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&Y Who am 1?

o Guy with the weird name
 Born and raised in North Carolina
 Grew up with Star Wars and Star Trek
« Really wanted to be a professional goalkeeper, but...
« Graduated from Virginia Tech in Aerospace Engineering in 2003
o Started as a co-op in Flight Dynamics Analysis Branch in 2001
* Primary experience in mission design and maneuver planning
— Mission design for Solar Dynamics Observatory (SDO)
— Re-entry planning for Tropical Rainfall Measurement Mission (TRMM)
— Launch and early operations support for Aura
— Mission design and maneuver planning for Space Technology 5 (ST5)
e Currently Flight Dynamics Ground System Lead for LRO
— Responsible for the maneuver planning and navigation support
 Please ask questions!
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N%‘je Vision for Space Exploration

- "

Jan. 14 2004 — The President announced a
new vision for space exploration that
included among its'goals “... to returnto the
moon by 2020, as the launching point for

missions heyond./Beginning no later than
2008, we wilksend a series-of robotic
missions to the lunar surface to research

and prepare/for future human exploration.”
A— . W
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Lunar Orbiter camera Apollo PanCarm

Objective: The Lunar Reconnaissance Orbiter (LRO) mission objective
is to conduct investigations that will be specifically targeted to prepare

for and support future human exploration of the Moon.

el ST |
Safe Landing Sites
Locate Potential Resources High resolution imagery Space Environment
Hydrogen/water at the lunar poles Global geodetic grid Energetic particles
Continuous solar energy Topography Neutrons
Mineralogy Rock abundances
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ey Science Instruments

INSTRUMENT SPONSORSHIP MEASUREMENT LVL 1 RQMTS TRACEABILITY
CRaTER ! y _ . . .
Cosmic Ra PI'Harlan Spence, BU Tissue equivalent response to radiation M10 - Radiation Environment
Telescope gor the IM: Rick Foster, MIT LET energetic particle spectra 200 keV —1 | M20 - Radiation on Human-equivalent
Effects of Radiation ISE: Bob Goeke, MIT GeV /muc tissue
S e M50 - Surface Temperatures
DLRE S ford Better than 500m scale maps of MB80 - Surface Features and Hazards
Divaner L IM: Wayne H . JPL temperature, rock abundances, mineralp, M90 - Polar HNlumination
Radiometer Expennment ISE: Marc Foote, JPL. = ’ ) &0 .
M100 - Regolith Resonrces
e PI- Alan St SwRI UV Albedo maps of the permanently .
shadowed areas Mé0 — Images of PSRs
Lyman-Alpha IM: Ron Black, SwRI Maps of frosts in permanently shadowed M 70 — Subsurface Ice
Mapping Project ISE: Dave Slater, SWRI » P : R
areas, 3km resolution
PI: Igor Mitrofanov, IKI 7
LEND o1V skt Maps of hydrogen in upper 2m of Moon at M10 — Radiation Environment
. Deputy PI: Roald Sagdeev, UMD 10km scales _
Lunar Exploration IM: Anton Sanin, IKI Global distribution of neutrons around the M?76 — Subsuiface Ice
Neutron Detector | . m M1i10 - Hydrogen Mapping
ISE: Maxim Litvak, IKI Moon
- . 3 - - ’ r
Lot PI: David Smith, GSFC 'Eig ; opogr ”p:: " g”‘f‘r ;
. ] - Topography Resolution
Lunar Orbiter Co-PI: Maria Zuber, MIT ~50m scale polar topography at <10cm V60— !"f; is {:f;’S‘Rs
Laser Altimeter IM: Glenn Jackson GSFC vertical, and roughness and siope data -14_!33 S 'g e f  Hasard
ISE: John Cavanaugh, GSFC ] urface er.rl me.s and Hazards
M99 — Polar Illumination
. M40 — Topography Resolution
PI: Mark Robinson, ASU :
LROC . Art Bobuison. 1000s* of 50cm/pixel images (125km), and | M80 — Surface Features and Hazards
Lunar Reconnaissance e entire Moon at 100m visible, 400m UV M99 — Polar Hlumination
Orbiter Camera ISE: Mike Caplinger, MSSS ’ . .
M1i100 - Regolith Sources
L. POC: Keith Raney, JHU/APL P160 - Demonstrate new lightweight SAR
) PM: Bill Marnmnelli, NAWC X&S-band Radar imaging and radiometry Technologies
Technology Demonstration
fl DPM: Dean Huebert, NAWC
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LRO Mission Timeline

