{1-x}$)O$_2$ type phases. The TiO$_2$/SnO$_2$ nanocomposites exhibit n-type behavior; a power factor of 70 μW/mK2 at 1000 °C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
Thermoelectric Properties of Self Assemble TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys, NASA-Glenn, USA
Ali Sayir, CWRU, USA
Alp Sehirlioglu, CWRU, USA

Program Support: NASA Radioisotope Power Systems
Objective: High Conversion Efficiency
● Reduces Mass, Volume & Cost

Space Power Generation

- Specific Power (W/kg)
 - ZT_{ave} \approx 2.0
 - ZT_{ave} \approx 1.1 (2x Improvement)
 - ZT_{ave} \approx 1.6 (3x Improvement)
 - ZT_{ave} \approx 0.75 (Nano Si-Ge)
 - ZT_{ave} \approx 0.88 (Zintl/Nano Si-Ge)
 - ZT_{ave} \approx 0.55 (RTG Si-Ge)

Conversion Efficiency (%)

Waste Heat to Power

- Waste Heat is one of our most under utilized energy resources
- U.S.-energy consumption \approx 29 \text{ tera-kWh} (10^{12})
 - Barrels of Oil – 170 \text{ giga-barrels} (10^9)
- World-energy consumption \approx 120 \text{ tera- kWh} (10^{12})
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO_{2} emission
Nanotechnology

Figure of Merit

\[ZT = \frac{S^2 \sigma}{\kappa} T \]

- \(S \) - Seebeck coefficient
- \(\sigma \) - electrical conductivity
- \(\kappa \) - thermal conductivity

Efficiency

\[
\eta_{\text{max}} = \frac{\Delta T}{T_{\text{hot}}} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + \frac{T_{\text{cold}}}{T_{\text{hot}}}}
\]

Phonon Scattering:
- Atom disorder
- Supperlattices
- Alloying
- Crystal Structures
- Anharmonic vibrations
- Nano-technology

Fleurial/Chen – JPL/MIT

Si/Ge

Alloy Limit
Fabrication of Nanostructure Solids

Goal: Preservation of the nanostructure during fabrication.

Inhibit Grain Growth
- Rapid Thermal Process
- Inclusions
- Lower Temperature

Traditional

Nano-powder Synthesis

Nano-Powder

Post Process

Thermal Densification
- Pressure Assisted
- Microwave
- Laser
- Plasma-SPS/P²C

Cold Densification
- Cold Spray
- Dynamic Compaction
- Plastic Deformation

Thermodynamics
- Phase Transformation
- Precipitation
- Spinodal Decomposition

New Approach

Grain Size
- Thermal Aging
- Composition Limited
- Stable
Spinodal Decomposition

TiO$_2$ – SnO$_2$

Desired Features
- ~50 nm grains
- High Temperature
- Wide Composition
- Large Δ Mass

Transparent Conducting Oxides

Insulator/Semiconductor/Conductor
- Large Bandgap 2.4-3.8 ev
- N-type – Degenerate Semiconductor

Electrical Conductivity

<table>
<thead>
<tr>
<th>TCO</th>
<th>σ(S/m)</th>
<th>@ RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO</td>
<td>8×10^5</td>
<td></td>
</tr>
<tr>
<td>In$_2$O$_3$</td>
<td>1×10^6</td>
<td></td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>2.5×10^5</td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td>8.3×10^5</td>
<td></td>
</tr>
<tr>
<td>ZnO:Al</td>
<td>7.7×10^4</td>
<td></td>
</tr>
<tr>
<td>CdSnO$_2$</td>
<td>7.7×10^5</td>
<td></td>
</tr>
<tr>
<td>CdO:In</td>
<td>1.7×10^6</td>
<td></td>
</tr>
</tbody>
</table>

ZnO:Al
ZT~0.6 @ 1000 °C

Fig. 10. TEM image of (Ti$_{0.3}$/Sn$_{0.7}$)O$_2$ ceramics annealed for 48 h. Shultz & Stubican, JACS, 53, 1970
SnO$_2$
- Purity: 99.9%
- APS: 50 nm
- SSA: 14.2 m2/g

TiO$_2$ Rutile
- Purity: 99.99%
- APS: 20 nm, SSA: > 30 m2/g

Dopants CoO, MnO$_2$, Ta$_2$O$_5$, In$_2$O$_3$

TiO$_2$/SnO$_2$
- 50/50 mol %
- 75/25 mol %
- 25/75 mol %

Experimental

Powder Mixing

Compaction

Reactive Sintering
- 1250-1550 °C

Anneal
- 72 Hrs

Seebeck/Resistivity
- ZEM-3
- 6-22 mm
- 4-8 mm

ΔT 0-50 °C/Furnace RT-1000 °C

Thermal Conductivity
- Laser Flash Method - Thermal Diffusivity
- Standard
- Specific Heat - C$_p$ - Laser Flash
- Thermal Conductivity (K = αρC$_p$)
Sintering

SnO₂ Sintering-Inhibited
• Surface Diffusion <1100 °C
• Evaporation >1100 °C
SnO₂ →SnO + ½O₂(g)

