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Abstract 

 
Ares I Crew Launch Vehicle Upper Stage is designed and developed based on sound systems 
engineering principles. Systems Engineering starts with Concept of Operations and Mission 
requirements, which in turn determine the launch system architecture and its performance 
requirements. The Ares I-Upper Stage is designed and developed to meet these requirements. 
Designers depend on the support from materials, processes and manufacturing during the design, 
development and verification of subsystems and components. The requirements relative to 
reliability, safety, operability and availability are also dependent on materials availability, 
characterization, process maturation and vendor support. This paper discusses the roles and 
responsibilities of materials and manufacturing engineering during the various phases of Ares I-
US development, including design and analysis, hardware development, test and verification. 
Emphasis is placed how materials, processes and manufacturing support is integrated over the 
Upper Stage Project, both horizontally and vertically. In addition, the paper describes the 
approach used to ensure compliance with materials, processes, and manufacturing requirements 
during the project cycle, with focus on hardware systems design and development. 
 



 Introduction 
 
NASA’s Ares I Upper Stage (US) is  designed and built based on sound systems engineering 
principles to ensure compliance with requirements such that the system performs as expected and 
meets customers’ and stakeholders’ needs. At first it would appear that the materials, processes 
and manufacturing do not enter the picture until the design is complete and the hardware is ready 
to be manufactured. But appearances can be deceptive. It is important to note that all systems are 
built from combinations of materials using various manufacturing processes. Materials and 
processes selection is of utmost importance from the beginning. They offer opportunities for 
making the design robust, affordable and producible. At the same time materials can also be 
design constraints, i.e., they can be limiting in what designers want out of them. Hence it is very 
important that designers work closely with materials and manufacturing engineers during system 
design and development. It is the materials and manufacturing engineers who make the designers 
dream design come true. This paper attempts to show how the materials and manufacturing are 
integrated with design and analysis cycles, hardware development, testing and verification in 
Ares I – US project.  
 
Ares I –US Description 
 
A preliminary configuration of CLV stack, Figure 1, shows the Crew Exploration Vehicle (CEV 
or Orion), Upper Stage (US) and the First Stage. Figure 2 shows an expanded view of US 
architecture, showing various subsystems and components. A brief description of the US 
hardware components is given below. 
 
Instrument Unit (IU) 
The IU provides the mechanical and electrical interfaces between the ORION and the ARES I 
system.   
 
Liquid Hydrogen (LH2) Tank 
The LH2 tank is a welded assembly consisting of a forward ellipsoidal dome, Y-Ring flange, and 
three cylindrical barrel sections. A Common Bulkhead is located at the aft end of the tank.  The 
tank is manufactured entirely from 2195 aluminum-lithium (Al-Li) alloy and friction stir welding 
is used for all weld joints.   
 
Common Bulkhead (CB) 
The Common Bulkhead is an internal partition that physically divides the fuel from the oxidizer.  
It is designed as a composite sandwich structure, which consists of two face sheets from spun 
formed 2014 aluminum domes and a bonded phenolic honeycomb core.  The domes are friction 
stir welded to 2219 aluminum Y-rings.  

Liquid Oxygen (LOX) Tank 
The liquid oxygen (LOX) tank is an Al-Li 2195 structure. The tank is a friction-stir-welded 
assembly consisting of a Common Bulkhead at the upper end, four bump formed isogrid barrel 
panels, an aft Y-Ring forging, eight stretch formed hemispherical aft dome panels, an aft 
manhole cap, an array of slosh baffles, an anti-vortex baffle assembly, a Thrust Cone attach ring, 
and a sump assembly.  
 



 

 
   

Figure 1: Ares I Integrated Stack – Expanded view 
 
 

 
Figure 2: Upper Stage – Expanded View showing Components 

 

Instrument Unit 
Hydrogen 
Tank Common 

Bulkhead 

Oxygen Tank

Aft Skirt/ Thrust 
Structure 

System Tunnel 

Interstage 
Core Stage 



Thrust Cone 
The Thrust Cone serves as the structural interface between the Core Stage and the J-2X engine.  
It is a fastened structure made up of four Al-Li 2195 cone panels with integrally machined 
stringers, two intermediate ring frames, a forward interface ring frame, and an Aluminum engine 
gimbal mount casting. The J2-X engine is mounted on a fitting at the bottom of the thrust cone, 
which also provides support for the TVC actuators and MPS propellant inlet ducts. 
 
Aft Skirt 
The Aft Skirt provides the structural interface between the Core Stage and the Inter stage.  It is a 
welded structure made up of four machined Al-Li orthogrid panels and top and bottom flanges. 
The Aft Skirt provides feed-throughs for the LH2 feed line and fill/drain line, a bulkhead feed-
through for the systems tunnel, and penetrations for the propellant tank pressurization/ 
recirculation lines. Two umbilical panels are mounted on the aft skirt for ground services, purge, 
LOX tank fill/drain and LH2 tank fill/drain.  RCS thruster pods and ullage/settling motors are 
mounted on the outside of the Aft Skirt. The inside of the Aft Skirt supports RCS feed lines, a 
purge system manifold, hazardous gas detection system tubing, cameras, and avionics as 
required. 

 
Upper Stage Design Approach 

Ares I - US is designed and developed based on sound systems engineering principles as outlined 
in NPR 7120.5, NASA Program and Projects Management Processes and Requirements. Ares I 
is an element of NASA’s Constellation Program (CxP - Level II). Figure 3 shows the document 
tree for Constellation. It shows the relationship between various levels of requirement 
documents. Requirements are allocated from higher level to lower level. CLV is Level III and 
Upper Stage Element is Level IV. It also shows the interfaces between levels and among 
different projects at the same level. US requirements are documented in US ERD (USO-CLV-
SE-25710) and are allocated to subsystems. The US design is accomplished through a number of 
Integrated Product Teams (IPT), viz., Systems Engineering and Integration (SEI), Main 
Propulsion System (MPS), Structures and Thermal (S&T), Manufacturing and Assembly 
(M&A), Test, Avionics, Thrust Vector Control (TVC), Reaction Control System (RCS), 
Logistics and Small Solids. SEI IPT has the overall responsibility for integrating the work of all 
other IPTs. There is significant interaction among the IPTs, whose works/products are integrated 
both horizontally and vertically. 
 