Polar Mapping Phase,
50 km Altitude Circular Orbit,
At least 1 Year

Lunar Orbit Insertion
Sequence, 4-6 Days

Commissioning Phase,
30 x 216 km Altitude
Quasi-Frozen Orbit,

Up to 60 Days

Minimum Energy
Lunar Transfer ~ 4 Days
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 LRO is scheduled to launch in late 2008 on Atlas V with LCROSS
« Direct transfer to moon is 4-5 days

 Two planned maneuvers correct for launch dispersions
— MCC-E at Separation + 22 hours
— MCC-1 at Separation + 24 hours
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é\sﬁ Trajectory Overview — Lunar Orbit Insertion

« Lunar Orbit Insertion (LOI) maneuver sequence (over 4-5 days)

— LOI-1 captures into polar lunar orbit with 5 hour period

— Total of 5 LOI maneuvers achieves Commissioning Orbit (26 x 216 km)
e Commissioning Orbit (up to sixty days)

— No orbit maintenance maneuvers needed
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N('ASA Trajectory Overview — Mission Orbit Insertion
) J y

s

e Mission Orbit Insertion (MOI) maneuver sequence

— Total of 3 maneuvers achieves Mission Orbit (50 km £20 km altitude)
* Mission Orbit (one year)

— One pair of stationkeeping (SK) maneuvers every 27 days km

— Momentum management maneuvers executed once every two weeks
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ey Communications Overview

« Tracking, Telemetry, and Command functions are provided through
ground-based S-band communication

 Range requirement of 10 m; Doppler requirement of 1 or 3 mm/s

and Doppler
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9N Flight Dynamics Facility

 Range and Doppler measurements are sent to
the Flight Dynamics Facility (FDF)

 FDF is an institutional GSFC facility
» Secured operational control center
e Supports ELVs, ISS, STS, other spacecraft

* Primary navigation and mission design for past
two US lunar missions: Clementine and Lunar

Prospector

* Primary support for LRO:
— Tracking Data Evaluation
— Orbit Determination
— Mission Product Generation
— Mission Design
— Maneuver Planning

« The Goddard Trajectory Determination System
(GTDS) is used for LRO orbit determination

s 1 NASA'’s Goddard Space Flight Center
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N%j? Daily Navigation Support for LRO

 Requirements on S-band Tracking Data Provided to FDF
— SCN required to provide 30 minutes of tracking data every lunar orbit

— Coherent Doppler and range measurements
* Range accuracy 10 meters (1 sigma)
 WS1 and DSN Doppler accuracy 1 mm/s (1 sigma)
» Other S-band stations Doppler accuracy 3 mm/s (1 sigma)

* Orbit Determination Requirements

— Daily OD using S-band tracking data
* Predictive ephemeris requirement in lunar orbit is 800 m after 84 hours
» Definitive ephemeris is 500 m RSS and 18 m radial
— Post-maneuver OD using S-band tracking data
* No predictive or definitive accuracy requirements
* Primary goal is to update station acquisition data and MOC products
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N%je Lunar Prospector Results

 Reprocessed LP data shows overlap compares to 60 m RSS (1-
sigma) and 6 m radial (1-sigma) — meets requirement!

1st Batch OD Solution 2M /_/
/ 2nd Batch OD Solution
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< 48h definitive epherg 18h definiti |
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* Transmit 532nm laser pulses at 28 Hz to LRO
* Time stamp Departure and Arrival times

Greenbelt, MD

Receiver telescope on High Gain Antenna
System (HGAS) routes LR signal to LOLA

LOLA channel 1

Detects LR signal
Fiber Optic Bundle LR Receiver
- Telescope

|
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N('@je OD Reprocessing Using Laser Data

e Goal: Orbit accuracy of 50 m RSS and 1 m radial

e Reprocessing of definitive OD using S-band and laser tracking data
— Performed twice during mission: at L+3 months, end of nominal mission
— Uses updated lunar gravity model provided by LR team

« Key force model upgrades to improve accuracy
— Gravity modeling (biggest error source)
— Solar and lunar radiation modeling
— Lunar solid tide accelerations due to the Earth and Sun on the Moon
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Lunar Gravity Impact on Mission Orbit

LRO Altitude Above Mean Sphere

No stationkeeping ‘
— With stationkeeping
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&y Conclusion

 LRO will provide the most accurate map of the Moon yet!
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