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An axisymmetric hydrodynamical model for the torus wind in

AGN. II: X-ray excited funnel flow

A. Dorodnitsyn1,2, T. Kallman1, and D. Proga3

ABSTRACT

We have calculated a series of models of outflows from the obscuring torus

in active galactic nuclei (AGN). Our modeling assumes that the inner face of

a rotationally supported torus is illuminated and heated by the intense X-rays

from the inner accretion disk and black hole. As a result of such heating a strong

biconical outflow is observed in our simulations. We calculate 3-dimensional

hydrodynamical models, assuming axial symmetry, and including the effects of

X-ray heating, ionization, and radiation pressure. We discuss the behavior of a

large family of these models, their velocity fields, mass fluxes and temperature,

as functions of the torus properties and X-ray flux. Synthetic warm absorber

spectra are calculated, assuming pure absorption, for sample models at various

inclination angles and observing times. We show that these models have mass

fluxes and flow speeds which are comparable to those which have been inferred

from observations of Seyfert 1 warm absorbers, and that they can produce rich

absorption line spectra.

Subject headings: acceleration of particles – galaxies: active – hydrodynamics

–methods: numerical – quasars: absorption lines – X-rays: galaxies

1. Introduction

One of the insights provided by observations of Seyfert galaxies and some quasars is

the prevalence in their X-ray spectra of spectral lines and bound-free continua from ions

of intermediate-Z elements . Early observations of Seyfert 1 galaxies using proportional

counters and solid state detectors revealed spectra with strong absorption features in the
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0.1-10 keV range (Halpern 1984). These features were attributed mostly to the edges of

hydrogen and helium - like oxygen. The term ”warm absorber” was proposed owing to

the fact that the observed X-ray absorbing gas has an electron temperature lower than it

would be if a similar level of ionization were produced by collisional ionization. However,

more detailed spectroscopic studies were hampered by the limited X-ray resolution of the

ASCA and ROSAT satellites. The grating spectrographs on the X-ray telescopes Chandra

and XMM-Newton provide unprecedented spectral resolution up to ∼ 10 keV. These show

that X-ray spectra obtained from ∼ half of low-red-shift active galactic nuclei (AGN) contain

many lines from ions of Fe, Si, S, O, Mg, and Ne, and that these are generally broadened and

blueshifted by 100-500 km/s (Kaspi et al. 2002; Steenbrugge 2005). The presence of X-ray

absorbing gas has been confirmed in the majority of AGNs which are bright enough to allow

detections (Reynolds 1997; McKernan et al. 2007). There is also a partial correspondence

between UV and X-ray absorbers (Crenshaw et al. 1999).

X-ray observations of warm absorbers are consistent with the Seyfert 1/Seyfert 2 di-

chotomy. For example, the properties of the X-ray emission in the Seyfert 2 galaxy NGC 1068

corresponds to the scattered emission expected from warm absorbers in Seyfert 1 galaxies

(Kinkhabwala et al. 2002).

Constraints on the position and dynamics of the X-ray absorbing gas can be deduced

from the observed widths and virial arguments, and also from the variability studies of these

spectra (Behar et al. 2003; Netzer et al. 2003). These show an absence of correlated response

of the warm absorber gas to rapid changes (∼ days) of the continuum. This implies that the

ionization time scale in the warm absorber gas is long (& months). Combined together, the

line blueshifts, widths, and time variability analysis favors an origin of the warm absorber gas

at R & 1 pc away from the BH. This estimate coincides with the likely location of absorbing

matter responsible for obscuration in Seyfert 2 galaxies (Krolik & Begelman 1988). The

existence of an outflow from the torus has been suggested by Krolik & Begelman (1986,

1988), and as the source of warm absorber flows by Krolik & Kriss (1995, 2001).

It is believed that this matter is in the form of a molecular torus which is responsible for

obscuring the broad line region in Seyfert 2 galaxies, and which is thought to exist in most

low and intermediate luminosity AGN (Antonucci & Miller 1986). A growing body of di-

rect observational evidences advocates for the existence of the obscuring torus. Mid-infrared

high spatial resolution studies of the nucleus of NGC 1068 using the Very Large Telescope

Interferometer have resolved a dusty structure which is 2.1 pc thick and 3.4 pc in diameter

(Jaffe et al. 2004). Observations support a multi-temperature model: the temperature of

the warm component was established to be 300 K and inside of it a second, compact and hot

(>800K) component has been found. Further studies of NGC 1068 systematically reduced es-
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timates of the temperatures of different components (Poncelet & Perrin 2006). Observations

of the Circinus galaxy, which is among the closest prototype Seyfert 2 galaxies, also revealed

a dense and warm T & 300 K component at about 0.2 pc from BH and cooler T < 300 K

component at 1 pc (Tristram et al. 2007). If the hotter component is located closer to the

X-ray source, it may be attributed to the inner part of the torus, heated by the radiation

of the compact nucleus. Although the evidence is strongest for nearby active galaxies, there

is also a strong motivation to think that within the same obscuring torus paradigm exist

those quasars whose central regions are heavily obscured by gas and dust (Type II quasars).

