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Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NAR-
MAX class is considered. A non-linear difference equation describing this aircraft model is derived theoret-
ically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to
aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental condi-
tions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using
continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide
accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-
plunge dynamics data gives a high percent fit for cross-validated data.

I. Introduction

SYSTEM identification or mathematical modeling is the process of developing or improving a mathematical repre-
sentation of a physical system based on observed data. System identification is a critical step in aircraft develop-

ment, analysis and validation for flight worthiness.
One such application of system identification in the flight-test community is for the analysis of aeroelasticity. The

analysis of aeroelasticity is concerned with the interaction of inertial, structural and aerodynamic forces.1 Previous
approaches have modelled aeroelasticity with linear time-invariant (LTI) models. These linear models have been
successful in providing approximate estimates of an aircraft’s response to gust, turbulence and external excitations.
However, when aircraft speeds increase to high subsonic or transonic Mach numbers linear models no longer provide
accurate predictions of the aircraft’s behavior. Some of the behavior that cannot be modelled linearly includes transonic
dip, air flow separation and shock oscillations which can induce non-linear phenomena such as limit cycle oscillations
(LCO).2,3 The onset of LCOs has been observed on several aircraft such as the F-16C or F/A-18 and cannot be
modelled properly as a LTI system.4 This has necessitated the application of non-linear identification techniques to
accurately model LCO dynamics.

Over the past several decades, significant achievements have been made in several areas of nonparametric non-
linear system identification (see e.g.5,6,7). Recent work in the aerospace community has attempted to address these
non-linear aeroelastic phenomena using Volterra kernel methods.8 These methods provide a convenient means of
characterising LCOs but suffer from a highly over-parameterised model description and do not lend themselves to
efficient control synthesis.

Parametric representations of non-linear systems typically contain a small number of coefficients which can be
varied to alter the behavior of the equation and may be linked to the underlying system. Leontaritis and Billings9,10

have proposed the NARMAX (Non-linear AutoRegressive, Moving Average eXogenous) structure as a general para-
metric form for modeling non-linear systems. NARMAX models describe non-linear systems in terms of linear-in-
the-parameters difference equations relating the current output to (possibly non-linear) combinations of inputs and
past outputs. It is suitable for modeling both the stochastic and deterministic components of a system and is capable
of describing a wide variety of non-linear systems.11,12 This formulation yields compact model descriptions that may
be readily identified and may afford greater interpretability. NARMAX models have been successfully demonstrated
for modelling the input-output behavior of many complex systems such as ones found in engineering and biology.13,14

Currently, development and test of aircraft takes many years and considerable expenditure of limited resources.
One reason for lengthy development time/costs is many models (and hence control strategies) need to be developed
throughout the flight envelope. The power of parametric non-linear identification techniques (i.e. NARMAX models)
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is that they can describe complex aeroelastic behavior over a large operating range. Consequently, this provides models
that can be more robust and reduce development time.

Although the NARMAX structure is well suited to modeling the input-output behavior of a aeroelastic system, to
date it has not been investigated by the flight-test community. Therefore, in this paper, we (i) theoretically analyse a
non-linear pitch-plunge model of aircraft dynamics to derive its NARMAX representation, (ii) assess the applicability
of this non-linear model for the identification of aerospace systems and (iii) investigate the suitability of NARMAX
identification methods applied to aircraft dynamics.

Our results show that the NARMAX model class provides an ideal framework for modeling the input-output
behavior of a non-linear pitch-plunge model describing aircraft dynamics. Identification results illustrate that methods
for identification of NARMAX models are well suited for identifying aircraft dynamics. Analysis of experimental data
using NARMAX identification techniques provides a parameter set that explains the input-output data well. Overall,
this paper contributes to the understanding of the use of parametric identification techniques for modeling of aerospace
systems.

The organisation of this paper is as follows. The NARMAX model structure is described in §II. In §III a
continuous-time representation of a non-linear pitch-plunge model describing aircraft dynamics is given, whilst its
NARMAX representation is derived in §IV. Section V illustrates the results of simulating this NARMAX represen-
tation of pitch-plunge dynamics. In §VI the applicability of NARMAX identification to this model representation via
simulations of experimental condition is assessed. Section VII presents the results of identifying experimental wind
tunnel data and §VIII provides a discussion of the major finds. Lastly, in §IX conclusions and significance of the
results are given.

