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Introduction

Understanding the space radiation

environment is important for

— reliable, cost-effective microelectronic
system designs

— Implement new space technologies

Underestimating radiation levels leads to

— excessive risk

— degraded system performance

— loss of mission lifetime

Overestimating radiation levels leads to

— excessive shielding

— reduced payloads

— over-design

— increased cost
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The Solar Activity Cycle

The sun is a source and modulator
of space radiations.

Many characteristics of space
radiations follow the cyclical
behavior of solar activity.

Its approximately 11-year cycle
typically consists of

— 7 years of solar maximum

— 4 years of solar minimum

Sunspot numbers are commonly
used indicators of solar activity.
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The Space Radiation Environment

High Energy
Particle
Radiation
Galactic Solar Particle Trapped
Cosmic Rays Events Particles
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Trapped Particles
Earth’s Internal Magnetic Field

« Geomagnetic field Is
approximately dipolar for
altitudes up to about 4to 5
earth radii.

e Dipole axis not same as
geographic North-South
axis

— 110 tilt
— >500 km displacement

e Trapped particle
populations conveniently
mapped in terms of dipole
coordinate systems.

M. Xapsos/CAARI 2008



Trapped Charged Particle Motion @

e In earth’s magnetic field

— Particles spiral along
magnetic field lines Tispned Paticis

. o Trajectory

— Increased field strength in S y
o . ec!ron
polar region causes spiral Drift
to tighten and eventually Magnetic
the particle reverses \\
direction.

— Additionally, there is a
slower longitudinal drift
around the earth.

— A complete azimuthal
rotation of the trajectory
traces out a drift shell or
L-shell.

after E.G. Stassinopoulos
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The L-Shell Parameter

e L-shell parameter
Indicates magnetic
equatorial distance from
center of earth in number
of earth radii but
represents the entire

drift shell.

« An L-shell contains a
subset of trapped particles
that are peaked at a certain LN
energy moving throughout
this shell.
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Characteristics of Trapped Protons @

Single trapped proton region under “quiet”
conditions
— L-shell values: 1.15to 10

— Energies: up to a few 100’s of MeV
= >10 MeV energies confined to altitudes below 20,000 km

— Fluxes: up to ~10°cm=2s?t, nearL =1.8

Energies and Fluxes similar to what can be
obtained at accelerator facilities
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AP-8 Model

Eighth version of trapped
proton modeling effort led by
James Vette.

Static map of proton
population for

Solar maximum

Solar minimum

Data taken in 1960s and 70s
Example shown in dipole
coordinates

— X-axis is distance along
geomagnetic equator

— Y-axis is distance along
geodipole axis

Axial Distance (Earth Radii)

T [T LA B B [T [T ™

Solar Maximum

0 1 2 3 4 5 6

Equatorial Distance (Earth Radii)

From SPENVIS, http://www.spenvis.oma.be/

M. Xapsos/CAARI 2008

Flux >10 MeV (cm2 s7)

10°

104

—
o
w

—_—
=
o

—
2

10



Latitude

©
o
]

W
o

South Atlantic Anomaly

(@)
o
] ]

o
T I L] L]

Solar Maximum

e

1 1 I 1

60
Longitude

From SPENVIS, http://www.spenvis.oma.be/

M. Xapsos/CAARI 2008

&

1000

-
o
o

Flux >10 MeV at 500 km (cm=2 s')
o

11



Characteristics of Trapped Electrons @

 Inner Zone e« Quter Zone
— L=1to 2.8 — L=2.81t010
— Energies up to 4.5 MeV — Energies up to ~ 10 MeV
— Fairly stable population — Very dynamic
— long-term avg. flux: — long-term avg. flux:
up to 10 cm-=2s-1 (> 1 MeV) up to 3x105 cm-2s-1
near L =1.5 (>1 MeV) near L =4.5

