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Surviving the Radiation Environment

• Space Radiation 
affects all spacecraft.
– Spacecraft electronics 

have a long history of 
power resets, safing, 
and system failures 
due to:

• Long duration 
exposures,

• Unpredictable solar 
proton activity,

• Ambient galactic 
cosmic ray 
environment.
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The Radiation Environment

• Multiple approaches may be employed (independently or in 
combination) to protect electronic systems in the radiation 
environment:
– Shielding,
– Mission Design (radiation avoidance),
– Radiation Hardening by Architecture,

• Commercial parts in redundant and duplicative configurations (Triple Module 
Redundancy)

– Determine faults by voting schemes
– Increases overhead in voting logic, power consumption, flight mass

• Multiple levels of redundancy implemented for rad-damage risk mitigation:
– Component level
– Board level
– Subsystem level
– Spacecraft level

– Radiation Hardening by Design,
• TMR strategies within the chip layout,
• designing dopant wells and isolation trenches into the chip layout,
• implementing error detecting and correction circuits, and
• device spacing and decoupling.

– Radiation Hardening by Process,
• Employ specific materials and non-conventional processing techniques
• Usually performed on dedicated rad-hard foundry fabrication lines.
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Radiation Hardened Assurance

• NASA spacecraft developers have defined a Radiation 
Hardness Assurance (RHA) methodology process*.

• In general, the process may be described by the following 
steps:
– 1) define the radiation hazard,
– 2) evaluate the hazard,
– 3) define the requirements to be met by the spacecraft’s electronics,
– 4) evaluate the electronics to be used,
– 5) engineer processes to mitigate hazard damage, and 
– 6) iterate on the methodology, if and when necessary.

• To promote the successful implementation of RHA for 
Constellation (and other NASA) missions, the RHESE project 
aims to deliver products that assist in mitigating the hazard 
damage. 

*LaBel, K. A., Johnson, A. H., Barth, J. L., Reed, R. A., and Barnes, C. E., “Emerging Radiation 
Hardness Assurance(RHA) Issues: A NASA Approach for Space Flight Programs,” IEEE Transactions 
on Nuclear Science, Vol. 45, No. 6, Dec. 1998, pp. 2727-2736.
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The specific goals of the RHESE project are to foster technology 
development efforts in radiation-hardened electronics possessing 
these associated capabilities:

– improved total ionization dose (TID) tolerance,
– reduced single event upset rates,
– increased threshold for single event latch-up,
– increased sustained processor performance,
– increased processor efficiency,
– increased speed of dynamic reconfigurability,
– reduced operating temperature range’s lower bound,
– increased the available levels of redundancy and reconfigurability, and
– increased the reliability and accuracy of radiation effects modeling.

RHESE Overview and Objectives

The Radiation Hardened Electronics for Space 
Environments (RHESE) project expands the current 

state-of-the-art in radiation-hardened electronics to develop 
high performance devices robust enough to withstand the 
demanding radiation and thermal conditions encountered 

within the space and lunar environments.
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Customer Requirements and Needs

• RHESE is a “requirements-pull” technology development effort.

• RHESE is a “cross-cutting” technology, serving a broad base of 
multiple project customers within Constellation.

– Every project requiring…
• operation in an extreme space environment,
• avionics, processors, automation, communications, etc.

…should include RHESE in its implementation trade space.

• Constellation Program requirements for avionics and electronics 
continue to evolve and become more defined.

• RHESE will develop products per derived requirements based on 
the Constellation Architecture’s Level I and Level II requirements 
defined to date.

• RHESE is actively working CSAs with all Constellation customers.
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• RHESE’s products are developed in response to the needs and 
requirements of multiple Constellation program elements, 
including:

– Ares V Crew Launch Vehicle (Earth Departure Stage),
– Orion Crew Exploration Vehicle (Lunar Capability),
– Altair Lunar Lander,
– Lunar Surface Systems,
– Extra Vehicular Activity (EVA) elements,
– Future applications to Mars exploration architecture elements.  

