Making Smart Sensors Intelligent: Building on the IEEE 1451.x Standards

John L. Schmalzel, EA41
Fernando Figueroa, EA41
Jon Morris, Jacobs Technology
Mark Turowski, Jacobs Technology

54th International Instrumentation Symposium
Pensacola, FL USA
5-8 May 2008
Outline

- Integrated Systems Health Management and the Role of Intelligent Sensors
- Intelligent Sensors
- The Role of IS in Future Space Flight
NASA Centers

Stennis Space Center, Mississippi
Rocket engine testing at NASA-Stennis is distributed over a 13,500 acre (5,500 ha.) site +120,000 acre (48,500 ha.) noise abatement easement.
ISHM Requirements

- Improve quality
 - By making better and more reliable measurements

- Minimize costs
 - Of reconfiguration between test articles
 - Of repair and calibration

- Avoid downtime
 - By predicting impending failures
 - By timely intervention

- Increase safety (protect people and assets)
Technologies and Tools for ISHM

- ISHM Architecture
- Health assessment database
- Anomaly detection methods
- Predictive modeling
- Root cause analysis
- Intelligent elements
- Integrated awareness
A View of an ISHM Application

ISHM Models (Embedded Data, Information, and Knowledge): MTTP Implementation

Health Assessment Database:
Health Electronic Data Sheets
Repository of anomalies

Anomaly Detection:
Leaks, etc.

Intelligent Sensors: IEEE Standard+Health

Embedding of Predictive Models

Root Cause Analysis

Integrated Awareness:
3-D Health Visualization of MTTP
The Piping & Instrumentation Diagram (P&ID) for a system is translated to a G2 (Gensym) model. Populated by component objects with associated xEDS.
ISHM Enabling Technologies: Health Assessment Database

- **Historical data records**
 - Nominal
 - Anomalous

- **Algorithm repository**
 - Complex for implementation at upper ISHM architecture levels
 - Simplified for embedding in Intelligent Sensor

- **Electronic Data Sheets (EDS)**
 - Transducer Electronic Data Sheets (TEDS)
 - Health Electronic Data Sheet (HEDS)
 - Component EDS (CEDS)
 - Others
ISHM Enabling Technologies: Anomaly Detection

- NASA (Glenn Research Center)
 - Developed as part of Atlas-Centaur pneumatic and hydraulic system post-flight analysis (’80’s)
 - Noise Events
 - Spike Events
 - Flat-line Events
 - Level Shift Events
 - Drift Events

- Open literature
ISHM Enabling Technologies: Predictive Modeling

Measurement data... are compared with model predictions...
Within the ISHM model is a root cause analysis layer that describes cause/effect relationships...
Example Leak RCA

A decreasing pressure measurement associated with a pressurizable subsystem is used to reason about the possible cause/effects.
Pressure Leaks

-Leaks are critical in hydraulic systems
-One approach for leak detection:
ISHM Enabling Technologies: Integrated Awareness

- User interface
 - Minimize information overload
 - Provide navigation through 3d structure
 - Spatial relationships between components
 - Maintenance guide
An *Intelligent Sensor* consists of a *Smart Sensor* augmented by support for application-specific algorithms and associated electronic data sheets (xEDS).

That means, we first have to deal with Smart Sensors…
Smart Sensors

- A Smart Sensor adheres to one of the IEEE 1451.x Standards; for distributed systems, important to have a network capable application processor (NCAP)
 - IEEE 1451.0 Defines a set of common commands, operations and Transducer Electronic Data Sheets (TEDS) for the family of IEEE 1451 standards
 - IEEE 1451.1 Defines a common object model describing the behavior of a Network Capable Applications Processor (NCAP)
IEEE 1451.2 Defines a transducer to NCAP transducer independent interface (TII) and TEDS for a point-to-point configuration of transducer interface modules (TIMs)

IEEE 1451.3 Defines a transducer to NCAP interface and TEDS for multi-drop transducers

IEEE 1451.4 Defines a mixed-mode interface for analog transducers with analog and digital operating modes; simplest 1451 model

IEEE 1451.5 Defines a TII interface and TEDS for wireless transducers

IEEE P1451.6 Defines a TII interface and TEDS using the controller area network (CAN)

IEEE P1451.7Defines an RFID interface
IEEE 1451 – Smart Sensor
TEDS

- The transducer electronic data sheet provides the means to tag a sensor with a description.
 - Manufacturer
 - Serial number
 - Calibration status
 - Coefficients
 - Physical location
- Offers practical means for reducing costs/errors associated with measurement system configuration
Making a Smart Sensor Intelligent

- Capable of embedding algorithms; for example, for ISHM:
 - Noise detection (broadband, bandlimited, spike)
 - Instrumentation anomalies
 - Flat line
 - Drift
 - Sensor anomalies
 - Open/short
 - Debondment
Augmenting Core IEEE 1451 Functions

