Applications of Mars Global Reference Atmospheric Model (Mars-GRAM 2005) Supporting Mission Site Selection for Mars Science Laboratory

Hilary L. Justh\(^1\) and C. G. Justus\(^2\)

\(^1\)NASA, Marshall Space Flight Center, Mail Code EV44, Marshall Space Flight Center, AL 35812, Hilary.L.Justh@nasa.gov

37\(^{th}\) COSPAR Scientific Assembly – July 13-20, 2008
Mars Global Reference Atmospheric Model (Mars-GRAM)

- Engineering-level atmospheric model widely used for diverse mission applications
- Mars-GRAM’s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL).¹
- Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include:
 - TES Mapping Years 1 and 2, with Mars-GRAM data coming from MGCM model results driven by observed TES dust optical depth
 - TES Mapping Year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth.
- From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface.
- Mars-GRAM 2005 has been validated² against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES).³
New Features of Mars-GRAM 2005

• Option to use input data sets from MGCM model runs that were designed to closely simulate conditions observed during the first two years of TES observations at Mars
 – TES Year 1 = April 1999 through January 2001
 – TES Year 2 = February 2001 through December 2002

• Option to read and use any auxiliary profile of temperature and density versus altitude. In exercising the auxiliary profile Mars-GRAM option, the values from the auxiliary profile replace data from the original MGCM databases
 – Examples of auxiliary profiles:
 • Data from TES (nadir or limb) observations
 • Mars mesoscale model output at a particular location and time

• Two Mars-GRAM parameters allow standard deviations of Mars-GRAM perturbations to be adjusted
 – rpscale can be used to scale density perturbations up or down
 – rwscale can be used to scale wind perturbations
Mars-GRAM Auxiliary Profiles

- Mars-GRAM auxiliary profiles (either vertical or along the actual entry corridor) were generated by interpolation from the mesoscale model output data.

- Table shows an example Mars-GRAM auxiliary profile from MRAMS model output at the Terby landing site.

- These Mars-GRAM auxiliary profiles can be used in Mars-GRAM to provide detailed MSL entry dynamics simulations.