Ares V Launch
Vehicle
(EDS)

RHESE Supports Multiple Constellation Projects

Altair Lunar Lander EVA

Orion Crew
Exploration Vehicle

Lunar Surface Systems
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RHESE Work Breakdown Structure

1.0 - RHESE Project

1.2.1 - Radiation Hardened Materials

1.3 - Low Temperature Electronics

1.2.1.2 – Modeling of Radiation Effects on Electronics

1.1 - RHESE Project Management

1.2 - Radiation Hardened Electronics

1.2.2 - Radiation Hardened By Design

1.2.2.1 – SEE-Immune Reconfigurable FPGA

1.2.4 – High Performance Processor

1.2.5 – Reconfigurable Computing

1.3.1 – SiGe Electronics for Extreme Environments

MSFC - Andrew Keys
MSFC - Kathryn Vernor/Jacobs

MSFC – James Adams

GSFC – Michael Johnson

GSFC – Michael Johnson
JPL – Elizabeth Kolawa

MSFC – Clint Patrick
MSFC – Anne Atkinson/Jacobs
LaRC – Tak Ng

LaRC – Marvin Beaty
LaRC – Arthur Bradley
LaRC – Denise Scearce
Ga.Tech - John Cressler
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RHESE Tasks

• Specifically, the RHESE tasks for FY08 are:
– Model of Radiation Effects on Electronics (MREE),

• Lead Center:  MSFC
• Participants:  Vanderbilt University

– Single Event Effects (SEE) Immune Reconfigurable Field Programmable 
Gate Array (FPGA) (SIRF),

• Lead Center:  GSFC
• Participants:  AFRL, Xilinx

– Radiation Hardened High Performance Processors (HPP),
• Lead Center:  GSFC
• Participants:  LaRC, JPL, Multiple US Government Agencies

– Reconfigurable Computing (RC),
• Lead Center:  MSFC

– Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments.
• Lead Center:  LaRC
• Participants:  Georgia Tech. leads multiple commercial and academic participants.

…and (re)starting in FY09…
– Radiation-Hardened Volatile and Non-Volatile Memory

• Lead Center: MSFC
• Participants: LaRC, Multiple Vendors
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MREE Technology Objectives
• Primary Objective

– A computational tool to accurately predict electronics 
performance in the presence of space radiation in 
support of spacecraft design

• Total dose
• Single Event Effects
• Mean Time Between Failure

(Developed as successor to CRÈME96.)
• Secondary Objectives

– To provide a detailed description of the natural radiation 
environment in support of radiation health and 
instrument design

• In deep space
• Inside the magnetosphere
• Behind shielding
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Update the Method for SEE Calculation

Integral over
path length

Distribution +
critical charge

CREME96 MREE

Multi-volume Calorimetry +
Charge-collection models +

Critical charge

Radiation Damage 
Predictions Using

3-D Modeling
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SIRF
(Single-Event Immune Reconfigurable FPGA)

• Key Development Objectives

• Deliver Radiation Hardened by Design, Space qualified 
Virtex-5 FPGA

• Minimize design complexities and overhead required Space 
applications of FPGAs
– Eliminate additional design effort and chips for configuration 

management, scrubbing, TMR and state recovery
• Maintain compatibility with commercial V-5 product for rapid 

development 
– Feature set, floor plan and footprint compatible with commercial

product
• Address critical SEE sensitive circuits and eliminate all SEFIs
• Transparent to S/W Development Tools
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SIRF Architecture
Based on Commercial Devices

• 5th generation Virtex™ device
– 90 nm process
– 11 metal layers
– Up to 8M gates

• Columnar Architecture enables 
resource “dial-in” of

– Logic
– Block RAM
– I/O
– DSP Slices
– PowerPC Cores

Fabrication process and device architecture 
yield a high speed, flexible component
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HPP Drivers

• Problem: Exploration Systems Missions 
Directorate objectives and strategies 
can be constrained by computing 
capabilities and power efficiencies 

– Autonomous landing and hazard 
avoidance systems

– Autonomous vehicle operations
– Autonomous rendezvous and docking
– Vision systems
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HPP Technical Approach 
Multi-generation Performance Lag

• Radiation-hardened processors lag commercial devices by several technology generations 
(approx. 10 years)

– RHESE High performance Processor project full-success metric for general purpose processors 
conservatively keeps pace with historical trend (~Moore’s Law)
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Reconfigurable Computing
Subproject

• Develop reconfigurable computing capabilities for 
spaceflight vehicles:
– Allow the ability to change function and performance of a particular 

computing resource in part or entirely, manually or autonomously.
• Objectives of RC include:

– Interface (Spares) Modularity
• Ability for a single board to reconfigure to multiple dedicated external data and 

communication systems as needed, both in physical interconnection and protocol.

– Functional Modularity
• Ability for a single board to reconfigure to multiple functions within a single multi-

use data and communication system, both in physical interconnection and protocol.