Evidence for this comes from spectro-polarimetric observations by Zakamska et al. (2006).

This paper is part of a series whose main goal is to test the hypothesis that the torus is

the origin for the warm absorber flow. Preliminary results of this work have been reported

in Dorodnitsyn et al. (2008) (Paper 1), in which we presented the results from a sample

model and showed that the adopted model is promising in explaining the warm absorber

phenomenon. In this paper we provide more details of our methods, and display results of

models which span the space of input parameters. We present and discuss the hydrodynamic

quantities which characterize our models: mass fluxes, velocity fields, and temperature struc-

ture. We also show sample X-ray spectra, which we will discuss extensively in a later paper

of this series.

Our approach can be described as having three basic parts: i) setting up initial condi-

tions, which requires defining an initial torus configuration and making assumptions about

the external source of radiation; ii) implementation of the wind driving force (local heating-

cooling rates and radiation pressure force) and actual 2D hydrodynamical calculations. The

latter includes the numerical solution of the time-dependent 2D (so called 2.5D) system of

equations, which takes into account centrifugal forces, and radiation pressure and heating

terms; iii) calculating of the X-ray line spectra using a code which adopts Sobolev radiation

transfer and ionization calculations for plasma in the intense X-ray field. Each of these steps

is described in what follows.

2. Governing equations

We solve the following system of equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

ρ

(

∂v

∂t
+ (v · ∇)v

)

= −∇p − ρ∇Φ + ρgrad, (2)



– 4 –

∂ǫ

∂t
+ ∇ · (v(ǫ + p + ρΦ)) = H . (3)

These are the conservation equations for: mass, momentum and energy. Heating and cooling

processes are described by the function H(erg cm−3 s−1); ǫ - is the sum of the kinetic and

internal energy densities: ǫ = ρ v2/2 + e. These equations should be supplemented by

the equation of state which we assume to be polytropic: P = K ργ , where γ ≡ 1 + 1/n,

and n is the polytrope index and P = (γ − 1) e. A one-component, one-temperature T =

Pµ/ρR, where µ is the mean molecular weight per particle, R = 8.31 · 107erg K−1 g−1 is the

universal gas constant and plasma with γ = 5/3 is assumed to constitute the flow. All three

components of the flow velocity v = (vr, vθ, vφ) are calculated, assuming azimuthal (∂/∂φ ≡
0) symmetry. Equations (1)-(3) are cast in a non - dimensional form with the characteristic

scales set by the properties of the plasma orbiting at a characteristic distance, R0 from

a black hole of mass M6 ( in units of 106M⊙). The characteristic scales are respectively:

t0 = R
3/2
0 /

√
GM ≃ 4.5 · 1011 r

3/2
pc M

−1/2
6 (s) for the time, where rpc is the distance in parsecs,

and V0 =
√

GM/R0 ≃ 6.6 · 106M
1/2
6 r

−1/2
pc (cm s−1) for the velocity.

3. Forces driving the flow

Heating and cooling of the gas

The forces accelerating the wind in our model result from the gradient of gas pressure

and from radiation pressure. The thermodynamic properties of X-ray heated gas depend on

the spectrum of the incident radiation as well as on the local atomic physics. Under the

assumption of photo-ionization equilibrium the thermodynamic state of photoionized gas

can be parameterized in terms of the ratio of radiation energy density to baryon density

(Tarter et al. 1969):

ξ = 4 π Fx/n, (4)

where Fx = Lxe
−τ/(4πr2) is the local X-ray flux, Lx is the X-ray luminosity of the nucleus,

and τ =

∫ r

0

κρ dr - is the optical depth, and n is the number density. We assume that the

attenuation is dominated by Thomson scattering κ = 0.2(1 + XH) ≃ 0.4 cm2 g−1, where

XH is the mass fraction of hydrogen, and the factor e−τ , accounts approximately for the

attenuation of the radiation flux on the way from the source toward a fiducial point. The

methods adopted in this paper for treating the effects of radiation are essentially the same

as those described in Proga et al (2000); Proga (2007), and have been applied to various

problems in the study of AGN and X-ray binaries.
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Assuming that the there is a fraction fx of the total accretion luminosity LBH available

in X-rays and that the disk radiates a fraction Γ of its Eddington luminosity Ledd = 1.25 ·
1044 M6 we estimate: ξ ≃ 4 · 102 · fx Γ M6/(N23 rpc), where N23 is the column density in