Ares I systems engineering engine incorporates a rigorous, top down procedure involving three 
basic steps: 
1. System requirements are derived from stakeholder needs,  
2. Designs are realized from system requirements  
3. Products are realized and transitioned following design implementation.  
 
Figure 4 depicts this procedure from left to right. System requirements and control are 
implemented from top down and products are realized and verified from the bottom up. 
Technical management processes are integral to the development of systems and products. The 
processes are generally iterative and recursive. US Systems Engineering Management  
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Figure 3: Constellation Document Tree showing Requirements Flow down 

 
Plan (SEMP) describes how the requirements will be met through design solutions that are 
matured through a series of design and analysis cycles or DAC (Figure 5). System design 
processes constitute the early stages of the SE engine. They include formation of requirements 
from user/stakeholder needs and will be evolved into more clear, coherent and complete 
statements for design realization and product transition. The President’s vision for Space 
Exploration, the Constellation Design Reference Missions (CxP 70002) and the Constellation 
Architecture  
 
Requirements Document (CARD – CxP 70000) provides the primary stakeholder requirements 
for Ares I. The system requirements flow down into system technical requirements and derived 
technical requirements. Requirements are allocated and decomposed from the CARD and 
associated IRDs. Definition of technical requirements will involve converting NASA needs, 
goals and objectives to technical requirements in order to capture constraints and conduct 
requirements analysis and traceability. Requirements analysis is the process of determining what 
the system “must do”, “how well it has to do it”, and under what conditions and in what 
environment the mission must be performed. Requirements validation will ensures that each 
requirement is properly defined via the following characteristics: Specific, Verifiable, 
Achievable, Agreed to and Realistic. Analysis is done to assess the ability of the DAC to meet 
the requirements within the technical and programmatic constraints.  
 
Requirement allocation could be either direct allocation, or apportionment or derivation. This 
approach provides integrated project and technical responsibility for requirement inclusion and 



corresponding validation. It ensures that every requirement is validated by a product, and that 
every product supports a requirement. The allocation and decomposition stage flows according 
to the document diagram (Figure 3). Program requirements flow down to the Project and then to 
the Elements. Requirements and Verification team performs requirements decomposition to the 
Element level (Level IV) based on operations concepts and functional flows to ensure design 
completeness, define each subsystem and control the interfaces. 
 
 

 
 
 

Figure 4: NASA Systems Engineering Technical Process Model 
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Figure 5: Integrated Design and Analysis Events for Ares I 

 
 



Design solutions are how the system requirements are met. This is done through a number of 
Design and Analysis Cycles or DAC. Figure 5 shows the top level analysis cycle road map. Each 
DAC may have one or more cycles within it, e.g., DAC 1-A, DAC1-B. After the Critical Design 
Review (CDR) they are verification analysis cycles. 
 
Risk Management (RM) is an important aspect of Systems Engineering. RM identifies 
circumstances or issues that could threaten the success of Ares I Project, and provides plans to 
avoid the risk, or to reduce the impact to acceptable levels (mitigation strategies). Common risks 
include the following: 

1. Risks from critical unverified programmatic and technical assumptions 
2. Risks from shortfalls or gaps in the underlying technical capability needed to define, 

design, integrate, validate, fabricate, verify and operate Ares I and its Elements.  
3. Independent validation of achievability of requirements and of Technology Readiness 

levels (TRL) by the designers 
 
Risk information is integrated all across the whole project. Any new technology insertion carries 
an unknown risk which must be mitigated. Many of these risks in category 2 above fall in the 
M&P area. Examples: incomplete or outdated databases, NDE technique not available for certain 
hardware, unverified fabrication processes, and shortfalls in verification capability.  
 
The next sections will discuss how Materials, Processes and Manufacturing (MPM) are 
integrated with Systems Engineering, specifically with Design and Analysis, Risk Mitigation and 
Design Verification. 
 
Materials, Processes and Manufacturing: Integration with Design and Analysis 
 
As mentioned before, US design is carried out through a number of IPTs. MPM work is book 
kept under Manufacturing and Assembly (M&A) IPT, which has generated a detailed Work 
Breakdown Structure (WBS) showing the areas where M&P support is required. Four major 
categories are:  

1. Design IPT support --- materials data, consultation 
2. Development support --- process specifications, process development, design maturation 
3. Deliverables --- various development and test articles, M&P documents 
4. Integrated M&A --- Various MPM planning documents, materials properties data   

  book (for flight) 
 
Ares I is designed to meet the requirements of the CARD and CLV SRD (CxP 720137) while the 
Upper Stage is designed to meet the requirements of US ERD. Even during the conceptual 
design phase it is important to make sure the design is realistic and not a fantasy. Systems 
Requirements Review (SRR) is held to make sure that the requirements are realistic and can be 
met through the conceptual design. By realistic it is meant that the vehicle can actually be built 
as designed with a high degree of confidence. Its performance characteristics are only predicted 
at this point through analysis using models that are anchored through limited testing of subscale 
hardware with proper outer mold line (OML). Mass properties are an important metric for 
design. Mass properties are governed by the materials used in the design and their properties. So 
during the design phase MPM engineers provide the designers with important data on materials, 



processes and manufacturing. They offer consultation on whether the hardware can be 
manufactured as designed. MPM considerations include the following: 

• Are the selected materials well characterized in the environment they are going to be 
used? How good is the data base? Is there a need to generate additional properties? 

• Are the materials available in the time frame of the project? Can they be procured on time 
to support schedule? Are the suppliers reliable? 

• How much vendor support is needed? Do we need multiple sources or a single source 
will do? 

• Manufacturing processes – are they proven? If not, can they be matured in a timely 
fashion (need TRL of 6 by CDR) 

• Facility considerations—where is the hardware going to be built?  Is the facility 
available? Is a new facility needed to meet new requirements? 

• Tools and equipment considerations – Does this project require unique equipment that 
needs to be specially designed and built? This may entail a long lead time. 

• Cost of new facilities and equipment. 
• Availability of experienced personnel to operate the facility and equipment. 

 
Trade Studies 
 
In addition to supporting the DAC, MPM engineers support trade studies involving alternate 
design concepts. One such example is the use of common bulkhead (CB) for the LH2 and LOX 
tanks (the current design) versus using separate tanks (initial conceptual design). Use of CB 
helps to reduce the mass of the US significantly—the primary reason for selecting that design. 
However, CB is more complex and difficult to manufacture compared to manufacturing separate 
tanks and stacking them. Hence CB poses an added risk to the project in terms of cost and 
schedule. Project has accepted that risk, putting confidence in MPM capability to deliver the CB 
on time and within budget. 
 
