Thermoelectric Properties of Self Assemble TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys*, NASA-Glenn, USA; Ali Sayir, Alp Sehirlioglu, Case Western Reserve University, USA

Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO$_2$/SnO$_2$ system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO$_2$. The phase separated microstructures are stable up to 1400 °C. Semiconducting TiO$_2$/SnO$_2$ powders were synthesized by solid state reaction between TiO$_2$ and SnO$_2$. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 °C. X-ray diffraction reveal phase separation of (Ti$_x$Sn$_{1-x}$)$_2$O$_5$ type phases. The TiO$_2$/SnO$_2$ nanocomposites exhibit n-type behavior; a power factor of 70 μW/mK2 at 1000 °C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
Thermoelectric Properties of Self Assemble TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys, NASA-Glenn, USA
Ali Sayir, CWRU, USA
Alp Sehirlioglu, CWRU, USA

Program Support: NASA Radioisotope Power Systems
Heat to Electric Power Generation

Objective: High Conversion Efficiency
- Reduces Mass, Volume & Cost

Space Power Generation

Waste Heat to Power
- Waste Heat is one of our most under utilized energy resources
- U.S.-energy consumption ~29 tera-kWh \((10^{12})\)
 - Barrels of Oil – 170 giga-barrels \((10^9)\)
- World-energy consumption ~120 tera- kWh \((10^{12})\)
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO\(_2\) emission

![Diagram of Heat to Electric Power Generation](image-url)

![Diagram of Waste Heat to Power](image-url)
Nanotechnology

Figure of Merit

\[ZT = \frac{S^2 \sigma}{\kappa} T \]

- \(S \) - Seebeck coefficient
- \(\sigma \) - electrical conductivity
- \(\kappa \) - thermal conductivity

Efficiency

\[\eta_{\text{max}} = \frac{\Delta T}{T_{\text{hot}}} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + \frac{T_{\text{cold}}}{T_{\text{hot}}}} \]

Phonon Scattering:
- Atom disorder
- Supperlattices
- alloying
- Crystal Structures
- Anharmonic vibrations
- Nano-technology

Fleurial/Chen – JPL/MIT

Si/Ge

Alloy Limit
Fabrication of Nanostructure Solids

Goal: Preservation of the nanostructure during fabrication.

Inhibit Grain Growth
• Rapid Thermal Process
• Inclusions
• Lower Temperature

Thermal Densification
- Pressure Assisted
- Microwave
- Laser
- Plasma-SPS/P²C

Cold Densification
- Cold Spray
- Dynamic Compaction
- Plastic Deformation

Thermodynamics
- Phase Transformation
- Precipitation
- Spinodal Decomposition

Nano-powder Synthesis

Nano-Powder

Post Process

New Approach

Grain Size
• Thermal Aging
• Composition Limited
• Stable

Traditional
Spinodal Decomposition

Desired Features
• ~50 nm grains
• High Temperature
• Wide Composition
• Large Δ Mass

Transparent Conducting Oxides
Insulator/Semiconductor/Conductor
• Large Bandgap 2.4-3.8 ev
• N-type – Degenerate Semiconductor

Electrical Conductivity

<table>
<thead>
<tr>
<th>TCO</th>
<th>(\sigma (S/m)) @ RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO</td>
<td>8 \times 10^5</td>
</tr>
<tr>
<td>In(_2)O(_3)</td>
<td>1 \times 10^6</td>
</tr>
<tr>
<td>SnO(_2)</td>
<td>2.5 \times 10^5</td>
</tr>
<tr>
<td>ZnO</td>
<td>8.3 \times 10^5</td>
</tr>
<tr>
<td>ZnO:Al</td>
<td>7.7 \times 10^4</td>
</tr>
<tr>
<td>CdSnO(_2)</td>
<td>7.7 \times 10^5</td>
</tr>
<tr>
<td>CdO:In</td>
<td>1.7 \times 10^6</td>
</tr>
</tbody>
</table>

ZnO:Al
ZT ~0.6 @ 1000°C

Fig. 10. TEM image of (Ti\(_0.5\)/Sn\(_0.5\))O\(_2\) ceramics annealed for 48 h.
Shultz & stubican, JACS, 53, 1970
Experimental

- **SnO$_2$**
 - Purity: 99.9%
 - APS: 50 nm
 - SSA: 14.2 m2/g

- **TiO$_2$ Rutile**
 - Purity: 99.99%
 - APS: 20 nm, SSA: > 30 m2/g

- **Dopants**
 - CoO, MnO$_2$
 - Ta$_2$O$_5$, In$_2$O$_3$

TiO$_2$/SnO$_2$
- 50/50 mol %
- 75/25 mol %
- 25/75 mol %

- **Powder Mixing**
- **Compaction Die Press**
- **Reactive Sintering** 1250-1550 ºC
- **Anneal** 72 Hrs

Thermal Conductivity
- Laser Flash Method - Thermal Diffusivity
- Standard
- Specific Heat - C_p - Laser Flash
- Thermal Conductivity ($K = \alpha \rho C_p$)