Example Mars-GRAM Auxiliary Profile – Mean Values from Terby MRAMS Simulation

<table>
<thead>
<tr>
<th>Hgt_km</th>
<th>Lat</th>
<th>LonE</th>
<th>Temp_K</th>
<th>Pres_Nm2</th>
<th>Dens_kgm3</th>
<th>U_m/s</th>
<th>V_m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.66</td>
<td>74.11</td>
<td>190.46</td>
<td>8.12E+02</td>
<td>2.23E-02</td>
<td>1.04</td>
<td>11.63</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>74.11</td>
<td>177.78</td>
<td>6.84E+02</td>
<td>2.01E-02</td>
<td>-0.2</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>74.11</td>
<td>190.04</td>
<td>5.53E+02</td>
<td>1.52E-02</td>
<td>-3.24</td>
<td>2.91</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>74.11</td>
<td>196.26</td>
<td>4.53E+02</td>
<td>1.21E-02</td>
<td>-2.25</td>
<td>8.49</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>74.11</td>
<td>199.76</td>
<td>3.73E+02</td>
<td>9.76E-03</td>
<td>2.87</td>
<td>10.49</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>74.11</td>
<td>199.88</td>
<td>3.08E+02</td>
<td>8.05E-03</td>
<td>9.61</td>
<td>12.16</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>74.11</td>
<td>198.28</td>
<td>2.53E+02</td>
<td>6.68E-03</td>
<td>14.95</td>
<td>12.17</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>74.11</td>
<td>195.73</td>
<td>2.09E+02</td>
<td>5.57E-03</td>
<td>18.24</td>
<td>12.43</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>74.11</td>
<td>193.29</td>
<td>1.71E+02</td>
<td>4.63E-03</td>
<td>20.72</td>
<td>13.52</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>74.11</td>
<td>191.06</td>
<td>1.40E+02</td>
<td>3.83E-03</td>
<td>21.44</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>74.11</td>
<td>188.9</td>
<td>1.14E+02</td>
<td>3.17E-03</td>
<td>20.25</td>
<td>12.35</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>74.11</td>
<td>186.7</td>
<td>9.32E+01</td>
<td>2.61E-03</td>
<td>17.41</td>
<td>8.97</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>74.11</td>
<td>184.2</td>
<td>7.55E+01</td>
<td>2.15E-03</td>
<td>13.57</td>
<td>4.22</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>74.11</td>
<td>181.02</td>
<td>6.09E+01</td>
<td>1.76E-03</td>
<td>9.81</td>
<td>-1.48</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>74.11</td>
<td>176.57</td>
<td>4.89E+01</td>
<td>1.45E-03</td>
<td>8.32</td>
<td>-7.31</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>74.11</td>
<td>171.65</td>
<td>3.93E+01</td>
<td>1.20E-03</td>
<td>8.94</td>
<td>-9.99</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>74.11</td>
<td>167.03</td>
<td>3.13E+01</td>
<td>9.81E-04</td>
<td>8.64</td>
<td>-10.73</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>74.11</td>
<td>162.61</td>
<td>2.48E+01</td>
<td>7.97E-04</td>
<td>8.01</td>
<td>-10.62</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>74.11</td>
<td>158.4</td>
<td>1.94E+01</td>
<td>6.41E-04</td>
<td>6.83</td>
<td>-10.19</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>74.11</td>
<td>154.53</td>
<td>1.51E+01</td>
<td>5.11E-04</td>
<td>4.02</td>
<td>-9.51</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>74.11</td>
<td>151.51</td>
<td>1.17E+01</td>
<td>4.05E-04</td>
<td>-1.06</td>
<td>-9.06</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>74.11</td>
<td>148.89</td>
<td>9.11E+00</td>
<td>3.18E-04</td>
<td>-5.7</td>
<td>-7.43</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>74.11</td>
<td>149.63</td>
<td>7.04E+00</td>
<td>2.46E-04</td>
<td>-8.09</td>
<td>-4.23</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>74.11</td>
<td>150.64</td>
<td>5.43E+00</td>
<td>1.89E-04</td>
<td>-8.17</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>74.11</td>
<td>152.18</td>
<td>4.19E+00</td>
<td>1.44E-04</td>
<td>-6.77</td>
<td>7.06</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>74.11</td>
<td>152.67</td>
<td>3.22E+00</td>
<td>1.10E-04</td>
<td>-5.43</td>
<td>17.36</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>74.11</td>
<td>149.78</td>
<td>2.51E+00</td>
<td>8.76E-05</td>
<td>-6.7</td>
<td>19.86</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>74.11</td>
<td>145.65</td>
<td>1.93E+00</td>
<td>6.95E-05</td>
<td>-10.15</td>
<td>17.96</td>
<td></td>
</tr>
</tbody>
</table>
Comparison with MER EDL models

- Paul Withers at Boston University compared the MER EDL data with various models including Mars-GRAM.
- Mars-GRAM averages within 5% of the MER values.
- For surface-pressure corrected results, Mars-GRAM is one of two models that averages a ratio of 1.0 to the MER data, the other is MGCM (TES dust).
Entry Probe Mission Site Selection

• Mars-GRAM could be a valuable tool for planning of future Mars entry probe missions
• Mars-GRAM can provide data on density, temperature, pressure, winds, and selected atmospheric constituents for mission sites on Mars
• Currently, Mars-GRAM is being used in the Mars Science Laboratory landing site selection process
Mars Science Laboratory

Mars Science Laboratory with Power Source and Extended Arm, Artist's Concept
(Courtesy NASA/JPL-Caltech)
Applications for Mars Science Laboratory Mission Site Selection:

• In order to assess Mars Science Laboratory (MSL) landing capabilities, the following candidate sites have been studied as part of our work as a member of the MSL Council of Atmospheres:

 Terby Crater Holden Crater Nili
 Melas Chasma Mawrth E. Meridiani
 Gale Crater Miyamoto N. Meridiani

• Two mesoscale models were run for the expected MSL landing season and time of day.
 – Mars Regional Atmospheric Modeling System (MRAMS) of Southwest Research Institute
 – Mars Mesoscale Model number 5 (MMM5) of Oregon State University.
Other Sources of Mars Atmospheric Data

• To assess likely uncertainty in atmospheric representation at these candidate sites, two other sources of atmospheric data were also analyzed:
 – A global Thermal Emission Spectrometer (TES) database containing averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data
 – A global set of TES limb sounding data, which can be queried over any desired range of latitude-longitude and Ls, to estimate averages and standard deviations of temperature and density
Characteristics of TES Nadir Database

- Three TES Mapping Years
 - Yr 1 = 4/99 – 2/01
 - Yr 2 = 2/01 – 1/03
 - Yr 3 = 1/03 – 11/04

