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Lack of Capability
•

 

TPS and hot structures are utilizing advanced materials that operate at 
temperatures that exceed our ability to measure structural performance 

•

 

Robust strain sensors that operate accurately and reliably beyond 1800°F are 
needed but do not exist

Implication
•

 

Hinders ability to validate analysis and modeling techniques
•

 

Hinders ability to optimization structural designs

Background 
Sensor Development Motivation
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Provide strain data for validating finite element models and 
thermal-structural analyses

•

 

Develop sensor attachment techniques for relevant structural materials at 
the small test specimen level

–

 

Apply methods to large scale hot-structures test articles
•

 

Perform laboratory tests to characterize sensor and generate corrections 
to apply to indicated strains

Objective 
Measurements Lab
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High-Temp Quarter-Bridge Strain Gage

Pro’s
•

 

Sturdy / rugged thermal sprayed installation 
and spot-welded leadwire stakedown

•

 

Available high sample rate DAS, usually AC 
coupled to negate large ξapp

Con’s
•

 

Large magnitude ξapp

 

primarily due to wire 
TCR, slope rotates cycle-to-cycle

•

 

Sensitivity (GF): Function of temperature

Apparent Strain = [TCRgage / GFset + (αsub - αgage)] * (ΔT)
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Sensors 
Dynamic Measurements (Max Op 1850°F)
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Strain / LG (initial), where sensitivity = LG

Apparent Strain (ξapp) = (αsub - αfiber) * ΔT

LC

Ceramic
Attach

LG

Extrinsic Fabry-Perot Interferometer (EFPI)
Commercially Available

Sensors 
Static Measurement (Max Op 1850°F)

SM gold coated fiber 
125μm dia, 6μm core 
840nm tuned

Silica micro-capillary:
OD = 285μm 
ID = 130μm 

840nm, 50μW

Strain = δLC
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BB Optical
Source

Power
Splitter

Diffraction
GratingMini

Spectrometer

Lens

CCD
Out to Signal 

Processor

Single Mode EFPI Signal Conditioning

Sensors 
Static Measurement
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Sensors 
Static Measurement (Max Op 600°F)

Reflected λ

Reflected  λTensile Load
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Laser

FFT
E

λ

IFFT
Strain (με)
(δλ / λ) x 0.725

Unstrained

SM Polyimide Coated Fiber
125μm dia, 9μm core, 1550nm

2 x 1
Coupler
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Develop sensor attachment techniques for 
relevant structural materials

•
 

Derive surface prep and optimal plasma spray 
parameters for applicable substrate

–

 

i.e., powder media / type, power level, traverse rate, feed 
rate, and spraying distance

•
 

Or, optimize / select cement that best fits application
•

 
Improve methods of handling and protecting fragile 
sensor during harsh installation processes

Attachment Techniques 
Applications Above 600°F
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Attachment Techniques 
Thermal Spray vs. Cement

Thermal sprayed attachments are preferred even though cements 
are simpler to apply

•

 

Cements are often corrosive to TC or strain gage alloys
–

 

Si / Pt, NaF

 

/ Fe-Cr-Al alloys, alkali silicate / Cr

•

 

Tests indicate increased EFPI gage-to-gage scatter on first cycle

Positive lead of
K-Type TC (NiCr)

Post-Test: One cycle to 2550°F 

•

 

Cements are more prone to bond failure due to shrinkage and cracking 
caused when binders dissipate
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Thermal Spray Room
•

 

80KW Plasma System
•

 

Rokide Flame-Spray System
•

 

Powder Spray System
•

 

Grit-Blast Cabinet
•

 

Micro-Blast System
•

 

Water Curtain Spray Booth

Attachment Techniques 
Thermal Spray Equipment
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Arc-plasma sprayed base coat
•

 

Metallic Substrates: Used to transition high expansion substrate

 

metal with low 
expansion sensor attachment material (Al2

 

O3

 

)
•

 

CMC Substrates (inert testing): High melting-point ductile transitional metals (i.e. 
Ta, TiO2

 

, & Mo) more conducive for attachment to smooth surfaces like SiC

Rokide flame-sprayed sensor attachment
•

 

Applies a less dense form of alumina

 

than plasma spraying
•

 

Electrically insulates (encapsulate) wire resistive strain gages

Collaborative work has been done through 
grants with Dr. Richard Knight, Drexel University

Attachment Techniques 
Thermal Spray
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Attachment Techniques 
Wire Strain Gage Installation

Place SG on thermal 
sprayed basecoats 
via carrier tape

Apply flame-sprayed 
tack and cover coats

Spot weld three- 
conductor leadwire 
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8.5mm

0.35”

Attachment Techniques 
Fiber Optic EFPI Installation

Flame-spray sensor attachment

Transfer to thermal 
sprayed base coat 
using carrier tape

Fabricate sensor under 
microscope
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Attachment Techniques 
Fiber Optic EFPI Installation