Sintering Aids-SnO₂
• MnO, CoO, CuO, ZnO

CoO → CoTi,Sn + VO²⁺

50/50 TiO₂/SnO₂
1625 °C

75/25 TiO₂/SnO₂
1550 °C

Ta₂O₅ & In₂O₃
Ineffective Sintering Aids

Ta₂O₅ → 2Taₐ₁,Sn + 2e⁻ + ½O₂

In₂O₃ → 2Inₐ₁,Sn + 2VO⁺
75/25 TiO$_2$/SnO$_2$

Undoped

1% Ta$_2$O$_5$

1% In$_2$O$_3$

XRD-Phases
- **Sintered** – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
- **Reduced** – TiO$_2$, Rutile
 - (Ti$_{0.8}$Sn$_{0.2}$)O$_2$

1% Ta$_2$O$_5$

XRD-Phases
- **Sintered** – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
- **Reduced** – TiO$_2$, Rutile
 - (Ti$_{0.8}$Sn$_{0.2}$)O$_2$

Annealed
- TiO$_2$, Rutile
- SnO$_2$, In$_2$O$_3$
- SnO$_2$, In$_2$O$_3$

XRD-Phases
- **Sintered** – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
- **Annealed** – (Ti$_{0.9}$Sn$_{0.1}$)O$_2$
 - 1000 ºC
- (Ti$_{0.1}$Sn$_{0.9}$)O$_2$

Phase Separation

1% CoO XRD
- **Sintered** – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
- (Ti$_{0.2}$Sn$_{0.8}$)O$_2$
- **Annealed** – (Ti$_{0.9}$Sn$_{0.1}$)O$_2$
 - 1000 ºC
- (Ti$_{0.1}$Sn$_{0.9}$)O$_2$

1% MnO XRD
- **Sintered** – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
- (Ti$_{0.2}$Sn$_{0.8}$)O$_2$
- **Annealed** – (Ti$_{0.9}$Sn$_{0.1}$)O$_2$
 - 1000 ºC
- (Ti$_{0.1}$Sn$_{0.9}$)O$_2$
50/50 TiO$_2$/SnO$_2$

1% CoO

1% MnO

XRD-Phases

Sintered – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
(Ti$_{0.2}$Sn$_{0.8}$)O$_2$
TiO$_2$

Annealed – (Ti$_{0.2}$Sn$_{0.8}$)O$_2$
1000 $^\circ$C (Ti$_{0.9}$Sn$_{0.1}$)O$_2$

XRD-Phases

Sintered – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
(Ti$_{0.1}$Sn$_{0.9}$)O$_2$

Annealed – (Ti$_{0.2}$Sn$_{0.8}$)O$_2$
1000 $^\circ$C (Ti$_{0.9}$Sn$_{0.1}$)O$_2$

Microstructure Coarsening @ 1600 $^\circ$C

Grain Boundary Phases Segregation
Electrical Conductivity

75/25 TiO\textsubscript{2}/SnO\textsubscript{2}

- 1% Ta\textsubscript{2}O\textsubscript{5}
- TiO\textsubscript{2}
- 1% In\textsubscript{2}O\textsubscript{3}
- Undoped
- 1% MnO
- 1% CoO

50/50 & 25/75 TiO\textsubscript{2}/SnO\textsubscript{2}

- (Ti\textsubscript{0.75}Sn\textsubscript{0.25})O\textsubscript{2-x}

\begin{itemize}
 \item Ta\textsubscript{2}O\textsubscript{5} – Increases \(\sigma \) – \(E_a \sim 0.25 \) ev
 \item (Ti\textsubscript{x}Sn\textsubscript{1-x})O\textsubscript{2-y} – Oxygen Deficiency Increases \(\sigma \) – \(E_a \sim 0.06 \) ev
 \item Co-doping-Ta\textsubscript{2}O\textsubscript{5}/CoO - Increases \(\sigma \) – \(E_a \sim 0.5-0.7 \) ev
 \item In\textsubscript{2}O\textsubscript{3}, MnO & CoO – Ineffective in Enhancing \(\sigma \) – \(E_a \sim 1-4.2 \) ev
\end{itemize}
• N-type
• Large Seebeck coefficients >-400 μV/K
• Large Seebeck coefficient – Low σ
• \((\text{Ti}_{0.5}\text{Sn}_{0.5})\text{O}_{2-y}\) low Seebeck ~ 0
Thermal Conductivity

Compositions

- 1% MnO-50 TiO₂
- 1% CoO-50 TiO₂
- 1% MnO-75 TiO₂
- 1% CoO-75 TiO₂
- 1% MnO-25 TiO₂
- 1% CoO-25 TiO₂
- 1% Ta₂O₅/0.5% CoO-25 TiO₂

- Compositions exhibit low κ – 1.7 to 6.8 W/mK
- Observe no dependence on composition or post treatments
- Spinodal Decomposition – κ reduction?
- Best ZT ~ 0.05
In Summary

• TiO$_2$/SnO$_2$ compositions exhibit low thermal conductivity. Reduction in thermal conductance by spinodal microstructure has not been isolated.

• Improvements in electrical conductivity is needed. Grain boundary phases could be detrimental. Ta$_2$O$_5$ or oxygen deficiency enhances electrical conductivity.

• Sintering aids are required to densify equal-molar and tin oxide rich compositions. MnO and CoO promoted phase separation.