- **NCAP**
 - Publish normal data + health

- **Extended TEDS**
 - Health electronic data sheet (HEDS)
 - Set_HEDS
 - Get_HEDS
 - Component electronic data sheet (CEDS)
 - Set_CEDS
 - Get_CEDS
Intelligent Sensors

- **Smart sensor**
 - NCAP (Go Active, Announce)
 - Publish data
 - Set/Get TEDS
- **Intelligent sensor**
 - Set/Get HEDS
 - Publish health
- **Detect classes of anomalies using:**
 - Using statistical measures
 - Mean
 - Standard deviation
 - RMS
 - Polynomial fits
 - Derivatives (1st, 2nd)
 - Filtering—e.g., Butterworth HP
 - FFT—e.g., 64-point
 - Algorithms for
 - Flat
 - Impulsive ("spike") noise
 - White noise
 - Other (ANN, etc.)
Example ISHM-Enabled Intelligent Sensors

Hardware
- 3-Ch Thermocouple
- 24-bit ADC
- 8-bit μP
- 1 MB RAM/Flash
- SPI
- Ethernet (802.3af)

IEEE 1451 & O/S
- NCAPBlock_Go_Active
- NCAP_Block_Go_InActive
- Request_NCAPBlock_Announcement
- NCAPBlock_Announcement
- PublishNormalData

ISHM
- Mean, Std dev, Min/Max, RMS
- \(dv/dx, \frac{d^2v}{dx^2} \)
- Poly fit
- Bu HPF (13\(^{th}\))
- 64-pt FFT
- Anomalies: Flat, Spike, Noise

- PublishNormalData+Health
- Channel_Sample_Rate
- Get_HEDS • Set_HEDS • Get_TEDS • Set_TEDS
Other Smart Sensors—Some w/ Intelligent Sensor Capabilities

Mobitrum
www.mobitrum.com

Smart Sensor Systems
www.smartsensorsystems.com

NIST
www.mel.nist.com

Esensors
www.eesensors.com
Unfortunately, Intelligent Sensors are not widely available; to realize IS benefits in a system populated with conventional sensors, create a Virtual IS.

The Virtual Intelligent Sensor is software that mimics IS behavior and allows use of conventional sensors and data acquisition systems.
Data Structure Model for IEEE-1451

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Description</th>
<th>Type</th>
<th>No. of Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data structure related data sub-block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Extension: TEDS length</td>
<td>U32L</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Extension TEDS ID Number</td>
<td>U16E</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Extension TEDS version number</td>
<td>U16E</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Application related data sub-block</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fields 4-8 repeat for each health condition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Phase code</td>
<td>U8C</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Condition code</td>
<td>U8C</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Detection algorithm + arguments</td>
<td>STRING</td>
<td>Varies</td>
</tr>
<tr>
<td></td>
<td>Data integrity data sub-block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Checksum for the extension TEDS</td>
<td>U16C</td>
<td>2</td>
</tr>
</tbody>
</table>
Timing in Sensor Networks

- Need to provide time synchronization across multiple IS nodes in order to time-align measurements
- IEEE-1588 in distributed networks
 - For spatially-localized networks (e.g., Test stand, Space vehicle, Labs)
 - \(\mu s \) to sub-\(\mu s \) accuracy
 - Local oscillators synchronized to reference oscillator(s) by measuring network transport delays

http://ieee1588.nist.gov/
The Role of IS in Future Space Flight

Ares I: Crew Launch Vehicle
- ~25-mT payload capacity
- 2-Mlb gross liftoff weight
- 309 ft in length

Ares V Cargo Launch Vehicle
- ~130-mT payload capacity
- 7.4-Mlb gross liftoff weight
- 358 ft in length

First Stage
- Derived from Current Shuttle Reusable Solid Rocket Motor/Booster (RSRM/B)
- Five Segments/Polybutadiene
- Acrylonitrile (PBAN) Propellant
- Recoverable
- New Forward Adapter

Upper Stage
- 200-kib Liquid Oxygen/Liquid Hydrogen (LOX/LH₂) Stage
- 5.5-m Diameter
- Aluminum-Lithium (Al-Li) Structures
- Instrument Unit and Interstage
- RCS / Roll Control for First Stage Flight
- CLV Avionics System

Upper Stage Engine
- Saturn J-2 Derived Engine (J-2X)
- Expendable
Intelligent Sensors in Space

- Space-qualified intelligent sensors
 - Size, mass, power constraints
 - Trade spaces: Minimized wiring, distributed computing, distributed intelligence
 - Integrated with guidance, navigation & control (GN&C) architecture
 - Bus structure/protocol
 - Bandwidth, reliability
Constellation: Return to the Moon

VTS_06_1.VOB
Discussion