Similar considerations apply to selecting materials for various components. Al-Li alloys are 
materials of choice since they are lightweight and high strength. Further, there is an experience 
base of using it in Shuttle’s External Tank. However, they are available in limited thicknesses 
and sizes. They are not as ductile as 2219 and 2014. Cryogenic fracture toughness is a major 
consideration. Hence materials selection must be made with care. Interstage material selection is 
another example. Composite interstage is lighter weight structure than the metallic inter stage 
and hence is a logical choice. However, metallic construction is a more mature technology with a 
larger experience base. Composites cost more and cost is always an important consideration, 
especially under budget constraints. It should be noted that pay off due to weight reduction is 
much higher for the US than the FS, usually by a factor of 10:1.  Since the interstage is discarded 
after the FS flight the impact of mass savings are not as significant as in the CB case. Final 
selection will be based on the need for payload capability and mass requirements of Orion.   
 
Design and Construction Standards 
 
US ERD requires that building standards used for US are in compliance with applicable design 
and construction standards for space hardware. Some of the applicable documents and standards 
are listed below: 



 
NASA-STD-5006: General Fusion Welding of Aerospace Materials used in Flight Hardware  
NASA-STD-5007: General Fracture Control Requirements for Manned Space Flight Systems  
NASA-STD-5009: Standard NDE Guidelines and Requirements for Fracture Control Programs  
NASA-STD-5012: Strength and Life Assessments of Liquid Fueled Space Propulsion Systems  
NASA-STD-6016: Standard Manned Spacecraft Requirements for Materials and Processes  
CxP 70145: Constellation Program Contamination Control Plan  
CLV-USO-MP-25500: Upper Stage Manufacturing and Assembly Plan 
CLV-USO-MP-25505: Upper Stage Contamination Control Plan 
MSFC-SPEC-164: Specification for Cleanliness of components for Use in Oxygen, Fuel and 
 Pneumatic Systems  
MSFC-STD-2594: Fastener Management and Control Practice Requirements  
MSFC-STD-3029: Selection of Metallic Materials for Stress Corrosion Cracking Resistance in 
 Sodium Chloride Environments  
MSFC-STD-486B: Torquing of Threaded Fasteners  
ANSI/AIAA G-095-2004: Guide to Safety of Hydrogen and Hydrogen Systems  
ASTM MANL 36: Safe use of Oxygen and Oxygen Systems  
 
MPM engineers are responsible for making sure that the project is in compliance with the 
requirements stated in the above standards and specifications. As mentioned before (Figure 3) 
the NASA standards are applicable at the highest level (Level I) and flow down to lower levels. 
However, many MPM standards do not enter into the picture until Level V, the subsystem level, 
or Level VI, the component level.  At these levels the standards have to be tailored to each 
subsystem/component and they are usually written as specifications. Further, these standards 
apply to flight hardware and not necessarily to development/test hardware. There are no firm 
MPM requirements for the latter; they are determined on a case basis. However, it behooves us 
use these standards during development/test to reduce the risk to flight hardware. 
 
There are many requirements relative to performance and physical characteristics that US must 
meet for mission success (see US ERD). While these are not MPM requirements per se, MPM 
have a huge influence on them. For instance, material properties (mechanical and physical 
properties) will determine the US mass, which is a key driving requirement. Therefore MPM 
support is required for the design maturation (development) and success of various integrated 
products.  Similarly, MPM support is required for design verification through analysis, test or 
demonstration.  US Development Plan (USO-CLV-MA-25001) gives the details of how the 
design will be matured through development and test programs. A number of Level IV and Level 
V plans are generated to show how the project is going to meet the requirements as stated in the 
Design and Construction Standards. The MPM related plans are listed below: 
 

• Upper Stage Element Manufacturing and Assembly Plan (Ares-USO-MP-25500) 
• Materials, Processes Selection, Control and Implementation Plan 
• Materials Usage Agreements 
• Materials Identification and Usage List 
• Contamination Control Plans, including Foreign Object Debris/Damage (FOD) 
• Non-destructive Evaluation Plan 
• Fracture Control Plan 



• Electric, Electronic, and Electromechanical (EEE) Parts Control Plan 
• Limited Life Items List 

 
M&A Plan calls for manufacturing and assembly of flight hardware to be done at Michoud 
Assembly Facility (MAF) in New Orleans, Louisiana, by Boeing, the US Production Contractor.  
Early development work is done at Marshall, including welding, tooling and fixtures and 
assembly procedures.  
 
Developing MPM Specifications 
 
MPM requirements are met through the use of a number of specifications that are either existing 
or developed especially for the US. The purpose of these specifications is to make sure that all 
the materials and processes used to manufacture the US hardware meet the NASA construction 
standards. They also help to define the quality control procedures that go in the drawings. 
Manufacturing Requirements Sheets (MRS) are prepared for components and assemblies. These 
sheets show the additional features required in the design drawings that enable manufacturing, 
such as excess material required for machining, handling or welding. They also list the 
specifications to be used for manufacturing specific components, including materials, processes 
to be used, heat treatment, NDE specs, etc. In this way all manufacturing requirements are 
captured during the design phase. Ultimately all the manufacturing requirements will be captured 
in a document, and kept under configuration control. Selected MPM specifications being 
developed by Marshall for the US are listed below in Table 1.  
 