II. NARMAX Model

The NARMAX (Non-linear AutoRegressive, Moving Average eXogenous) structure is a general parametric form
for modeling non-linear systems.9 This structure describes both the stochastic and deterministic components of non-
linear systems. Many non-linear systems are a special case of the general NARMAX structure.12 The NARMAX
structure models the input-output relationship as a non-linear difference equation of the form

z(n) = F l [z(n−1), · · · ,z(n−nz),u(n), · · · ,u(n−nu),e(n−1), · · · ,e(n−ne)]+e(n). (1)

F l denotes a non-linear mapping,u is the controlled or exogenous input,z is the measured output, ande is the
uncontrolled input or innovation. The non-linear mapping,F l , can be described by a wide variety of non-linear
functions such as a tanh(·) or splines (i.e. hard non-linearities).11,12 For simplicity, non-linearities are only considered
that can be described by a polynomial expansion. This class of non-linear difference equations describes the dynamic
behavior of a system as a linear and/or non-linear expansion of the input, output and error. It may include a variety of
non-linear terms, such as terms raised to an integer power (e.g.,u3(n−5)), products of present and past inputs (e.g.,
u(n)u(n−3)), past outputs (e.g.,z2(n−2)z(n−7)), or cross-terms (e.g.,u(n−3)z2(n−4)). This system description
encompasses many forms of non-linear difference equations that are linear-in-the-parameters. Thus, there are no
problems with local minima.

III. Non-linear Pitch-Plunge Model of Aircraft Dynamics

O’Neil et al.15,16 developed a non-linear pitch-plunge model (Fig. 1) describing aircraft aeroelastic dynamics.
Figure 1 characterises aeroelastic wing dynamics for experiments performed on the Texas A& M testbed.16 This
model provides a relationship between control surface deflection as input and pitch-plunge displacement and velocity
as outputs of a single-input multiple-output non-linearity followed by a simple integrator.

The model presented in Fig. 1 has been derived from the governing equations of motion for aeroelastic systems as[
m mxαb

mxαb Iα

][
ḧ

α̈

]
+

[
ch 0

0 cα

][
ḣ

α̇

]
+

[
kh 0

0 kα(α)

][
h

α

]
=

[
−L

M

]
(2)

whereh denotes plunge motion,α pitch angle,xα nondimensional distance between elastic axis and center of mass,m
wing mass,Iα mass moment of inertia of the wing about the elastic axis,b semichord of the wing,{ch, cα} plunge and
pitch structural damping coefficients,{kh, kα} plunge and pitch structural spring constants, andL, M aerodynamic lift
and moment.
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s
-ḣ 1
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Figure 1. System structure assumed for modeling and identification of pitch-plunge aeroelastic dynamics.

Typically, quasi-steady aerodynamic forces and moments are assumed which can be modeled as

L = ρU2bclα

[
α +

ḣ
U

+
(

1
2
−a

)
b

α̇

U

]
+ρU2bclβ β (3)

M = ρU2b2cmα

[
α +

ḣ
U

+
(

1
2
−a

)
b

α̇

U

]
+ρU2b2cmβ

β

whereρ denotes density of air,U free-stream velocity,cmα
, clα moment and lift coefficients per angle of attack,

cmβ
, clβ moment and lift coefficient per control surface deflection,β control surface deflection, anda nondimensional

distance from midchord to elastic axis.
Although, several classes of non-linear mappings for stiffness contributionskα(α) have been investigated for open

loop dynamics of aeroelastic systems,17,18,19,20the work of O’Neilet al.15,16 demonstrated that a polynomial mapping
of the form

kα(α) = kα0 +kα1α +kα2α
2 +kα3α

3 +kα4α
4 (4)

describes the behavior of this testbed well.
Equations of motion are derived by combining Eqns. 2 and 3 to yield[

m mxαb

mxαb Iα

][
ḧ

α̈

]
+

[
ch +ρUbclα ρUb2clα (1

2 −a)
ρUb2cmα

cα −ρUb3cmα
(1

2 −a)

][
ḣ

α̇

]
(5)

+

[
kh ρU2bclα

0 −ρU2b2cmα
+kα(α)

][
h

α

]
=

[
−ρbclβ

ρb2cmβ

]
U2

β .