- Global TES Nadir Data Set - Means and Standard Deviations for temperature, density, and thermal wind components:
 - 5-by-5 degree Lat-Lon bins
 - 15 degree Ls bins
 - Local Solar Time = 2 or 14 hours
 - Up to 21 Pressure Levels, automatically converted to Geometric Height by Database Query Program
 - Query program gives output at TES pressure levels or interpolated to 1-km altitude intervals
 - Output automatically formatted for Mars-GRAM input as Auxiliary Profile
Characteristics of TES Limb Database

• Data for TES Mapping Years 1 and 2 and ~1/2 of TES Mapping Year 3

• Query Program Allows User to Select Lat-Lon, and Ls Bins and Local True Solar Time
 – Input desired Lat-Lon and select Lat-Lon Bin widths
 – Input desired Ls and select Ls Bin width
 – Choose LTST = 2 or 14 hours (or both)

• Query Program outputs all individual profiles that match criteria, plus average and standard deviation of temperature and density of all output profiles
 – Up to 38 Pressure levels, automatically converted to geometric altitude
 – Output at pressure levels, or interpolated to 1-km altitude intervals
 – Output automatically formatted for Mars-GRAM input as Auxiliary Profile
Density Comparison

- Comparison of vertical profiles of density ratio from TES nadir data, MRAMS, MMM5, and Mars-GRAM model output for the Mawrth MSL landing site.
- Density values are represented as a ratio relative to TES Limb data.
- TES Nadir and Limb data are for Map Year 1. TES Limb data is for Ls=130 +/- 15. TES nadir values from Ls=120 and Ls=135.
- Mars-GRAM results are Map Year 0 with dust visible optical depth tau=0.1, LTST=1500.
- TES nadir and TES limb data differ significantly - all of the models tend to agree with the limb data more than the nadir results at the MSL candidate sites.
- Above ~ 20 km, differences increase between MRAMS and MMM5 results.
Zonal Wind Comparison

• Comparison of vertical profiles of mean zonal (eastward) wind from MRAMS, MMM5, and Mars-GRAM for the Mawrth MSL landing site

• Wind results from MRAMS and MMM5 are more consistent than the density results between these two models
Density Standard Deviation Comparison

- Comparison of vertical profiles of density standard deviation from TES nadir data, TES limb data, and MRAMS, MMM5, and Mars-GRAM model output for the Mawrth MSL landing site
- Observed and mesoscale-modeled density standard deviations are generally less than Mars-GRAM density standard deviations, an exception being TES nadir year 2 values below ~ 5 km altitude and TES limb data above ~ 36 km.
- With nominal value rpscale=1, Mars-GRAM perturbations would be conservative
- To better represent TES and mesoscale model density perturbations, rpscale values as low as ~ 0.4 could be used.
Wind Perturbation Comparisons

- Mars-GRAM Wind Perturbation Ratio (rwscale) vs Height for MRAMS, MMM5, and nominal Mars-GRAM perturbation model values at the Gale, Melas, Terby MSL sites

- Mesoscale-modeled wind standard deviations are slightly larger (by about a factor of 1.1 to 1.2) than Mars-GRAM wind standard deviations.

- An rwscale value of about 1.2 would better replicate wind standard deviations from MRAMS or MMM5 simulations at the Gale, Terby, or Melas sites.
Conclusions

• The new Mars-GRAM auxiliary profile capability, using data from TES observations, mesoscale model output, or other sources, allows a potentially higher fidelity representation of the atmosphere, and a more accurate way of estimating inherent uncertainty in atmospheric density and winds.

• When comparing the MER EDL data with Mars-GRAM results, Mars-GRAM does well and averages a ratio of 1.0 to the MER data.

• By adjusting the rpscale and rwscale values in Mars-GRAM based on figures such as those shown in slides 14 and 15, we can provide more accurate end-to-end simulations for EDL at the candidate MSL landing sites.

• Mars-GRAM would be an valuable tool to use as part of the search for potential landing sites for future Mars entry probe missions.
Acknowledgments

The authors gratefully acknowledge:

– Mike Smith, John Pearl, and other members of the TES team for providing us with their global nadir and limb data

– Scot Rafkin (Southwest Research Institute) for providing MRAMS output data

– Jeff Barnes and Dan Tyler (Oregon State University) for providing MMM5 output data

– Paul Withers (Boston University) for providing MER EDL comparison data
References

1 Striepe S. A. at al. (2002), AIAA Atmospheric Flight Mechanics Conference and Exhibit, Abstract # 2002-4412.