Table 1: MPM Specifications to Support Upper Stage  
• Aluminum-Lithium 2195 Ingot, Alloy Plate and Extruded Rod 
• Aluminum Thrust Cone Casting specification 
• Honeycomb Core, Phenolic Reinforced 
• Honeycomb Core, splice adhesive 
• Cryogenic Insulation materials and Processes 
• Stretch Forming and Aging of 2195 Aluminum Gore Panels for Liquid Hydrogen 

(LH2) and Liquid Oxygen Cryogenic Tanks  
• Forming and Aging of Aluminum 2195 Barrel Panels 
• Spin Forming of 2219, 2014, 2195 and 7075 Alloys 
• Roll Ring Forging of  2195, 2219 Ingots 
• Fiction Stir Welding 
• Bump Forming and Aging of Common Bulkhead Bolting Ring 
• Machining of Honeycomb Core 
• Structural Bonding of Common Bulkhead  
• Surface Preparation for Adhesive Bonding and Sealing 
• Adhesive Bonding and Sealing 
• Lifting and Handling Requirements Specification for Common Bulkhead 
• Standard Repair Procedures (for various situations) 
• Prof Test Requirements for Common Bulkhead and Cryogenic tanks 
• US TPS Materials and Processes Control Plan 
• Cleaning Processes for US Components 



 
Technology Readiness for Upper Stage 
 
MPM engineers must make sure that the technologies used in the program are sufficiently mature 
and do not pose a significant technical risk to the project. NPR 7120.5 requires that all 
technologies used in the program be at TRL 6 or higher at CDR. Figure 6 shows the TRL chart 
for NASA programs. Figure 7 and Figure 8 show the corresponding Capability Readiness Levels 
(CRL) for Materials and Processes, respectively. The CRL levels should be at least at 6 or higher 
by CDR; anything less than that poses a risk to the project. 
 
 
 

 
 
Figure 6: Space Technology Maturation Process: Technology Readiness Levels (TRLs) 
 
 

Actual system “flight proven” through 
successful mission operations 
 
Actual system completed and “flight qualified” 
through test and demonstration (Ground or 
Flight) 
 
System prototype demonstration in a space 
environment  
 
System/subsystem model or prototype 
demonstration in a relevant environment 
(Ground or Space) 
 
Component and/or breadboard validation in 
relevant environment 
 
Component and/or breadboard validation in 
laboratory environment 
 
Analytical and experimental critical function 
and/or characteristic proof-of-concept 
 
Technology concept and/or application 
formulated   
 
 
Basic principles observed and reported 

TRL  9 
 
 
TRL  8 
 
 
 
TRL  7 
 
 
TRL  6 
 
 
TRL  5 
 
 
TRL  4 
 
 
TRL  3 
 
 
 
TRL  2 
 
 
TRL  1 
 

System Test, 
Launch and 
Operations 
 
 
 
System/subsystem 
development 
 
 
 
Technology 
Demonstration 
 
 
 
Technology 
Development 
 
 
 
Research to prove 
feasibility 
 
 
 
Basic Technology 
Research 



 
 

 
 
Figure 7: Materials Technologies Maturation Process: Capability Readiness Levels (CRL) 
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Figure 8: Processing Technologies Maturation Process: Capability Readiness Levels (CRL) 
 
Approach to Risk Management  
 
Risks and associated mitigation plans are first developed internally within the M&A and 
evaluated with the M&A IPT.  Risks which are wholly controlled within M&A resources stay 
internal to M&A and are managed by the M&A IPT.  Risks which require outside resources to 
accomplish mitigation plans are forwarded the US Risk Management Team (RMT).  The US 
RMT will disposition the risk and associated mitigation plan by accepting or rejecting the risk.  
The US RMT may also direct M&A participation in parent or child risks or in a joint risk with 
another IPT.  For example, the US RMT directed the M&A IPT to provide a mitigation plan for a 
risk entitled “Lack of 2195 Fracture Data,” which was generated by the S&T IPT.  The US RMT 
direction to the M&A IPT was appropriate since M&A IPT has test facilities to test the 2195 
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aluminum alloy as required.  In all cases, both M&A internal risks, M&A US risks, and US RMT 
directed risks conform to US risk management procedures. 
 
It should be noted that risk identification and mitigation an integral part of the definition, design 
and verification processes. The key element in risk management is risk identification.  Only the 
engineering and project “doers” can accomplish this effectively.  It is the job of MPM engineers 
to identify all risks relative to MPM. They are responsible for identifying the risks and mitigating 
them on a continuous basis. Risks are often categorized into technical, programmatic (cost and 
schedule) and safety. MPM engineers have the primary responsibility for the technical risks in 
materials, processes and manufacturing areas, but they do influence on the other two.  Table 1 
shows some of the MPM risks for the US. They are being mitigated and the mitigation approach 
is shown in the last column. 
 

Table 1: MPM Risks in US and Mitigation 
Category Risk Mitigation Approach 

Materials Lack of materials characterization—lack of 
fracture data for Al-Li alloys 

Generate necessary data for 
fracture control 

Hexavalent Chrome Material Obsolescence – 
currently used for conversion coating 

Develop alternate surface 
treatment approaches 

HCFC-141b blowing agent material 
obsolescence – currently used on Shuttle, but 
not available for Ares 

Develop alternate materials as 
blowing agents 

Lack of qualified vendors for Al-Li 2195 
alloy; loss of supply base for Al-Li 2195 

Qualify new vendors – e.g., 
Alcan 

Processes Friction stir welding technology for gores, 
barrels and CB not fully developed 

Manufacturing demonstration 
Articles (MDA) 

Friction plug welding not fully developed MDA 
Manufacturing Manufacturing CB – proposed technology is 

not proven 
MDA and SDTA 

Long lead items – procurement takes too much 
time- having to release drawings before design 
is mature 

Speed up procurement (has 
limitations) 

 
 
Manufacturing Demonstration Articles (MDA) 
 

The Manufacturing Demonstration Articles (MDA) are the technology demonstrators that M&A 
have assessed the hardware material properties and manufacturability to a high enough level for 
design confidence to proceed at the Critical Design Review level. Several MDA’s are planned to 
provide the initial framework and cornerstone for all future Upper Stage metallic and composite 
material development by accomplishing the following objectives: 1. Full-scale demonstration to 
a Technology Readiness Level (TRL) 6 of all major components required to manufacture and 
assemble an Upper Stage tank (i.e. forward hydrogen bulkhead, tank barrel sections, and a 
Common Bulkhead), 2.  Full-scale demonstration to a TRL 6 of all major assembly steps.  
 



The following basic components of the US are being manufactured in-house to demonstrate 
feasibility:  
1. Barrel Panels: 2195 Aluminum ingots will be rolled into plates, machined, brake formed into 
final shape 
2. Dome Gores: 2195 Aluminum ingots will be rolled into plates, stretch formed into dome gores 
3. Dome Fittings: 2195 Plates are machined to form dome fittings 
4. Y-rings: machined out of rolled ring forgings, both 2195 and 2219 aluminum. 
5. Dome caps: Both spin formed and stretch formed 2195 Al dome caps will be manufactured 
 
The following assemblies will be manufactured to demonstrate feasibility: 
1. Barrel Assembly: One full length friction stir welded barrel assembly 
2. Dome Assembly: One FSW dome assembly 

The following two separate demonstrators will be built:  
1. A dome-and-barrel assembly representative of the Upper Stage Hydrogen Forward Dome 
(shown in Figure 9) to develop Aluminum-Lithium 2195 component forming and friction stir 
welding practices. FSW process will be demonstrated on newly designed weld tool and will be 
matured to CRL 6. 
 