The model form presented in Fig. 1 is derived by transforming Eqn. 5 to give

ẋ = fµ(x)+g(x)µβ (6)

wherex = [x1 x2 x3 x4]T = [h α ḣ α̇]T , µ = U2 and

fµ =


x3

x4

−k1x1− (k2µ + p(x2))x2−c1x3−c2x4

−k3x1− (k4µ +q(x2))x2−c3x3−c4x4

 , g(x) =


0

0

g3

g4

 . (7)
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The supplementary variableski , i = 1,2,3,4 andg j , j = 3,4 are provided in Table 1 in relationship to the aeroelastic
parameters given in Eqns. 2 and 3.

Supplementary Variable Relationship to System Parameters

d m(Iα −mx2
αb2)

k1
Iα kh

d

k2
Iα ρbclα +mxα b3ρcmα

d

k3
−mxα bkh

d

k4
−mxα b2ρclα −mρb2cmα

d

c1
Iα (ch+ρUbclα )+mxα ρUb3cmα

d

c2
Iα ρUb2clα ( 1

2−a)−mxα bcα +mxα ρUb4cmα ( 1
2−a)

d

c3
−mxα bch−mxα ρUb2clα −mρUb2cmα

d

c4
mcα−mxα ρUb3clα ( 1

2−a)−mρUb3cmα ( 1
2−a)

d

g3
−Iα ρbcl

β
−mxα b3ρcm

β

d

g4
mxα b2ρcl

β
+mρb2cm

β

d

p(x2) −mxα b
d kα(x2)

q(x2) m
d kα(x2)

Table 1. Supplementary system variables.

Transformation of Eqn. 5 to Eqn. 6 and introduction of supplementary variables (Table 1) provides the simple
model description presented in Fig. 1. The non-linear mappings for this model description are given as

F l
ä(·) = −k3h(n)

[
k4µ

m
d

(
kα0 +kα1α +kα2α

2 +kα3α
3 +kα4α

4)]
α(n)−c3ḣ(n) (8)

−c4α̇(n)+g4µU(n)

= −b1h(n)−
[
b2α(n)+b3α

2(n)+b4α
3(n)+b5α

4(n)+b6α
5(n)

]
−b7ḣ(n)

−b8α̇(n)+b9U(n)
= α̈(n)

F l
ḧ(·) = −k1h(n)−

[
k2µ +

−mxαb
d

(
kα0 +kα1α +kα2α

2 +kα3α
3 +kα4α

4)]
α(n) (9)

−c1ḣ(n)−c2α̇(n)+g3µU(n)

= −a1h(n)−
[
a2α(n)+a3α

2(n)+a4α
3(n)+a5α

4(n)+a6α
5(n)

]
−a7ḣ(n)

−a8α̇(n)+a9U(n)
= ḧ(n)

Note this system (Fig. 1) can be described in terms of pitch-plunge displacement or velocity. Here pitch-plunge
is chosen in terms of velocity because (i) it offers a model description with lower dynamic order and (ii) velocity
feedback models are often used for vibration suppression.

Discrete-Domain Approximations

Many methods exist for discretisation of continuous-time systems/signals. Most commonly used are Euler’s forward,
Euler’s backward or Tustin’s method (also known as the bilinear transformation method), see e.g.21,22 Each has its
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advantages as well as disadvantages. Whilst, Tustin’s and Euler’s backward methods provide a superior approximation
to a continuous-time signal the goal in system identification is not (directly) signal reproduction but model estimation.

Tustin’s method provides excellent signal estimation but its use for modeling a pure integrator yields system
descriptions which can be overly complex, e.g. redundant terms. Euler’s backward method also provides good signal
estimation but provides a model that is not intuitive. Models based on this approximation would include the current
output as one of the model terms, leading to an algebraic loop. Although Euler’s forward method is well known to be
unstable, this is only true if the sampling rate is not sufficiently large. For identification purposes this does not pose a
concern since the signals need to be sampled “at least” twice Nyquist and, hence, stability is achieved. Generally, the
rule of thumb is to sample a signal at least 4-10 times the highest known (or suspected) system dynamics.23 For the
pitch-plunge system under investigation, Euler’s forward method provides a model description that is both stable and
intuitive. Moreover, all three methods converge to similar accuracies for sufficiently large sampling rates. For these
reasons Euler’s forward method is chosen to model the system dynamics.

IV. Theoretical Analysis

The pitch-plunge model is given in continuous-time. This section shows how the model can be converted to
discrete-time and rewritten as a NARMAX model. To do so, note that the two non-linearities can be decoupled and
analysed separately since they yield two separate model descriptions for pitch and plunge velocity.