Energies and fluxes similar to what can be produced
at accelerator facilities

Slot region — located between the 2 high intensity zones (L = ~2 to 3);
region where fluxes at local minimum during quiet periods
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Axial Distance (Earth Radii)

AE-8 Model
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Solar Particle Events @

e Solar flares

— Occur when localized energy storage in coronal
magnetic field becomes too great and burst of energy is
released

« Coronal Mass Ejections (CMESs)

— Large eruption of plasma that drives a shock wave
outward and accelerates particles

 Responsible for major disturbances
— Interplanetary space
— In earth’s magnetosphere
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Coronal Mass Ejection

2002/01/04 09:30
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Characteristics of CMES

Elemental composition*

— 96.4% protons

— 3.5% alpha particles

— 0.1% heavier ions (not to be neglected!)

Energies: up to ~ GeV/nucleon
Mainly within accelerator capabilities

Event magnitudes:
— > 10 MeV/nucleon integral fluence: can exceed 10° cm™
— > 10 MeV/nucleon peak flux: can exceed 10> cm=s

D.V. Reames, Space Sci. Rev., 1999
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Daily Proton Fluence (p/cm?-sr)
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Distribution of Event Magnitudes @

Probabilistic phenomena

Truncated power law
function describes
essential features of
distribution of event
fluences:

— Sudden bursts of energy
released that span orders

of magnitude

— Smaller event sizes follow e

power law function

ik
I

01

Events Per Active Year > Fluence

— Larger event sizes fall off

much more rapidly
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Cumulative Fluence Models
Solar Heavy lons

Preliminary model by Tylka
for 2 energy bins each of He,
CNO group and Fe

PSYCHIC model of NASA
GSFC

— Statistical model of alpha
particles based on 28 years
of data from IMP-8 and GOES

— Major heavy ions C through
Fe determined from ACE
instrument measurements.

— Remaining minor elements
scaled according to ISEE-3
measurements and corrected
photospheric abundance
model
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Galactic Cosmic Rays

 High-energy charged particles that originate
outside our solar system
— Supernova explosions are significant source

M. Xapsos/CAARI 2008
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GCR Properties

Consist of all naturally
occurring elements*

— 87% protons

— 12% alpha particles

— 1% heavier ions
Energies: up to 10%° eV!

— Energetically equivalent
to tennis ball traveling

250 km/hr
Fluxes: 1to 10 cm=s

* E.R. Benton and E.V. Benton, NIM B, Sept. 2001

10°
10°
10*
10°

10°

Relative Abundance

10

1.0

0.1

M. Xapsos/CAARI 2008

S

The relative abundance of

Galactic Cosmic Rays

Co
Mg

Ne_si Fe

0

5 10 15 20 25
Atomic Number (Z)

30

21



Fluence (m? st sec MeV/amu)™

Variation with Solar Cycle
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GCR Models

« NASA and MSU models originated independently
— Both based on theory of solar modulation

— Describes penetration of GCR into heliosphere from outside
and transport to near earth

— Solar modulation results in variation of GCR fluxes over solar
cycle
 Implementation of solar modulation differs

— NASA model determines solar modulation from near earth
GCR measurements, including detection of secondary
neutrons with ground-based monitors.

— MSU model uses multi-parameter fits to ultimately relate GCR
intensities to observed sunspot numbers.

= |ncorporated in widely used CREME96 program suite

M. Xapsos/CAARI 2008
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GCR Models

Comparisons with modern

Instrumentation
measurements on ACE
satellite show good
agreement

— 1997 solar minimum time

period shown

NASA model improved
with recent update
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GCR Energy vs. Accelerator lon Energy
Iron behind 100 mils Al Shielding |

Potential Difficulties

High energy ions may
produce single event
effects not observed at
lower energies

= Nuclear reactions

= Recoils in metal

overlayers

lon track size relative to
device and circuit
dimensions

= Charge sharing

= Well collapse
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