 
 
Figure 9: 2195 Manufacturing Demonstration Article—Barrel and Dome Assembly 

 

2. A Common Bulkhead Assembly and will develop Aluminum 2014 to Aluminum-Lithium 
2195 welding practices, complex honeycomb bonding and curing, and overall manufacturing and 
assembly processes (shown schematically in Figure 10). This development involves several 
process developments: 

• Machining development for metallic domes and honeycomb core,  
• Welding development for CB welds self-reacting weld for thin material 
• Properties of adhesives cured at lower temperatures 
• Deformation of thin walled material during curing cycle. 
• NDE of thin walled material 



• Coupon level honeycomb testing 
• Cryogenic effects on bond strength 
• Damage tolerance capability of thin walled weld lands and domes 
• Eddy current testing of threaded holes and fasteners 
• Repair processes for de-bonds 

A detailed manufacturing flow and sequence for each component, sub-assembly, and article have 
been developed and are presented in the Manufacturing Demonstration Article Development 
Plan, USO-CLV-MP25501.  
 
 

 
Figure 10: Simplified Schematic of the Common Bulkhead Assembly Process 

 
 
MSFC has the primary responsibility to show that the Upper Stage can actually be built as 
designed. After successful demonstration the processing and manufacturing technologies will be 
transferred to MAF. 
 
 
 
 



Corrosion Resistance Development Efforts 
 
The products currently used for cleaning and conversion coating for corrosion protection of 
Shuttle External Tanks contain hexavalent chromium (Cr+6) salts. Cr+6 has been identified as a 
carcinogen and there are more and more stringent national and international regulations to lower 
its human exposure limits. There is a possibility that the Cr+6 products will become obsolescent, 
and there will be no replacements available that can meet the anticipated metal surface 
preparation and corrosion protection requirements for the Upper Stage fuel and oxidizer tanks, 
and various other exposed metallic surfaces. Therefore a risk mitigation task was developed to 
find alternatives to Cr+6 products. This task identifies a number of candidate replacement 
products, and procedures to qualify them for application in the US. So far tests have been run to 
screen a number of potential replacement candidate conversion coating products that do not 
contain Cr+6. Tests were also run to evaluate relative merits of using anodization as opposed to 
conversion coating to provide required corrosion protection.  
 
The risk mitigation plan is implemented in four phases: 
 
Phase I: Screening of cleaning solutions and materials combinations and down selection of 
promising combinations 
 
Phase II: Testing of dissimilar alloy welding junctions; extending cryo-strain testing to LH2 and 
LOX temperatures; development of large scale spraying technology for selected conversion 
coats; Continue anodization evaluation if judged to be viable. 
 
Phase III: Development of optimum surface treatment and parameters; scale-up; testing of large 
panels and curve surfaces; development of materials and processes specifications. 
 
Phase IV: System level qualification testing and certification of selected coatings and/or 
processes 
 
This task is expected to be completed by April, 2011. The current process is base lined for Ares I 
US, and the new processes will be used when ready.  
 

Design Verification: Structural Development Test Articles 
Following the Upper Stage MDA’s, the Structural Development Test Articles (SDTA) are the 
second major step to verify the hardware designs for the Ares I US prior to Critical Design 
Review.  Major, full-scale hardware tests are imperative to ensure that the design and materials 
used in the aerospace hardware are verified and validated. Table 2 lists the planned SDTA’s. 
These are major demonstration efforts, encompassing and ranging from small panel compression 
tests, through full-scale pressurized tests-to-failure, to large Interstage composite panel tests.  
The structural test data acquired through the SDTA’s must be satisfactorily completed to proceed 
at the Critical Design Review level to ensure that a re-design is not required.  SDTA data will 
thus be generated early enough to allow for design iterations while there is still time to make 
changes.  The SDTA data will feed into the last MSFC-built article, the Main Propulsion Test 



Article (MPTA) development activities, which will be then followed by the Ground Vibration 
Test Article (GVTA), the first major article to be built at the Michoud Assembly Facility. 
 

Table 2: Structural Development Test Articles 
SDTA  Title Purpose 
SD02 Wide Panel Compression Test Article Characterize compression behavior 
SD03 CB Development Test Article Characterize CB acreage and Y-ring design, 

LH2 forward and LOX aft Y-ring designs 
SD05 LOX Tank Aft Dome/Thrust Structure 

Development Test 
Characterize response of LOX tank aft dome 
design under flight-like loading 

SD06 Wide Composite Panel Compression 
Testing Article 

Characterize compression behavior of the 
composite Interstage panels 

SD07 Bolted Ring Joint Strength Testing 
Article 

Characterize the strength and stiffness the 
Interstage near the bolted flange. 

SD08 Curved Panel with Access Door 
Testing Article 

Characterize the stability of the Interstage 
around the access door 

SD15 Thrust Cone Engine Mount Gimbal 
Test Article 

Characterize the response of the Engine Mount 
Gimbal design under flight-like loading.

SD17 Second Stage Separation Joint 
Development Test 

Understand the tensile and compressive 
strength of the separation joint and the bending 
stress induced by load path eccentricity

SD18 Avionics Rack Mounting System 
(ARMS) Development Test 

Characterize the structural integrity, locking 
features, heat transfer, and functionality of the 
ARMS design

SD19 Development Test of the CB  
(follow-on to SD03) 

Characterize the growth of known damage in 
CB 

 
MPM engineers work closely with S&T IPT to help develop and manufacture the SDTAs, which 
can be tested to verify that the design actually works and meets the expectations of the designers. 
At the same time these tests prove that the materials, processes and manufacturing technologies 
used in the project have indeed done their job. Manufacturing engineers work very closely with 
structural engineers to make sure that the structural test articles can be manufactured as designed. 
The materials engineers provide the allowables that help to define the margins and safety factors 
in these tests. MSFC Handbook – 3513 is being developed to compile all materials properties 
data needed for the US Project, including fatigue and fracture data, which support these tests. An 
Ali-Li material test plan has been generated to provide material properties information for the 
parent alloy and for the primary components thicknesses and shapes.  This plan will also 
characterize the properties for friction stir welding, self-reacting friction stir welding, and the 
corresponding weld repair techniques for the various component geometries and material 
thicknesses.  The test plan will further evolve to satisfy the design requirements for the Ares I US 
components.   
 