– Processor (Internal) Modularity
• Ability for a single board to reconfigure in response to internal errors or faults while 

continuing to perform a (potentially critical) function.  Includes:
– Fault Tolerance
– Fault Detection, Isolation, and Mitigation, Notification
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SiGe Technology

The Moon: A Classic Extreme Environment!
Extreme Temperature Ranges:

+120C to -180C (300C T swings!)
28 day cycles
-230C in shadowed polar craters

Radiation:
100 krad over 10 years
single event effects (SEE)
solar events

Many Different Circuit Needs:
digital building blocks
analog building blocks
data conversion (ADC/DAC)
RF communications
actuation and control
sensors / sensor interfaces

Requires “Warm Box”

Current Rovers / Robotics

Highly Mixed-Signal Flavor
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• SiGe HBT + CMOS + full suite of passives (Integration)
• 100% Si Manufacturing Compatibility (MOSIS Foundry) 
• Wide-Temperature Capable + Radiation Tolerant

SiGe Technology
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SiGe Electronics Development Team

• Georgia Tech (Device Technology IPT lead)
- John Cressler et al. (PI, devices, reliability, circuits)
- Cliff Eckert (program management, reporting)

• Auburn University (Packaging IPT lead)
- Wayne Johnson et al. (packaging); Foster Dai et al. (circuits); Guofu Niu

et al. (devices)
• University of Tennessee (Circuits IPT lead)

- Ben Blalock et al. (circuits)
• University of Maryland (Reliability IPT lead)

- Patrick McCluskey et al. (reliability, package physics-of-failure modeling)
• Vanderbilt University

- Mike Alles, Robert Reed et al. (radiation effects, TCAD modeling)
• JPL (Applications IPT lead)

- Mohammad Mojarradi et al. (applications, reliability testing, circuits)
• Boeing

- Leora Peltz et al. (applications, circuits)
• Lynguent / University of Arkansas (Modeling IPT lead)

- Alan Mantooth / Jim Holmes et al. (modeling, circuits)
• BAE Systems

- Richard Berger, Ray Garbos et al. (REU architecture, maturation, 
applications)
• IBM

- Alvin Joseph et al. (SiGe technology, fabrication)
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• 5” wide by 3” high by 6.75”
long = 101 cubic inches

• 11 kg weight
• 17.2 Watts power dissipation
• -55oC to +125oC • 1.5” high by 1.5” wide by 0.5”

long = 1.1 cubic inches
• < 1 kg
• < 1-2 Watts
• -180oC to +125oC, rad tolerant!

Conceptual integrated REU 
system-on-chip SiGe BiCMOS die

The X-33 Remote Health 
Monitoring Node, 
circa 1998 
(BAE)

Our Project End Game:
The SiGe ETDP Remote 
Electronics Unit, circa 2009

Specifications

Our Goals

Analog front 
end die

Digital 
control die

Supports MANY Sensor Types:
Temperature, Strain, Pressure, Acceleration, Vibration, Heat Flux, Position, etc.

REU in 
connector 
housing!

SiGe-Based Remote Electronics Unit (REU)

Use This REU as a Remote Vehicle Health Monitoring Node
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A notional Solar Electric Propulsion (SEP)  System – an Earth-Moon System 
“Solar Clipper” – in operation, transporting large space systems to GEO
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A notional In-Space Cryogenic Propellant (ISCPD)  System – a “Depot” – in 
operation, providing space resources to Earth Neighborhood Missions
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RHESE Summary

• RHESE’s products are developed 
in response to the needs of 
multiple Constellation program 
elements.

• An avionics application-dependent 
trade space is defined by:

– Radiation Hardening by 
Architecture using COTS 
processors, and

– Radiation Hardening By Design 
using Rad-Hard processors.

– Considerations include 
performance requirements, power 
efficiency, design complexity, 
radiation 

• Radiation and low temperature 
environments currently drive 
spacecraft system architectures.

– Centralized systems to keep 
electronics warm are costly, 
weighty and use excessive cable 
lengths.

– Mitigation can be achieved by 
active SiGe electronics.
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RHESE Summary

• Radiation Environmental Modeling is 
crucial to proper predictive modeling 
and electronic response to the 
radiation environment.

– When compared to on-orbit data, 
CREME96 has been shown to be 
inaccurate in predicting the radiation 
environment.

– The NEDD bases much of its radiation 
environment data on CREME96 output.

• Close coordination and partnership with 
DoD radiation-hardened efforts will result 
in leveraged - not duplicated or 
independently developed - technology 
capabilities of:

– Radiation-hardened, reconfigurable FPGA-
based electronics, 

– High Performance Processors (NOT 
duplication or independent development).
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