Seebeck/Resistivity
- ΔT 0-50 ºC/Furnace RT-1000 ºC
- ZEM-3
- 6-22 mm
- 4-8 mm
Sintering

SnO₂ Sintering-Inhibited
- Surface Diffusion <1100 °C
- Evaporation >1100 °C
SnO₂ → SnO + 1/2O₂(g)

Sintering Aids-SnO₂
- MnO, CoO, CuO, ZnO

CoO → Coₜ𝑖,𝑠𝑛 + V₀²⁺

50/50 TiO₂/SnO₂

1625 °C

75/25 TiO₂/SnO₂

1550 °C

Phase Separation

Ta₂O₅ & In₂O₃
Ineffective Sintering Aids

Ta₂O₅ → 2Taₜ𝑖,𝑠𝑛 + 2e⁻ + 1/2O₂

In₂O₃ → 2Inₜ𝑖,𝑠𝑛 + 2V₀
75/25 TiO₂/SnO₂

Undoped

XRD-Phases
- Sintered – (Ti₀.₈Sn₀.₂)O₂
- Reduced – TiO₂, Rutile
- (Ti₀.₈Sn₀.₂)O₂

1% Ta₂O₅

XRD-Phases
- Sintered – (Ti₀.₈Sn₀.₂)O₂
- Annealed – (Ti₀.₈Sn₀.₂)O₂
- 1250 °C
- Reduced – TiO₂, Rutile
- (Ti₀.₈Sn₀.₂)O₂

1% In₂O₃

XRD-Phases
- Sintered – TiO₂, Rutile
- SnO₂, In₂O₃
- Annealed – TiO₂, Rutile
- 1250 °C
- SnO₂, In₂O₃

Phase Separation

1% Ta₂O₅

GB Phase

1% CoO XRD
- Sintered – (Ti₀.₈Sn₀.₂)O₂
- (Ti₀.₂Sn₀.₈)O₂
- Annealed – (Ti₀.₉Sn₀.₁)O₂
- 1000 °C
- (Ti₀.₁Sn₀.₉)O₂

1% MnO XRD
- Sintered – (Ti₀.₈Sn₀.₂)O₂
- (Ti₀.₂Sn₀.₈)O₂
- Annealed – (Ti₀.₉Sn₀.₁)O₂
- 1000 °C
- (Ti₀.₁Sn₀.₉)O₂
50/50 TiO₂/SnO₂

1% CoO

1% MnO

XRD-Phases
Sintered – (Ti₀.₈Sn₀.₂)O₂
(Ti₀.₂Sn₀.₈)O₂
TiO₂
Annealed – (Ti₀.₂Sn₀.₈)O₂
1000 °C (Ti₀.₉Sn₀.₁)O₂

XRD-Phases
Sintered – (Ti₀.₈Sn₀.₂)O₂
(Ti₀.₁Sn₀.₉)O₂
Annealed – (Ti₀.₂Sn₀.₈)O₂
1000 °C (Ti₀.₉Sn₀.₁)O₂

Microstructure
Coarsening
@ 1600 °C

Grain Boundary Phases
Segregation
Electrical Conductivity

75/25 TiO₂/SnO₂

50/50 & 25/75 TiO₂/SnO₂

- Ta₂O₅ – Increases σ – Eₐ~0.25 eV
- (TiₓSn₁₋ₓ)O₂₋ₘ – Oxygen Deficiency Increases σ – Eₐ~0.06 eV
- Co-doping-Ta₂O₅/CoO - Increases σ – Eₐ~0.5-0.7 eV
- In₂O₃, MnO & CoO – Ineffective in Enhancing σ – Eₐ~1-4.2 eV
Seebeck Coefficient

- **N-type**
- Large Seebeck coefficients $>-400 \, \mu V/K$
- Large Seebeck coefficient – Low σ
- $(Ti_{0.5}Sn_{0.5})O_{2-y}$ low Seebeck ~ 0

Graphs showing

75/25 TiO$_2$/SnO$_2$

50/50 & 25/75 TiO$_2$/SnO$_2$
Thermal Conductivity

Compositions

- 1% MnO-50 TiO₂
- 1% CoO-50 TiO₂
- 1% MnO-75 TiO₂
- 1% CoO-75 TiO₂
- 1% MnO-25 TiO₂
- 1% CoO-25 TiO₂
- 1%Ta₂O₅/0.5% CoO-25 TiO₂

- Compositions exhibit low κ – 1.7 to 6.8 W/mK
- Observe no dependence on composition or post treatments
- Spinodal Decomposition – κ reduction?
- Best ZT ~ 0.05
In Summary

| TiO$_2$/SnO$_2$ compositions exhibit low thermal conductivity. Reduction in thermal conductance by spinodal microstructure has not been isolated. |
| Improvements in electrical conductivity is needed. Grain boundary phases could be detrimental. Ta$_2$O$_5$ or oxygen deficiency enhances electrical conductivity. |
| Sintering aids are required to densify equal-molar and tin oxide rich compositions. MnO and CoO promoted phase separation. |