Acronyms/Definitions 
 
Al-Li - Aluminum-Lithium 
ARMS - Avionics Rack Mounting System 
CARD - Constellation Architecture Requirements Document 
CaLV - Cargo Launch Vehicle 
CB - Common Bulkhead 
CDR - Critical Design Review 
CEI - Contractor’s End Item 
CEV - Crew Exploration Vehicle (Orion) 
CLV  - Crew Launch Vehicle (Ares I) 
CM - Command Module 
CxP - Constellation Program 
DAC - Design and Analysis Cycle 
EDS - Earth Departure Stage 
ESMD - Exploration Systems Mission Directorate 
ERD - Element Requirements Document 
FFBD - Functional Flow Black Diagram 
FSW - Friction Stir Welding 
FOD - Foreign Object Debris/age 
GVTA - Ground Vibration Test Article 
ICD - Interface Control Document 
IPT - Integrated Product Team 
IRD - Interface Requirements Document 
IU - Instrument Unit 
LAS - Launch Abort System 
LH2 - Liquid Hydrogen 
LOX - Liquid Oxygen 
M&A - Manufacturing and Assembly 
MAF - Michoud Assembly Facility 
MDA - Manufacturing Demonstration Articles 
MPM - Materials, Processes and manufacturing 
MPS - Main propulsion System 
MPTA - Main Propulsion Test Article 
MRS - Manufacturing Requirements Sheet 
NASA - National Aeronautics and Space Administration 
OML - Outer Mold Line 
PDR - Preliminary Design Review 
RCS - Reaction Control System 
RM - Risk Management 
RMT - Risk Management Team 
SA  - Spacecraft Adapter 
S&T - Structures and Thermal 
SDR - System Definition review 
SDTA - Structural Development Test Articles 
SEI - Systems Engineering and Integration 



SEMP - Systems Engineering Management Plan  
SM - Service Module 
SRD - System Requirements Document 
SRR - System Requirements Review 
TRL  - Technology Readiness Level 
TVC - Thrust Vector Control 
US - Upper Stage 
WBS - Work Breakdown Structure 
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Overview

♦ Introduction
♦ Ares I: Crew Launch Vehicle
♦ Ares I - Uppers Stage♦ Ares I - Uppers Stage
♦ Upper Stage Design – Systems Engineering
♦ Integrated Design and Analysis 

I t t d P d t T♦ Integrated Product Teams
♦ MPM Integration with US Design and Development
♦ US Construction 
♦ US Construction Standards
♦ MPM Plans & Specifications
♦ Technology Readiness and Maturationgy
♦ Risk Mitigation
♦ Manufacturing Demonstration Articles
♦ Structural Development Test Articles
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♦ Structural Development Test Articles
♦ Summary



Introduction

♦Ares I Upper stage is designed and built based on sound Systems 
Engineering principles
• Compliance with requirements• Compliance with requirements 
• Meeting performance goals
• Meeting stakeholders’ expectations

♦Materials and Processes are important throughout the design and♦Materials and Processes are important throughout the design and 
development of Ares I
• All systems are built from materials
• Many different processes and manufacturing techniques are usedy g
• Materials and Processes are enablers for design and development

♦Materials, Processes and Manufacturing (MPM) Engineers must 
work closely with Design and Analysis Teams during Ares I y g y g
systems design and development
• To ensure robust design
• To make sure that the system is producible and affordable
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Ares I – Crew Launch Vehicle

Expanded View of Ares I
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Ares I - Upper Stage – Expanded View

Instrument Unit
Hydrogen Tanky g

Common Bulkhead

Oxygen TankOxygen Tank
Aft Skirt / Thrust 

structure

System Tunnel

InterstageCore Stage
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Upper Stage Design: Requirements Flow Down
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Upper Stage Design: Systems Engineering

NASA Systems Engineering Process Model
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Integrated Design and Analysis

♦ System requirements flow down from higher level to lower level through 
direct allocation, apportionment or derivation

♦ Requirements are met through design solutions♦ Requirements are met through design solutions
♦ Design is matured through a number of design and analysis cycles when 

going from SRR to CDR
♦ Trade studies are performed♦ Trade studies are performed
♦ Risk management is done as an integral part of design and analysis

2007 2008 2009 2010 2011 2012 2013 20142006

CDRPDRSDRSRR CDR
Mid ReviewMid Review

Verification Analysis CycleVerification Analysis Cycle

Mid ReviewMid Review

Design Analysis CycleDesign Analysis Cycle
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Integrated Design and Analysis Events for Ares I



Integrated Product Teams (IPT)

♦Upper Stage Design and Development is carried out through a 
number of Integrated Product Teams (IPT):
• Systems Engineering and Integration (SEI)y g g g ( )
• Main Propulsion System (MPS)
• Structures and Thermal (S&T)
• Manufacturing & Assembly (M&A)
• Test• Test
• Avionics
• Thrust Vector Control (TVC)
• Reaction Control System (RCS)
• Logistics
• Small Solids

♦SEI IPT has the overall responsibility for integration of Upper 
Stage

♦There is significant interaction among the IPT’s
♦ IPT works/products are integrated both horizontally and vertically

10National Aeronautics and Space Administration

♦ IPT works/products are integrated both horizontally and vertically



MPM Integration with US Design and Development

♦Design IPT Support
• Materials Data– physical and mechanical properties, data base
• Consultation– availability, producibility, facility, tools and y, p y, y,

equipment, cost, vendor support
♦Trade Studies – Support alternate design concepts

• Common Bulkhead vs Separate Tanks
M t lli C it I t t• Metallic vs Composite Interstage

♦Development 
• Manufacturing Development Articles
• Construction Standards• Construction Standards
• Specifications

♦Design Verification
• Structural Development Test Articles
• Materials Properties Data Book

♦ Integrated Manufacturing and Assembly
• Manufacturing Process Development
• Tools and Equipment