1023 cm−2. If the dynamical time within the flow is much larger than the characteristic

time of the photoionization and recombination then the ionization balance is determined by

the condition of photo-ionization equilibrium. The rates of Compton and photo-ionization

heating and Compton, radiative recombination, bremsstrahlung and line cooling are then

given by approximate formulas, modified from those of Blondin (1994), for these processes:

ΓIC(erg cm−3 s−1) = 8.9 · 10−36 ξ (Tx − 4T ), (5)

for the Compton heating - cooling;

Γx(erg cm−3 s−1) = 1.5 · 10−21 ξ1/4 T−1/2(Tx − T )T−1
x , (6)

for the photo-ionization heating-recombination cooling , and for the bremsstrahlung and

line cooling:

Λ(erg cm−3 s−1) = 3.3 · 10−27T 1/2

+ (4.6 · 10−17 exp(−1.3 · 105/T )ξ(−0.8−0.98α)T−1/2 + 10−24) δ. (7)

These formulae have been originally derived for a 10 keV bremsstrahlung spectrum (Tx =

2.6 · 107 K) and were found to be in a reasonable ( ∼ 25%) agreement with numerical sim-

ulations (Blondin 1994). Equations (3)-(7) are slightly modified version of those of Blondin

(1994), which accommodates new atomic data. Using the XSTAR code (Kallman & Bautista

2001) we recalculated heating-cooling rates for the incident spectrum which is a power law

with energy index α, and found results essentially equivalent to those given by equations

(3)-(7). Notice that in the case of a bremsstrahlung spectrum a formal value of α = 0 should

be used in (7). For a power law with energy index α = 1.1 the results differ by . 30 % (see

Figure 1). Given these rates of energy deposition from the radiation to the flow, we write the

total radiative heating-cooling function: H = ΓIC + Γx −Λ. We have also performed several

runs of our hydrodynamical models with different assumptions about heating-cooling, and

found no important difference in the flow dynamics if using equations (3)-(7) or the original

formulae of Blondin (1994), and also between bremsstrahlung and power law spectra for sev-

eral values of α. It appears that, for example, the effects of the optical depth are much more

important. That is, the difference between curves for the power law and the bremsstrahlung

spectrum at small ξ (correspondingly high density) in Figure 1 becomes unimportant.
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Fig. 1.— Comparison of the results from the XSTAR X-ray photo-ionization code and

analytic approximations (3)-(7). Curves are plotted for different values of ξ ranging from

ξ = 1 (lower curves) to ξ = 104 (upper curves). Vertical axis: total radiative heating-cooling

function H = ΓIC + Γx − Λ in units of 10−22 erg cm3 s−1. Horizontal axis: log(temperature).

Curves; solid: XSTAR; dot-dashed: analytic.
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The radiation pressure

The radiation pressure force consists of the force due to continuum absorption gcont =

FUVκ/c and due to lines:

grad = (FUVκ/c) M(t), (8)

where M(t) is the force multiplier (Castor et al. 1975), and FUV is the local UV flux. We

make use of the particular form (Owocki et al. 1988):

M(t) = k t−α
(

(1 + τmax)
(1−α) − 1

)

/τ 1−α
max , (9)

where t = τ/η is the optical depth parameter, η = κl/σe is the line strength parameter,

σe is the Thomson cross-section, and τmax = t ηmax. A parameter ηmax was introduced

by Owocki et al. (1988) and Stevens & Kallman (1990) in order to limit the effect of very

strong lines. That is, they assume a line number distribution which satisfies: dN/(dη dν) ∼
ηα−2 exp(−η/ηmax), where N(η, ν) is the line number distribution. If ηmax → ∞, so that lines

are distributed as a power law, one recovers the result of Castor et al. (1975): M(t) ∼ k t−α.

In the opposite case of τmax → 0, the force multiplier is independent of t, and Mmax ∼ k ηα
max.

As a result of this maximum line strength cutoff a correction factor appears in the relation

for M(t), (9). The dependence of k and ηmax on ξ has been numerically calculated and then

fitted by the analytical formulae (Stevens & Kallman 1990):

k = 0.03 + 0.385 exp(−1.4 ξ0.6), (10)

log10 ηmax =

{

6.9 exp(0.16 ξ0.4), log10 ξ ≤ 0.5,

9.1 exp(−7.96 · 10−3 ξ), log10 ξ > 0.5.

From these, one can see that M(t) can depend sensitively on the ionization parameter.