1.  Plasma Spray 
Basecoat (2-mil)

2.  Rokide Flame- 
Spray Intermediate 
Layer (1-mil)

3.  Set EFPI Sensor in 
Place Using Carrier Tape

4.  Rokide Flame-Spray 
Attachment Layer 
(minimal coverage)



Dryden Flight Research Center

Refrasil Overbraid

Two applications of 
MB610 sufficiently coat 
fiber (Cured @ 270°F)

Bonded FBG’s Type-K TC

Polyimide coated EFPI 
bonded with mixture of 

GA-61 and MB610

Attachment Techniques 
Applications Below 600°F

4-in
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Validate and characterize strain measurement
•

 

Base-line / characterize high-temperature strain sensors on 
monolithic Inconel specimens

–

 

Known material spec’s isolate substrate from inherent 
sensor traits prior to testing on more complex composites

•

 

Evaluate / characterize sensitivity (GF) of strain sensors on 
ceramic composite substrates using laboratory combined 
thermal / mechanical load fixture

•

 

Generate apparent strain curves for corrections of indicated 
strains on relevant ceramic composite hot-structures

Evaluation / Characterization 
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Clamping Beam

Loading Mandrels
Side A
Loading

Side B
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Loading
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Evaluation / Characterization 
Combined Thermal / Mechanical Loading (Obsolete)

Thermal / Mechanical Cantilever Beam Testing of EFPI’s
•

 

Excellent correlation with SG to 550°F (3%)
•

 

Very little change to 1200°F
•

 

Slight drop in output slope above 1200°F
•

 

Maximum gap readability uncertain at upper range temperatures 
on high expansion material
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          Standoff Correction Factor
KSo = c/(c+So) = 0.189 / 0.189 + 0.0055 = 0.972
       where:
    c = Distance from Neutral axis
  So = Distance from centerline of fiber (in tube)
           to substrate 

FS2000 Settings
Extended Range: ON
Gap Limit: OFF
Sample Interval: 100ms
Analog Out: On (1:0.1)

EFPI Combined Loading on IN625

Loading Mandrels

LVDT’s
Extensions

Clamping
Beam

Load
Bar

TOP VIEW

1800°F, Air Only
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Furnace / cantilever beam loading 
system for sensitivity testing 

•

 

Air or inert (3000°F max)
•

 

12-in3

 

inner furnace with Molydisilicide

 
elements

•

 

Micrometer / mandrel side loading
•

 

LVDT displacement measurements
•

 

POCO Graphite hardware for inert 
environment testing of ceramic composites

•

 

IN625 hardware for metallic testing in air
•

 

Sapphire viewing windows

Loading
Mandrel

LVDT

Clamping 
Beam

Constant Strain Load Bar

Evaluation / Characterization 
Combined Thermal / Mechanical Loading (Current)
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Sensor Characterization 
Air or inert (3000°F max)

•

 

Evaluate bond integrity
•

 

Generate ξapp correction curves
•

 

Evaluate sensitivity and accuracy
•

 

Evaluate sensor-to-sensor scatter, 
repeatability, hysteresis, and drift

Modified Dilatometer 
System

4 EFPI’s on C-C

Evaluation / Characterization 
Dilatometer Testing
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ξapp Correction: Removal of inherent sensor traits and substrate expansion 
from indicated strain to acquire true strains or thermal stresses 

ξtrue = ξindicated – ξapp, where ξapp = (αsub - αfiber) * ΔT
•

 

Inconel (LH chart): Large expansion differential between IN601 and Si 
–

 

output primarily substrate expansion, CTE * ΔT

•

 

CMC (RH chart): Small expansion ratio between C-SiC and Si
–

 

requires correction for fiber expansion (lessening cavity gap)

•

 

Graphs demonstrate how well actual ξapp curves followed theoretical
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Evaluation / Characterization 
EFPI Apparent Strain
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Evaluation / Characterization 
FBG Apparent Strain

y = 0.0044x2 + 3.6664x - 302.93

0

500

1000

1500

2000

2500

0 100 200 300 400 500

Temp (F)

S
tra

in
 ( μ

ε)

Theoretical Thermal Out

Average Eapp (12)

Poly. (Average Eapp (12))
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where:
Thermal Optic Effect (ξ) = 3.78 με/F
Strain Optic Constant (Pe) = 0.725  
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Large Scale Structures 
Ceramic Composite Control Surfaces
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Large Scale Structures 
Metallic Dynamic Environment

C-17 Engine Testing
•

 

Test temperatures above 1100°F
•

 

Engine intentionally unbalanced 
creating large peak-to-peak vibrations

X-33 Sonic Fatigue Testing
•

 

Dynamic loads as high as -158db
•

 

Test temperatures above 1500°F
•

 

High transient heating rates producing 
large thermal stresses
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Large Scale Structures 
Fiber Optic Wing Shape Sensing

NASA Dryden Predator B (Ikhana)

ξapp coupon tested from -60°F to 150°F
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