11National Aeronautics and Space Administration

• Tools and Equipment
• Facility Development



Upper Stage Construction

♦MPM Engineers are responsible for making sure that the US 
hardware is in compliance with all NASA Standards for 
Construction as stated in the US Element Requirements DocumentConstruction as stated in the US Element Requirements Document

♦A number of Level IV and Level V plans are generated to show how 
the Construction Standards will be met

♦A number of specifications are generated to support materials, 
processes, manufacturing and assembly

♦Examples are given in the next three slides♦Examples are given in the next three slides
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Upper Stage Construction Standards

♦ NASA-STD-(I)-5006: Welding Requirements for Aerospace Materials used in Flight 
Hardware

♦ NASA-STD-5007: General Fracture Control Requirements for Manned Space Flight 
Systems 

♦ NASA-STD-5009: Standard NDE Guidelines and Requirements for Fracture Control 
Programs 

♦ NASA-STD-5012: Strength and Life Assessments of Liquid Fueled Space Propulsion 
Systems 

♦ NASA-STD-6016: Standard Manned Spacecraft Requirements for Materials and 
Processes 

♦ CxP 70145: Constellation Program Contamination Control Plan 
♦ CLV-USO-MP-25500: Upper Stage Manufacturing and Assembly Plan♦ C USO 5500 Uppe Stage a u actu g a d sse b y a
♦ CLV-USO-MP-25505: Upper Stage Contamination Control Plan
♦ MSFC-SPEC-164: Specification for Cleanliness of components for Use in Oxygen, 

Fuel and Pneumatic Systems 
♦ MSFC STD 2594: Fastener Management and Control Practice Requirements♦ MSFC-STD-2594: Fastener Management and Control Practice Requirements 
♦ MSFC-STD-3029: Selection of Metallic Materials for Stress Corrosion Cracking 

Resistance in Sodium Chloride Environments 
♦ MSFC-STD-486B: Torquing of Threaded Fasteners 
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♦ ANSI/AIAA G-095-2004: Guide to Safety of Hydrogen and Hydrogen Systems 
♦ ASTM MANL 36: Safe use of Oxygen and Oxygen Systems 



Materials, Processes and Manufacturing Plans

♦Upper Stage Element Manufacturing and Assembly (M&A) Plan 
♦Materials, Processes Selection, Control and Implementation Plan, , p
♦Materials Usage Agreements
♦Materials Identification and Usage List
♦Contamination Control Plans, including Foreign Object 

Debris/Damage
♦Non-destructive Evaluation Plan♦Non destructive Evaluation Plan
♦Fracture Control Plan
♦Electric, Electronic, and Electromechanical (EEE) Parts Control 

Plan
♦Limited Life Items List
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Materials, Processes and Manufacturing  Specifications

♦ Aluminum-Lithium 2195 Ingot, Alloy Plate and Extruded Rod
♦ Aluminum Thrust Cone Casting specification
♦ Honeycomb Core, Phenolic Reinforced

C S♦ Honeycomb Core, Splice Adhesive
♦ Cryogenic Insulation Materials and Processes
♦ Stretch Forming and Aging of 2195 Aluminum Gore Panels for Liquid Hydrogen and 

Liquid Oxygen Cryogenic Tanks 
♦ Forming and Aging of Aluminum 2195 Barrel Panels♦ Forming and Aging of Aluminum 2195 Barrel Panels
♦ Spin Forming of 2219, 2014, 2195 and 7075 Alloys
♦ Roll Ring Forging of  2195, 2219 Ingots
♦ Fiction Stir Welding
♦ Bump Forming and Aging of Common Bulkhead Bolting Ring
♦ Machining of Honeycomb Core
♦ Structural Bonding of Common Bulkhead 
♦ Surface Preparation for Adhesive Bonding and Sealing
♦ Adhesive Bonding and Sealing
♦ Lifting and Handling Requirements Specification for Common Bulkhead
♦ Standard Repair Procedures (for various situations)
♦ Prof Test Requirements for Common Bulkhead and Cryogenic Tanks
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♦ US TPS Materials and Processes Control Plan
♦ Cleaning Processes for US Components 



Technology Readiness and Maturation

♦MPM engineers must make sure that the technologies used in the 
program are sufficiently mature and do not pose a significant 
technical risk to the projecttechnical risk to the project.

♦Technologies should be at Technology Readiness Level (TRL) of 6 
or higher.

♦TRLs do apply to Materials and Processes.
• Materials Readiness Levels 
• Process Readiness Levels

♦ If the TRL is low then the technologies must be maturated to TRL 6 
in a timely manner.
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Technology Maturation Process

T h l R di l l

Actual system “flight proven” through successful 
mission operationsTRL  9

System Test, Launch 
and Operations

Technology Readiness levels

p

Actual system completed and “flight qualified” 
through test and demonstration (Ground or 
Flight)

System prototype demonstration in a space

TRL  8System/subsystem 
development

System prototype demonstration in a space 
environment

System/subsystem model or prototype 
demonstration in a relevant environment (Ground 
or Space)

TRL  7

TRL  6

Technology 
Demonstration

Component and/or breadboard validation in 
relevant environment

Component and/or breadboard validation in 
laboratory environment

TRL  5

TRL  4

Technology 
Development

Research to prove
Analytical and experimental critical function 
and/or characteristic proof-of-concept

Technology concept and/or application 
formulated

TRL  3

TRL  2

Research to prove 
feasibility

Basic Technology 
Research
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Basic principles observed and reportedTRL  1

Research



Material and Process Readiness Levels Are 
Analogs to TRLs*

Materials Readiness Level (MRL) Process Readiness Level (PRL)

Material is a commodity material in high 
volume production. 

Material is off the shelf but not in high volume

Materials Readiness Level (MRL) Process Readiness Level (PRL)

9

8

9

8 Process is in low volume production Integration and

Process is in high volume production.  Integration and 
operations  processes are fully developed and mature

Material is off-the-shelf, but not in high volume 
production

Material is custom off-the-shelf.         