Taking a fiducial α = 0.5 (the value, adopted in all our calculations), one finds that Mmax =

585 at ξ = 0, then has two local maxima: Mmax = 724 at ξ = 0.3, and Mmax = 743 at

ξ = 3.1. Mmax then drops to 1.7 at ξ = 100 and decreases gradually to Mmax = 0.01 at

ξ = 1000.

3.1. Initial configuration: rotating torus with arbitrary Compton optical

depth.

We begin from a rotating toroidal configuration which is in equilibrium in the external

gravitational field of the BH. The equation of state of the torus interior is described by the
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polytrope P = Kρ1+1/n. The distribution of the density (or pressure) in the torus interior

was given by Papaloizou & Pringle (1984) (in what follows refer to PP-torus for short), who

assumed that the distribution of the specific angular momentum inside the torus is constant.

In our case such a torus would not be in equilibrium because of the radiation pressure from

the central object. Thus we modify equilibrium equations of Papaloizou & Pringle (1984) to

include the radiation pressure term. Since this cannot be done in a closed analytical form,

we can write an approximate equation:

p

ρ
≃ 1

n + 1

(

1 − Γ e−τ(r)

r
− 1

2 r2 sin2 θ
− C

)

. (11)

Note that equation (11) must be understood as a bridging formula between two limiting

cases: optically thin e−τ ∼ 1 (in which case it is the PP-torus with 1 − Γ reduced gravity),

and optically thick, when grad ∼ 0 (PP-torus case). A constant C in the equation (11),

parameterizes the distribution of the torus models and is connected with the distortion of

the torus (this is described in more detail below). Including the radiation pressure reduces

the effective gravity, and thus the torus gas needs less entropy to sustain it against vertical

collapse. In both of these limiting cases this equation is exact.

Notice that the problem of toroidal equilibrium in the presence of heating (or other

radiation transfer effects) introduces a characteristic length scale through the optical depth

τ , leading to non-self-similarity of the model. Equation (11) was derived by assuming that

the distribution of the specific angular momentum inside the torus is constant. Choosing

non-dimensional units and working in terms of ̟, the cylindrical radius in units of R0, if

we define the non-dimensional density ρ such that ρ(̟ = 1) = 1, and the non-dimensional

pressure P and internal energy e such that: P = (γ − 1)e, and e(̟ = 1) = e0 then

e0 =
n

n + 1

(1 − Γ)

(0.5 − C)n

(

1

x
− 1

2̟2
− C

)1+n

. The inner and outer edges of the torus are lo-

cated at ̟− and ̟+, respectively. Bounded configurations exist only for 0 < C < 0.5 and

the distortion of the torus is described by the parameter d = (̟− + ̟+)/2 = 1/(2C). The

boundary of the torus is matched to the exterior by the condition P = 10−6. The PP-torus

is unstable to non-axisymmetric perturbations (Papaloizou & Pringle 1984). However, this

effect cannot be numerically investigated in the azimuthal symmetry which we adopt, since

no signals can propagate in the φ direction. At ̟ > 1, matter that constitutes the torus

has an excess of angular momentum with respect to the local ’equilibrium’ keplerian value,

l(̟, z) > l(r), and vice versa, in the inner parts of the torus ̟ < 1, l(̟, z) < l(r). It is the

internal pressure of the torus (equation 11) that inhibits matter from settling to smaller (or

larger, depending on angular momentum) orbits. The gas first evaporates from the part of

the torus which is closer to the source of radiation and tends to settle at larger ̟, as soon
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as the back pressure supporting it drops.

We begin our simulations from the stationary configuration determined from equation

(11). We follow the torus evolution as it is being heated by X-rays. No replenishing of

the gas which constitutes the initial torus is provided: Therefore, the torus will eventually

lose all its mass and will completely evaporate. However, in the regime we are looking

for, the evaporation is not dramatic and does not significantly deplete the torus during the

characteristic dynamical time.

In the following sections we will show that the existence and character of the flow from

the heated torus depends critically on the geometry. That is, it depends on the divergence of

the flow streamlines, the strength and incident angle of the X-ray illumination, and on the

direction of the effective gravity in the rotating frame of the torus. The flow is intrinsically

two-dimensional, and therefore cannot be adequately described a priori by 1D models, such

as those preformed by Chelouche & Netzer (2005). Furthermore, the shape of the torus,

and thus the launching surface for the flow, is affected by the flow. So the torus interior

cannot be considered as a boundary condition (e.g. as in Balsara & Krolik (1992)); we need

to include it in the computational domain.