Euler’s forward (explicit) method21

1
s

= ẋ(0)+
∫ t

0
ẍ(t)dt ≈ ẋ(n−1)+Tẍ(n−1) (10)

(11)

whereT is the sample time, was used to approximate the continuous-time integrator, where ¨x is replaced bÿα andḧ
for pitch and plunge, respectively.

The non-linearities used for this analysis, to derive an input-output model of pitch and plunge, were given in Eqns.
8 and 9. In addition, the models are assumed corrupted by output additive (measurement) noise as

α̇(n) = α̇n f(n)+eα̇(n) (12)

ḣ(n) = ḣn f(n)+eḣ(n)

whereα̇(n) andḣ(n) are the noise corrupted outputs,α̇n f(n) andḣn f(n) the unmeasured noise free outputs andeα̇(n)
andeḣ(n) the measurement noise.

After collecting terms and combining, the overall non-linear models were represented as non-linear difference
equations with 10 terms each as

α̇(n) = γ1α̇(n−1)+ γ2h(n−1)+ γ3α(n−1)+ γ4α(n−1)2 + γ5α(n−1)3 (13)

+ γ6α(n−1)4 + γ7α(n−1)5 + γ8ḣ(n−1)+ γ9u(n−1)+ γ10eα̇(n−1)+eα̇(n)
ḣ(n) = θ1ḣ(n−1)+θ2h(n−1)+θ3α(n−1)+θ4α(n−1)2 +θ5α(n−1)3

+ θ6α(n−1)4 +θ7α(n−1)5 +θ8α̇(n−1)+θ9u(n−1)+θ10eḣ(n−1)+eḣ(n).

These are NARMAX models since (i) they include input-output terms that are combinations of linear and non-linear
integer powers and (ii) are linear-in-the-parameters. Table 2 shows the relationship of discrete-time NARMAX pa-
rameters in (13) to the underlying continuous-time coefficients.

V. Validation of NARMAX Pitch-Plunge Model

The accuracy of this system representation was validated by simulating the pitch-plunge model in continuous-time
using Simulink (Fig. 1). The non-linearities used in this continuous-time simulation were the fifth-order power series
described in Eqns. 8 and 9 . The parameters used in the simulation were typical values found in experiments and are
given in Table 3.15 The system was excited using a 5 Hz chirp input.

V.A. Output Accuracy

To determine the validity of this NARMAX description model (13), its response is simulated for a parameter set
corresponding to those used for the continuous-time model. The input sequence was a 5 Hz chirp with a signal
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NARMAX Relationship to NARMAX Relationship to

Plunge Pitch

Coefficient Continuous-time Coefficient CoefficientContinuous-time Coefficient

θ1 1−Ta7 γ1 1−Tb8

θ2 Ta1 γ2 Tb1

θ3 Ta2 γ3 Tb2

θ4 Ta3 γ4 Tb3

θ5 Ta4 γ5 Tb4

θ6 Ta5 γ6 Tb5

θ7 Ta6 γ7 Tb6

θ8 Ta8 γ8 Tb7

θ9 Ta9 γ9 Tb9

θ10 −(1−Ta7) γ10 −(1−Tb8)

Table 2. Theoretical relationship of NARMAX model parameter set to continuous-time system coefficients.

CT Coefficient Value

b 0.135 m

span 0.600 m

kh 2844.4 N/m

ch 27.43 N s/m

ρ 1.225 kg/m3

clα 6.28/rad

clβ 3.358/rad

cmα
(0.5+a)clα /rad

cmβ
-0.635/rad

Table 3. Continuous-time system coefficients.

duration of 30 seconds. The chirp input had an operating range between±1.0 rad (see upper panel of Fig. 2).
Using a fifth-order non-linearity, the frequency content of the signal at the output of the non-linearity will be at

least 25 Hz (five times the 5 Hz chirp signal). To avoid internal aliasing, a sampling rate of 100 Hz (T = 0.01 s) is
selected, 4 times greater than the internal 25 Hz signal.

The simulated output ( ˆy(n)) of the NARMAX description model was compared with the output of the continuous-
time simulation (y(n)) by computing the percent variance accounted for by the NARMAX model as the percent quality
of fit (%QF):

%QF =

(
1−

1
N ∑N

n=1(y(n)− ŷ(n))2

1
N ∑N

n=1(y(n))2

)
×100, (14)

whereN is the record length.

