Thermoelectric Properties of Self Assemble TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys*, NASA-Glenn, USA;
Ali Sayir, Alp Sehirlioglu, Case Western Reserve University, USA

Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO$_2$/SnO$_2$ system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO$_2$. The phase separated microstructures are stable up to 1400 °C. Semiconducting TiO$_2$/SnO$_2$ powders were synthesized by solid state reaction between TiO$_2$ and SnO$_2$. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 °C. X-ray diffraction reveal phase separation of (Ti$_x$Sn$_{1-x}$)O$_2$ type phases. The TiO$_2$/SnO$_2$ nanocomposites exhibit n-type behavior; a power factor of 70 μW/mK2 at 1000 °C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
Thermoelectric Properties of Self Assemble TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys, NASA-Glenn, USA
Ali Sayir, CWRU, USA
Alp Sehirlioglu, CWRU, USA

Program Support: NASA Radioisotope Power Systems
Heat to Electric Power Generation

Objective: High Conversion Efficiency
- Reduces Mass, Volume & Cost

Space Power Generation

Waste Heat to Power

- Waste Heat is one of our most under utilized energy resources
- U.S.-energy consumption ~29 tera-kWh \((10^{12})\)
 - Barrels of Oil – 170 giga-barrels \((10^9)\)
- World-energy consumption ~120 tera-kWh \((10^{12})\)
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO₂ emission
Nanotechnology

Figure of Merit

\[ZT = \frac{S^2 \sigma}{\kappa T} \]

- S - Seebeck coefficient
- \(\sigma \) – electrical conductivity
- \(\kappa \) – thermal conductivity

Efficiency

\[\eta_{\text{max}} = \frac{\Delta T}{T_{\text{hot}}} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + T_{\text{cold}}/T_{\text{hot}}} \]

Phonon Scattering:
- Atom disorder
- Supperlattices
- Alloying
- Crystal Structures
- Nano-technology
- Anharmonic vibrations

Fleurial/Chen – JPL/MIT

Si/Ge

Alloy Limit
Fabrication of Nanostructure Solids
Goal: Preservation of the nanostructure during fabrication.

Inhibit Grain Growth
- Rapid Thermal Process
- Inclusions
- Lower Temperature

New Approach
Grain Size
- Thermal Aging
- Composition Limited
- Stable

Post Process

Thermodynamics
Phase Transformation
Precipitation
Spinodal Decomposition

Cold Densification
Cold Spray
Dynamic Compaction
Plastic Deformation

Thermal Densification
Pressure Assisted
Microwave
Laser
Plasma-SPS/P²C

Traditional

Nano-powder Synthesis

Nano-Powder
Spinodal Decomposition

Desired Features
- ~50 nm grains
- High Temperature
- Wide Composition
- Large Δ Mass

Transparent Conducting Oxides

Insulator/Semiconductor/Conductor
- Large Bandgap 2.4-3.8 ev
- N-type – Degenerate Semiconductor

Electrical Conductivity

<table>
<thead>
<tr>
<th>TCO</th>
<th>σ (S/m) @ RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO</td>
<td>8x105</td>
</tr>
<tr>
<td>In$_2$O$_3$</td>
<td>1x106</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>2.5x105</td>
</tr>
<tr>
<td>ZnO</td>
<td>8.3x105</td>
</tr>
<tr>
<td>ZnO:Al</td>
<td>7.7x104</td>
</tr>
<tr>
<td>CdSnO$_2$</td>
<td>7.7x105</td>
</tr>
<tr>
<td>CdO:In</td>
<td>1.7x106</td>
</tr>
</tbody>
</table>

ZnO:Al
ZT~0.6 @ 1000 °C
Experimental

SnO₂
Purity: 99.9%
APS: 50 nm
SSA: 14.2 m²/g

TiO₂ Rutile
Purity: 99.99%
APS: 20 nm,
SSA: > 30 m²/g

Dopants
CoO, MnO₂
Ta₂O₅, In₂O₃

TiO₂/SnO₂
50/50 mol %
75/25 mol %
25/75 mol %

Powder Mixing
Compaction Die Press

Reactive Sintering
1250-1550 °C

Anneal
72 Hrs

Thermal Conductivity

- Laser Flash Method - Thermal Diffusivity
- Standard
- Specific Heat - C_p - Laser Flash
- Thermal Conductivity (K = αρC_p)