4. Methods

For our computations we adopt a spherical-polar coordinate system (r, θ), extending

the computational domain {ri, θj} from rin = 0.01 to rout = 50 in radius, and from 0 to

π in the polar domain making no assumption about equatorial symmetry. The number of

points in the radial, Nr, and polar, Nθ, directions are taken to be equal: N = 140, in low

resolution and N = 300 in high resolution grids. The {ri} grid is non-uniformly spaced, i.e.

r2 = r1 + (rout − rin)(k
1/(Nr−1)
r − 1)/((k

Nr/(Nr−1)
r − 1)), and ri+1 = ri + (ri − ri−1)k

1/(Nr−1)
r ,

for i = 2, Nr − 1, and the refinement factor is kr=4. In order to achieve better resolution

of the flow itself rather than the torus interior we also adopt a polar grid which has non-

uniform spacing δθi = θi − θi−1, so that the maximum refinement is approached at θ = π/4:

δi+1 = δi/k
1/(Nθ−1)
θ at 0 < θ < π/4, and θ = π/4: δi+1 = δik

1/(Nθ−1)
θ at π/4 < θ < π/2 (and

analogously spaced in the southern hemisphere). Boundary conditions are axially symmetric

at θ = 0, π and outflowing at rin and rout

To solve numerically the system of hydrodynamical equations (1)-(3) we use the code

ZEUS2D (Stone & Norman 1992). Note that the characteristic time of X-ray heating/cooling

can be much shorter than the dynamical time, which in such a case introduces strong stiff-

ness to the system of equations (1)-(3). To overcome this difficulty, some modifications have
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been made to the code. The most important one is the implementation of a fully implicit

update of the energy in equation (3) just prior to the transport step in ZEUS2D. Addionally,

we account for the radiation pressure (equation (8)) term. As an initial test we have evolved

a toroidal distribution of matter for two rotational periods and found the configuration to

be stable. The gas is illuminated by the incident X-ray radiation with a power law spectrum

with an energy index, α = 1. The heating/cooling rates are described by the approximate

analytical formulae give in equations (3)-(7).

Warm absorbers

We test output of our hydrodynamical models against the ability to predict warm ab-

sorber spectra. To do this we use the output from the hydrodynamical code, of ρ,v, and T as

an input to the calculation of X-ray line and photoelectric absorption spectra. The numeri-

cal code has been specifically developed for calculation of spectra in the X-ray domain and

makes use of procedures developed for the XSTAR (Kallman & Bautista 2001) code, while

calculating the ionization structure and distribution of opacities, and treating the radiation

transfer in the Sobolev approximation (Rybicki & Hummer 1983). Although the goal of this

paper is to show that pure hydrodynamic 2D models can produce warm absorber spectra, we

present here only sample spectra, assuming pure absorption. We postpone a more detailed

discussion, including a full 3D transfer calculations, to a separate publication.

5. Results.

The most important parameters which determine the properties of the warm absorber

flow are the initial Compton optical depth τC
⊥ = τ(θ = 90◦) of the torus (or equivalently the

maximum initial torus density nmax), and the distance from the BH, R0. We also explore

the dependence on Γ and d. Other parameters are chosen having some typical values: the

mass of the black hole: MBH = 106 M⊙, the Compton temperature of the X-ray radiation

Tx = 10 keV, and the fraction of X-rays and UV radiation fx = fUV = 0.5. (For rotating

flows exposed to a multi-temperature radiation, see e.g. Proga et al. (2008)). The latter

is consistent with typical energy distributions of the radiation close to the BH (Laor et al.

1997). We neglect any changes in the BH luminosity. The important thermal time scales

within the flow, namely the Compton heating and cooling time, tx and the dynamical time,

tdyn, may be of the same order tx ∼ tdyn ∼ 1010 s. This is discussed in more detail later

in this section. Thus the outflowing gas may not be in thermal equilibrium and adiabatic

losses are likely to be important. Notice that a nearly hydrostatic Compton heated corona
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can exist only at r . RIC = GMBH µ/RTx ≃ 8 ·1016(M6/Tx,7) cm, where Tx,7 is the Compton

temperature in terms of 107K. In all of our models the major flow is located at r >> RIC.

We have calculated 20 models, including combinations for: τC
⊥ = 1.3 (models Ai), and 40

(models Bi); R0 = 0.5, 1, 1.5; Γ = 0.1, 0.3, 0.5 all with d = 2.5; and two models with d = 5

(models Ci). These are summarized in Table 1 where some of the characteristic results from

the computed models are presented. In what follows we describe in detail the cases which

best illustrate the most important results. We also discuss the dependence of our results on

parameters, based on the behavior of the ensemble of models.

The model A6 is similar to that described in Paper 1, although the initial torus in the

model which is described here has a different distribution of ρ and e (see equation (11), and

the discussion thereafter), and smaller τC
⊥ . In Paper 1 this model has been described in

detail. Calculations presented here reveal more details and confirm the conclusions of Paper

1. We begin here by describing results from model B6, and later discuss how it differs from

model A6.