V.B. Simulation Result

This subsection illustrates the results of simulating the pitch-plunge model in continuous-time against the discrete-
time NARMAX predictions. Fig. 2 shows the simulation input (upper panel) and predicted velocity outputs of the
NARMAX description models superimposed on top of the continuous-time outputs of the pitch (lower left panel) and
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plunge (lower right panel) velocity models. With over 99 %QF the NARMAX outputs matched that of the continuous-
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Figure 2. Upper: Input to simulated pitch-plunge model in continuous-time and NARMAX description model. Lower: Output of simulated pitch-plunge
velocity model in continuous-time and NARMAX description model: (b) Pitch velocity; (c) Plunge velocity. Note that the two outputs are almost identical.

time simulation with negligible error.

VI. NARMAX Identification of Pitch-Plunge Model

We then assessed the utility of methods developed for identifying NARMAX models using sampled data from this
continuous-time simulation. An extended least-squares (ELS) algorithm24,25,26was used to identify model parameters.

The NARMAX description of the pitch-plunge velocity models (13) are described by past outputs which are
linear-in-the-parameters. In the presence of output additive noise (12 and 13), these terms result in lagged values of
disturbance terms which are alsolinear-in-the-parameters. If these lagged errors are not modeled they induce a bias
in the parameter estimates.27,28,22The ELS algorithm was implemented because it is designed to model lagged error
terms thereby providing unbiased parameter estimates.

It is well known that ELS may suffer from convergence problems.29,22,30 However, no prediction error identifi-
cation (PEI) method is optimal. For the pitch-plunge velocity models, this is deemed the best estimation technique
because it provides an unbiased estimate of model parameters.22 Other estimation techniques such as maximum like-
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lihood (ML), instrumental variables (IV), weighted least-squares (WLS), etc., are difficult to implement and also have
convergence problems.22,30,31For this reason ELS is chosen.

VI.A. Analysis of NARMAX Model Parameters

A Monte-Carlo study of these NARMAX parameters (Eqn. 13 and Table 2) was performed to assess their accuracy and
variability using the ELS estimator. One thousand Monte-Carlo simulations were generated in which the input-output
realisation was the same but had a unique Gaussian white, zero-mean, noise sequence added to the output. The output
additive noise amplitude was increased in increments of 5 dB, from 20 to 0 dB SNR. Parameter mean and standard
deviation was computed from the one thousand estimates. The input used for this study was the same 5 Hz chirp signal
described in §V.A.

For this study, the system order and structure were assumed to be known with the coefficient set in (13) and Tables
2 and 3. The regressor matrix used by this algorithm was formed to contain only those columns (parameters) that
corresponded to the theoretical analysis (13). It is reasonable to assume that the order and structure are known because
the goal is to identify a model in the model class described by (13).

In experimental settings often only pitch-plunge displacement and/or acceleration signals are available. For a
velocity model description, the velocity signal is required for identification. Therefore, pitch-plunge acceleration
signals are numerically integrated to obtain a velocity profile. The estimation set consisted ofN = 3,000 data points
sampled atT = 0.01 s. The estimated parameters were cross-validated with a fresh noise corrupted output to compute
the %QF of the predicted pitch and plunge velocity. The validation set consisted ofNv = 3,000 data points.22,32

VI.B. Identification Results of Simulated Model

Fig. 3 shows the results of identifying this simulated model of pitch-plunge. The NARMAX parameters in this figure
correspond to those given in Table 2. This figure shows that the identified parameter values corresponded closely
to those derived theoretically for all SNRs. Note that it is not expected that the mean value of parametersγ10 and
θ10 be close to the theoretically computed value since they correspond to lagged error terms. Lagged error terms are
difficult to identify accurately even with high SNR since they model the output additive noise which is an unmeasurable
stochastic process. This stochastic process is modeled (approximated) by a deterministic signal of prediction errors
which is only a (poor) estimate of the noise.28,22

Fig. 4 presents a result of cross-validation for a typical parameter set for this study. The top panels shows a noise
corrupted output used for identification and the bottom panels show a predicted output superimposed on top of the
noise free output. The predicted output matched the measured output with over 98%QF.