8

7

8

7 Process is performed on contract.  Integration and 
operations processes are mostly developed

Process is in low volume production.  Integration and 
operations processes are developed

Material  available and used in components 
acceptable for flight

Material applied to shapes of the size and type 
f bj i i h ifi d i

6

5

6

5 Process has been applied to shapes of the size and type 

Process applied to object has produced defect free flight-
acceptable components; process parameter ranges 
identified, int and ops procedures partially developed

of objective component with verified properties

Material applied to objective shape with verified 
properties

4

P d d i d h i l d h i l

4 Process has been modified to apply to objective shape, 
notional options for integration and operations

of the objective component. Int & ops concepts identified

Material data properties verified

Material within family identified

3

2

Process produces desired physical and mechanical 
properties; notional options for integration and 
operations

3

2 Process has been applied to simple test coupons
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Material family/families identified 11 General classes of possible processes identified

*Courtesy: Aerospace Corporation



Risk Mitigation

♦Risk Types: Technical, Programmatic (cost & schedule), Safety
♦Risk identification and mitigation are an integral part of the 

design, development and verification process
♦Upper Stage Risk is managed through US Risk Management 

Team
♦Risks internal to M&A IPT are managed internally
♦Risks outside M&A but within Upper Stage are managed 

th h U St Ri k M t Tthrough Upper Stage Risk Management Team
♦MPM Engineers have the primary responsibility for identifying 

and mitigating technical risks in their discipline areas. 
♦Some current risks are shown in the next chart
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MPM Risk Mitigation

Category Risk Mitigation Approach

Materials Lack of materials characterization—lack of 
fracture data for Al-Li alloys 

Generate necessary data for 
fracture control 

Hexavalent Chrome Material Obsolescence –
currently used for conversion coating 

Develop alternate surface 
treatment approaches 

HCFC 141b bl i t t i l D l lt t t i lHCFC-141b blowing agent material 
obsolescence – currently used on Shuttle, 
but not available for Ares

Develop alternate materials as 
blowing agents

Lack of qualified vendors for Al-Li 2195 alloy; 
l f l b f Al Li 2195

Qualify new vendors – e.g., Alcan
loss of supply base for Al-Li 2195

Processes Friction stir welding technology for gores, 
barrels and CB not fully developed

Manufacturing Demonstration 
Articles (MDA)

Friction plug welding not fully developed MDA

Manufacturing Manufacturing CB – proposed technology is 
not proven

MDA and SDTA (Structural 
Development Test Articles)
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not proven Development Test Articles)

Long lead items – procurement takes too 
much time—schedule risk

Speed up procurement (has 
limitations)



Manufacturing Demonstration Articles (MDA)

♦MDA – Technology demonstrators for building confidence in the 
materials, processes, manufacturing and assembly technologies

♦Confidence level should be high enough (TRL 6 or better) for the 
design to proceed to CDR

♦Planned MDA’s: All major components and assembly stepsj p y p
♦Basic Components: Barrel Panels, Dome Gores, Dome fittings, Y-

rings, Dome caps
B i A bli B l bl D bl♦Basic Assemblies: Barrel assembly, Dome assembly

♦Demonstrators:
• Dome and barrel assembly representative of US Hydrogen Forward 

D d l Al Li 219 f i d f i i iDome to develop Al-Li 2195 component forming and friction stir 
welding

• Common Bulkhead Assembly to develop AL 2014 to Al-Li 2195 welding 
practices, complex honeycomb bonding and curing, and overall
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practices, complex honeycomb bonding and curing, and overall 
manufacturing and assembly processes



MDA: Barrel and Dome Assembly
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MDA: Common Bulkhead
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Structural Development Test Articles (SDTA)

♦SDTA: Second major step to verify hardware design for Ares I 
– US prior to CDR
• Structural test data will ensure that a redesign is not required• Structural test data will ensure that a redesign is not required
• A current list of SDTA’s is given in the next chart

♦SDTA data will feed into the Main Propulsion Test Article 
(MPTA)(MPTA)

♦MPM engineers work closely with S&T IPT to develop and 
manufacture SDTA’s

♦SDTA’s prove that the materials, processes and 
manufacturing technologies used in the project have indeed 
done their job and test articles can be manufactured as 
designed.

♦Materials engineers generate material properties data needed 
to define structural margins and safety factors
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Structural Development Test Articles

SDTA Title PurposeSDTA Title Purpose

SD02 Wide Panel Compression Test 
Article

Characterize compression behavior

SD03 CB Development Test Article Characterize CB acreage and Y-ring design, LH2 
forward and LOX aft Y-ring designs

SD05 LOX Tank Aft Dome/Thrust 
Structure Development Test

LOX Tank Aft Dome/Thrust Structure Development 
Test

SD06 Wide Composite Panel Characterize compression behavior of theSD06 Wide Composite Panel 
Compression Testing Article

Characterize compression behavior of the 
composite Interstage panels

SD07 Bolted Ring Joint Strength Testing 
Article

Characterize the strength and stiffness the 
Interstage near the bolted flange.

SD08 C d P l ith A D Ch t i th t bilit f th I t t dSD08 Curved Panel with Access Door 
Testing Article

Characterize the stability of the Interstage around 
the access door

SD15 Thrust Cone Engine Mount Gimbal 
Test Article

Characterize the response of the Engine Mount 
Gimbal design under flight-like loading.

SD17 Second Stage Separation Joint 
Development Test

Understand the tensile and compressive strength of 
the separation joint and the bending stress induced 
by load path eccentricity

SD18 Avionics Rack Mounting System Characterize the structural integrity, locking 
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(ARMS) Development Test features, heat transfer, and functionality of the 
ARMS design

SD19 Development Test of the CB 
(follow-on to SD03)

Characterize the growth of known damage in CB



Summary

♦Materials, Processes and Manufacturing (MPM) are integral to the 
design and development of Ares I Upper Stage

♦D i th d i h MPM i k l l ith d i♦During the design phase MPM engineers work closely with design 
teams to ensure a robust design that can be manufactured 
affordably and hardware can be delivered on time

♦MPM engineers continuously monitor the risks in materials and♦MPM engineers continuously monitor the risks in materials and 
processes and manufacturing technologies and mitigate them in a 
timely manner

♦NASA design and construction standards are met through♦NASA design and construction standards are met through 
development of a number of materials, processes and 
manufacturing specifications

♦Technology risks are mitigated through a series of Manufacturing♦Technology risks are mitigated through a series of Manufacturing 
Development Articles (MDA) 

♦Maturity and flightworthiness of hardware design and associated  
MPM technologies are proven through a series of Structural 
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tec o og es a e p o e t oug a se es o St uctu a
Development Test Articles (SDTA)