Model, B6 has τC
⊥ = 40, R0 = 1 and Γ = 0.5 and corresponds to a Compton thick

(τC
⊥ ≃ 40) torus having large nmax = 107 cm−3 and mass Mtor = 9.3 · 105 M⊙. Results

are displayed in Figure 2, where the evolution of the distribution of density is shown as a

function of time (the density scale is such that 0 corresponds to 107 cm−3); Figure 3 where

the distribution of pressure is shown at t = 3 (the pressure scale is such that 0 corresponds to

4.7 · 10−4 dyn/cm2) ; Figure 4 for various quantities as a function of the inclination θ; Figure

5 (left panel), where the effect of the distortion parameter d is demonstrated; and Figure

6 showing horizontal ’slices’ of the velocity and temperature at constant height, z. In the

case of this model, the torus column is high enough to effectively screen the torus interior

from penetrating X-rays. This leads to formation of a nearly pure funnel flow, i.e. the torus

interior, and hence the shape of the surface responsible for launching and collimating the

flow, is essentially unaffected by X-ray heating on time scales . trot.

Here and in what follows we discuss the time evolution of our models in terms of t,

measured in units of the characteristic time of rotation, t0. After t = 1 a high pressure

region created by X-ray heating extends to r ≃ 4.5 − 5 pc throughout the area that is not

shadowed by the high density torus. At this time the torus is located at θ < 50◦. The

distortion parameter has a value d ≃ 2.5, i.e. the torus shape is almost unchanged from its

initial value. This is shown in the upper left panel of Figure 2. Within the part of the flow

which is not shadowed by the torus, high temperature gas expands in a spherical bubble with

radius, r . 5.2 pc in which the temperature is T ∼ 3−10 Tvir(r), where Tvir = 2.6·105 M6/rpc

is the local virial temperature. An axisymmetric region exists between ̟ < 0.75 pc and z < 2

pc where the temperature, T ≃ 10 Tvir(r) . That is, high temperature, T ∼ 3 · 106 K, but
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low density gas fills the torus funnel. The ionization parameter (equation 4) in this region

is ξ ≃ 104 − 105. The outer edge of the torus extends to ∼ 4.25 pc in temperature, and to

∼ 4.5 pc in density contours.

Figure 2 (lower left) shows density and velocity fields for model B6 at t = 3. Figure

3 shows that a high pressure region expands to height z ≃ 6 pc from the equatorial plane.

The torus inner edge is inferred from the temperature and density maps to be ̟− ≃ 0.83 pc.

Inside the of this radius, which we refer to as the torus throat, the temperature is T ≃
106 − 107 K. A wide nozzle with (̟max −̟min)/zmax ≃ 2.12, where zmax ≃ 0.4 pc is formed,

having inner radius of ̟ ∼ 0.85 pc. The torus outer edge is slightly shifted to ̟+ ≃ 4.5pc.

The values of ξmin (the minimum ionization parameter along a radial line) and the column

density vary significantly with the inclination angle. Figure 4 shows the distribution of

radial and poloidal velocity, ξ, density and the rate of growth of number density with radius

as function of θ at t = 3 for model B6. Near the axis, ξmin(θ ≃ 20◦) = 104 and the

column density is N23 = 10−3. Note that if tx & tdyn, i.e. the gas is not in thermal

equilibrium, then ξ is not as meaningful as when tx << tdyn. When tx & tdyn adiabatic losses

strongly affect the temperature of the gas. At larger θ, the ionization parameter decreases:

ξmin(θ ≃ 25◦) = 3·103 and at higher inclination, ξ gradually reduces from ξmin(θ = 45◦) = 12,

eventually becoming ξmin(θ ≃ 60◦) = 2.5. At a critical angle, θ ∼ 40◦, a strong rise of the

column density reflects the fact that the line of site penetrates the dense torus body rather

that through the wind (c.f. Figure 4, lower right). The column density increases, from

N23 = 0.3 at θ = 45◦ to N23 ∼ 100 at θ ≃ 60◦, providing total obscuration. Figure 3

also shows the position of the sonic surface determined by the relation vp/cs = 1, where

vp = (v2
r + v2

θ)
1/2 is the poloidal velocity and cs = (RT/µ)1/2 is the speed of sound. Behind

the torus a low entropy region exists which is bounded from the sides by a quasi-stationary

shock. The existence of this structure can be understood from the following considerations.

If the flow were perfectly symmetric in both hemispheres, then it should have vz ≡ 0 at

z = 0, and the z = 0 plane would be the equivalent of a rigid wall (reflecting boundary).