VII. Identification of Experimental Pitch-Plunge Data

Lastly, the identification technique is assessed on experimental wing section data collected in the wind tunnel at
the Department of Aerospace Engineering (Texas A&M University) by the Aeroelasticity Research Group. The data
analysed for this study does not contain a flap control input but instead had an initial condition associated with plunge
displacement. Data with a control input was unavailable for analysis.

The velocity model descriptions given in Eqn. 13 are in terms of a control input and zero initial conditions. For
the present study the model was modified to reflect a lack of exogenous input and the presence of an initial condition.
Model 13 is reformulated as

ḣ(n) = θ1ḣ(n−1)+θ2h(n−1)+θ3α(n−1)+θ4α(n−1)2 +θ5α(n−1)3 (15)

+ θ6α(n−1)4 +θ7α(n−1)5 +θ8α̇(n−1)+θ9δ (n)+θ10eḣ(n−1)+eḣ(n)

α̇(n) = γ1α̇(n−1)+ γ2h(n−1)+ γ3α(n−1)+ γ4α(n−1)2 + γ5α(n−1)3

+ γ6α(n−1)4 + γ7α(n−1)5 + γ8ḣ(n−1)+ γ9eα̇(n−1)+eα̇(n)

whereδ (n) is the Kronecker impulse function used to represent the onset of a plunge initial condition in discrete-
time. Note that this model description can also be modified for use in analysis of data which contains both an initial
condition and exogenous input by simply including a Kronecker impulse function in Eqn. 13 or neither (time-series
analysis) by removing the exogenous input term.
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Figure 3. Monte-Carlo study of pitch-plunge NARMAX model parameters. Pitch Parameters (Left): Mean and STD. Plunge Parameters (Right): Mean and
STD. 5 Hz chirp input, Gaussian, white, zero-mean noise and N=3,000. Ordinate: STD about mean. Abscissa: Output SNR= 20, 15, 10, 5 and 0 dB. (Note that
the abscissa is shown in decreasing SNR which corresponds to increasing noise intensity.)

VII.A. Apparatus

Data was collected on a unique wind tunnel test apparatus at the Department of Aerospace Engineering, Texas A&M
University. This 2′×3′ closed-circuit low-speed wind tunnel allows a wing section to move in two degrees-of-freedom
and can translate (plunge) and rotate (pitch). This apparatus allows the study of classical bending-torsion flutter.
Structural response of the system is governed by springs attached to cams. Stiffness of the springs and the shape of
the cams can be altered to prescribe a wide variety of linear and non-linear structural responses.

VII.B. Procedures

The pitch acceleration was measured by a linear accelerometer, which measured accelerations along one axis. The
accelerometer was mounted 0.157m from the rotational axis and orthogonal to they-direction (forward-aft) when the
airfoil was at a zero angle of attack, giving no acceleration in they-direction. However, a small portion of the plunge
acceleration was detected when the airfoil was deflected. The elastic axis was 3/10th of the chord length forward of
the midchord.

The free stream velocity was increased in increments of 2 m/s, from 4 m/s to 22 m/s. Aeroelastic responses were
recorded for 45 seconds whilst the free stream velocity was held constant. Flutter was observed to be induced at about
13.5 m/s. Pitch and plunge displacements and accelerations of this aeroelastic system were sampled at 525 Hz.
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Figure 4. Cross-validation for typical identified NARMAX pitch (left) and plunge (right) models with Nv = 3,000 and Gaussian, white, zero-mean output
additive noise (0 dB SNR). Top panels: Measured outputs used for estimation. Bottom panels: Predicted output superimposed on top of noise free output.

After recording, the experimental data was decimated by a factor of 2, resulting in a final sampling rate of 262.5
Hz. The system was identified using the NARMAX approach, as outlined in §VI.A, except thatN = 15,600 points
was used for estimation andNv = 7,800 points was used for validation.

VII.C. Results

The results of identifying 10 trials of wing section experiments are presented. Fig. 5 (a-b) shows a typical pitch-plunge
displacement and velocity trial used for this analysis. The data represents pitch and plunge displacement and velocity
sequences whilst the free stream velocity in the wind tunnel was held constant at 16 m/s. The characteristics of this
trial are consistent with those reported in previous work.33 The lower panels of Fig. 5 (c-d) display a five second slice
of the cross-validation (predicted) outputs superimposed on top of the measured outputs, for this trial. The predicted
outputs matched the measured outputs with over 98%QF.