Seebeck/Resistivity

ΔT 0-50 °C/Furnace RT-1000 °C
Sintering

SnO₂ Sintering-Inhibited
- Surface Diffusion <1100 °C
- Evaporation >1100 °C
SnO₂ →SnO + ½O₂(g)

Sintering Aids-SnO₂
- MnO, CoO, CuO, ZnO
CoO → Co⁹°₉,Ti,Sn + V⁰°O

50/50 TiO₂/SnO₂
- 1625 °C

75/25 TiO₂/SnO₂
- 1550 °C

Ta₂O₅ & In₂O₃
Ineffective Sintering Aids
Ta₂O₅ → 2Ta⁹°₉,Ti,Sn + 2e° + ½O₂
In₂O₃ → 2In⁹°₉₉,Ti,Sn + 2V°O
75/25 TiO$_2$/SnO$_2$

Undoped

Sintered – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
Reduced – TiO$_2$, Rutile

1% Ta$_2$O$_5$

Sintered – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
Annealed – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
Reduced – TiO$_2$, Rutile

1% In$_2$O$_3$

Sintered – TiO$_2$, Rutile
Annealed – TiO$_2$, Rutile
Reduced – TiO$_2$, Rutile

XRD-Phases

1% Co$_2$O XRD

Sintered – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
Annealed – (Ti$_{0.9}$Sn$_{0.1}$)O$_2$
Reduced – (Ti$_{0.1}$Sn$_{0.9}$)O$_2$

1% Mn$_2$O XRD

Sintered – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
Annealed – (Ti$_{0.9}$Sn$_{0.1}$)O$_2$
Reduced – (Ti$_{0.1}$Sn$_{0.9}$)O$_2$

Phase Separation
50/50 TiO₂/SnO₂

XRD-Phases
- **Sintered** – \((\text{Ti}_{0.8}\text{Sn}_{0.2})\text{O}_2\), \((\text{Ti}_{0.2}\text{Sn}_{0.8})\text{O}_2\), TiO₂
- **Annealed** – \((\text{Ti}_{0.2}\text{Sn}_{0.8})\text{O}_2\), \((\text{Ti}_{0.9}\text{Sn}_{0.1})\text{O}_2\) @ 1000 °C

1% CoO

1% MnO

Microstructure Coarsening
- **@ 1600 °C**

Grain Boundary Phases Segregation
Electrical Conductivity

- **Ta₂O₅** – Increases $\sigma - E_a \approx 0.25$ ev
- **(TiₓSn₁₋ₓ)O₂₋y** – Oxygen Deficiency Increases $\sigma - E_a \approx 0.06$ ev
- **Co-doping-Ta₂O₅/CoO** - Increases $\sigma - E_a \approx 0.5-0.7$ ev
- **In₂O₃, MnO & CoO** – Ineffective in Enhancing $\sigma - E_a \approx 1-4.2$ ev
Seebeck Coefficient

75/25 TiO_2/SnO_2

50/50 & 25/75 TiO_2/SnO_2

- N-type
- Large Seebeck coefficients >-400 μV/K
- Large Seebeck coefficient – Low σ
- (Ti_{0.5}Sn_{0.5})O_{2-y} low Seebeck ~ 0
Compositions exhibit low κ – 1.7 to 6.8 W/mK
Observe no dependence on composition or post treatments
Spinodal Decomposition – κ reduction?
Best ZT \sim 0.05
In Summary

• TiO$_2$/SnO$_2$ compositions exhibit low thermal conductivity. Reduction in thermal conductance by spinodal microstructure has not been isolated.

• Improvements in electrical conductivity is needed. Grain boundary phases could be detrimental. Ta$_2$O$_5$ or oxygen deficiency enhances electrical conductivity.

• Sintering aids are required to densify equal-molar and tin oxide rich compositions. MnO and CoO promoted phase separation.