Thus, if vz < 0 behind the torus the formation of a shock structure is anticipated. Generally,

this is the kind of picture one expects to observe from a supersonic wind flowing over a rigid

obstacle.

At t = 5 in model B6 (Figure 2, lower right), the density maximum is located at

̟ ≃ 2 pc. The inner edge of the torus does not shift significantly from the position it has at

t = 3: ̟− ≃ 0.75 pc in density maps (and ∼ 1 pc in temperature maps); the outer edge is

at ̟+ ≃ 4.3 pc. The temperature of the torus interior is in the range 103 − 6 · 104K. A hot

flow is located near the axis, bounded from the sides by the torus throat, and having high

temperature: ∼ few · 106 K. A significant drop of ionization parameter ξ from ∼ 6 · 103 to

∼ 6, occurs again at θ & 45◦ − 50◦ (c.f. Figure 4) , where the column density also rises from



– 13 –

N23 = 0.04, to N23 = 30 at θ & 60◦. The aspect ratio of the torus is: ∆ = R0/H ∼ 1 in

accord with what is inferred from observations (Krolik & Begelman 1986; Jaffe et al. 2004).

At low inclinations, θ . 10◦, everywhere in the wind the poloidal component of the velocity

is determined by vr. However, at θ > 50◦ inside the torus throat, the vθ component is

important, i.e. vθ ∼ vr at ̟ < 1 pc.

Model A6 has τC
⊥ = 1.3, R0 = 1, Γ = 0.5 and is very similar to the model described

in Paper 1. It differs from model B6 in that the smaller optical depth of the torus interior

cannot shield the gas from a extensive X-ray heating and the torus loses mass from large

parts of its surface. The initial maximum density of the torus is nmax = 106 cm−3 corresponds

to initial torus mass, Mtor = 9 ·104 M⊙. Figure 7 shows the distributions of poloidal velocity,

ξ, density and the rate of growth of number density with radius as a function of θ at t = 3 for

model A6 (in the same format as Figure 4). During the evolution, a region of high pressure

extends from r ≃ 4.5 − 5 pc at t = 1 to r ≃ 12 pc at t = 3, and to r ≃ 20 pc at t = 5. The

inner edge of the nozzle shifts slightly from ̟− ≃ 0.8 pc at t=1 to ̟− ≃ 0.83 pc at t=3, and

̟− ≃ 0.75 pc at t=5. At later times the behavior of the model A6 is similar to models A1

and A5, and can be inferred from Figure 8

It has been mentioned that in model B6 much of the torus interior is opaque to pene-

trating X-rays. Remarkably, the minimum nozzle cross-section doesn’t change much at late

times, implying that the mass-loss rate becomes quasi-saturated. Note that in the case of a

1D flow Ṁ is roughly set by the position of the sonic point, which in turn is set by gravity.

In the case of a 2D nozzle, the mass-loss rate is determined by X-ray heating, gravity and the

minimum nozzle cross-section. In the case of model B6 the latter remains almost unchanged

in time. We believe this model is probably most representative in showing the key features

of X-ray excited flow. However, models Ai may generally have broader angular patterns in

which a warm absorber spectrum is observed, as will be discussed below. Only comparing

synthetic spectra with observations can answer the question of what model is more adequate

in describing the phenomenon of warm absorbers.
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Model τC
⊥ R0 Γ d v10◦