Fig. 6 shows the cross-validation %QF for each trial. The results show that the predicted outputs, for these
parameter estimates, account for a large portion of the variance. For pitch velocity, the range of %QF is from a
minimum of 99.73% to a maximum of 99.98%. For plunge velocity, the range of %QF is from a minimum of 98.09%
to a maximum of 99.83%. From the 10 trials examined for this study, 80% of predicted outputs accounted for more
than 99%QF of the measured output for both pitch and plunge velocity. This indicates that the NARMAX parameters
explain the measured data well. Moreover, for every data set the STD of each model parameter was computed at the
95% confidence level. These results showed that the STDs did not contain zero. This suggests that the estimated
models are accurate. A model parameter whose STD encompasses zero may indicate a spurious model term and,
hence, should be reformulated.34

VIII. Discussion

VIII.A. NARMAX Representation of Pitch-Plunge Velocity Dynamics

The theoretical results demonstrate that the non-linear difference equation description for the pitch-plunge models are
NARMAX models. Simulation results show that the NARMAX models match the continuous-time response well.
This suggests that parametric non-linear model forms such as the NARMAX class can be used for modeling aerospace
systems.

Non-linear models have the advantage that they cover a wider range of system dynamics than linear models which
could allow for slower envelope expansion. Using non-linear models to characterise aeroelastic phenomena can pro-
vide significant time and cost savings for test and development of aerospace vehicles. Moreover, the discrete non-linear
models of pitch-plunge provide excellent predictions which could be used for control synthesis and statistical studies
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Figure 5. a-b (Upper and lower panels): Typical recorded pitch and plunge displacement and velocity. c-d Cross-validation: Upper panels: Five second slice
of pitch and plunge displacement. Lower panels: Five second slice of predicted pitch and plunge velocity outputs superimposed on top of measured velocity
output for identified NARMAX pitch-plunge velocity models for experimental data set with Nv = 7,800.

of NARMAX coefficients may be of direct relevance for health monitoring of aerostructures.

VIII.B. Discrete-Time Parameter Estimation of Simulated Aeroelastic System

Simulation studies in §VI.A showed that, for a NARMAX model representation, the mean of Monte-Carlo estimates
for NARMAX parameters matched the theoretical values well for all SNR levels. However, estimates of some pa-
rameters, e.g.γ10, did not correspond well to theoretically computed values. As stated earlier, lagged error terms are
difficult to identify accurately. Error terms represent a stochastic process which cannot be measured. This stochastic
process is approximated by a deterministic signal of prediction errors which is only a (poor) estimate of the noise.28,22

VIII.C. Identification of Experimental Aeroelastic Data

High %QF cross-validation fits obtained for parameter estimates using NARMAX identification methods (see Fig. 6)
shows that the identified parameters explain the experimental data well. Using %QF alone as an indicator of model
goodness may lead to incorrect interpretations of model validity. However, in many cases for non-linear models this
may be the only indicator that is readily available.

A model validation technique for non-linear systems, using higher-order correlations, was developed by Billings

11 of 13

American Institute of Aeronautics and Astronautics



4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

80

90

100

Cross−Validation Fit

%
Q

F

Free Stream Velocity (m/s)

 

 

Pitch Velocity %QF
Plunge Velocity %QF

Figure 6. Cross-validation. %QF vs. free stream velocity (experimental trial).

and Voon.35,36 Korenberg and Hunter37 showed that this model validation technique fails for simple cases. Therefore,
this approach was not implemented in favor of using the %QF alone as an indicator of model goodness.

When studying aeroelastic systems it may not be practical to assume that the exact model order and structure
are well knowna priori. In aerospace systems analysis one of the main objectives is not only to estimate system
parameters but to gain insight into the structure of the underlying system. It would be worthwhile in a future study to
investigate what happens if NARMAX structure detection methods38,39,40,34are allowed to analyse the data to find the
best structure from the data set. This may then indicate deficiencies in the analytical model and could lead to improved
modeling strategies.

IX. Conclusions

Theoretical results demonstrate that the non-linear difference equation description for the pitch-plunge model is
a NARMAX model. Simulation results show that the NARMAX model matches the continuous-time response well.
Moreover, this paper contributes to the understanding of the use of parametric identification techniques for modeling
of non-linear aerospace systems. The main point here is that the NARMAX form is clearly amenable to the study of
a wide range of aerospace systems, and could be computationally efficient. NARMAX modeling and identification
techniques should be examined further especially in the case of severe non-linear behavior.
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