max,t=3 v45◦

max,t=3 v10◦

max,t=5 v45◦

max,t=5 Ṁt=3 Ṁt=5

A1 1.3 0.5 0.1 2.5 516 155 624 332 4.09 · 10−4 6.54 · 10−3

A2 1.3 0.5 0.3 2.5 710 317 847 330 1.48 · 10−3 4.31 · 10−3

A3 1.3 0.5 0.5 2.5 707 267 760 291 2.34 · 10−3 2.14 · 10−2

A4 1.3 1 0.1 2.5 547 189 514 217 1.76 · 10−3 1.66 · 10−2

A5 1.3 1 0.3 2.5 526 179 605 343 9.65 · 10−3 6.34 · 10−2

A6 1.3 1 0.5 2.5 570 235 670 337 2.02 · 10−2 1.8 · 10−2

A7 1.3 1.5 0.1 2.5 360 197 413 230 6.21 · 10−3 1.64 · 10−2

A8 1.3 1.5 0.3 2.5 388 169 540 310 1.40 · 10−2 5.68 · 10−2

A9 1.3 1.5 0.5 2.5 317 207 663 370 2.66 · 10−2 1.23 · 10−1

B1 40 0.5 0.1 2.5 673 318 522 320 3.56 · 10−3 7.38 · 10−3

B2 40 0.5 0.3 2.5 590 257 1004 471 1.16 · 10−3 1.87 · 10−2

B3 40 0.5 0.5 2.5 907 383 957 459 5.49 · 10−3 2.56 · 10−2

B4 40 1 0.1 2.5 506 205 438 236 3.04 · 10−3 1.53 · 10−2

B5 40 1 0.3 2.5 536 216 587 276 8.71 · 10−3 2.85 · 10−2

B6 40 1 0.5 2.5 641 271 676 324 1.55 · 10−2 7.24 · 10−2

B7 40 1.5 0.1 2.5 395 179 496 187 1.39 · 10−2 3 · 10−2

B8 40 1.5 0.3 2.5 541 185 610 329 2.22 · 10−2 7.17 · 10−2

B9 40 1.5 0.5 2.5 547 248 602 347 3.2 · 10−2 8.53 · 10−2

C1 40 0.5 0.5 5 890 464 770 349 3.46 · 10−3 1.16 · 10−2

C2 40 1 0.5 5 789 788 772 770 1.35 · 10−2 8.01 · 10−3

Table 1. Models, for different initial τC
⊥ , R0, Γ, and d and results for the maximum velocity,

vθ
max,T=time(km s−1), where θ is the inclination angle; and the mass-loss rate, ṀT=time(M⊙/yr).

Mass loss within the funnel flow

It is instructive to consider the distribution of variables within a horizontal cross-section

at a certain height above the equatorial plane. In so doing, we interpolate the solution

from an (r, θ) - spherical grid to a (z, ̟; 100 x 100) Cartesian grid. Figure 6 shows the

distribution of temperature and z-component of velocity, in terms of the escape velocity,

Uesc = (2GMBH/r)1/2, at different heights for model B6.

A hot region extends to ̟ ≃ 1 pc at z = 0.2, and to ̟ ≃ 2 pc at z = 1. The ”funnel”

can be seen in distributions of both temperature and velocity. At the X-ray heated boundary

of this nozzle gas is being heated so that its temperature increases suddenly to ∼ 106 − 107

K. This fact reveals an analogy between the torus flow with X-ray excited winds in X-ray
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binaries (Basko et al. 1977; McCray & Hatchett 1975); we discuss this further later in this

section. Notice that in our case the inner surface of the torus both serves as a copious source

of a gas and as a collimating funnel.

Figure 5 shows models B6 and C2 at t = 4 and Figure 8 shows density and velocity

streamlines for models A1 and A5 at t = 4. Notice, there is little difference between Figure

8 (left panel, Model A1) and Figure 8 (right panel, Model A5); the effect of smaller R0 is

partially compensated by the fact that Γ is also smaller, thus reducing the effective gravity.

If Γ ≃ 0, then ̟− ≃ 0.5 (for C = 0.2 in the equation (11)). However, when Γ = 0.5, as

in model B6 (Figure 5, left panel), the effective gravity at the innermost optically thin edge

of the torus is reduced by half. Figure 5 (right panel) shows a model with initially large

distortion d = 5 (C = 0.1), model C2 in Table 1.

In model A6, a well-developed wind is observed in the vicinity of the high density torus,

following the equal pressure contours; the maximum radial velocity is observed close to the

axis at vmax(θ ≃ 3◦) = 700 km s−1. As a general trend at t = 3 the maximum velocity has

a plateau at 20◦ < θ < 50◦, vmax = 220 km s−1, and lower values closer to the equatorial

plane (Figure 7). The flow is approximately symmetric in both hemispheres. At later times,

t = 4 and t = 5, the behavior of the model is similar to t = 3: namely, vmax(θ ≃ 4◦, T =

5) = 900 km s−1, and on the plateau being vmax ∼ 380km s−1. The torus is losing mass in

all directions, although with very different speed at different inclinations. Because we are

solving equations of ideal hydrodynamics (with only a small numerical viscosity), accretion

through the inner boundary (at r=0) is negligible: Ṁin(M⊙ yr−1) < 10−8. The maximum

mass flux per unit solid angle Ṁmax
Ω (M⊙ yr−1 sterrad−1) peaks at θ ≃ 13◦ at t = 3, i.e. at

much higher inclinations than vmax, and at θ ≃ 55◦, Ṁmax
Ω = 0.01 at t=1, Ṁmax

Ω = 2 · 10−3 at

t=3, and Ṁmax
Ω = 0.02 at t = 5. The total mass-loss rate at t = 3 is Ṁ(M⊙ yr−1) ≃ 7 · 10−3.

The mass-loss rate is Ṁ(M⊙ yr−1) ≃ 2.4 · 10−2, at t = 4, and Ṁ(M⊙ yr−1) ≃ 4 · 10−2,

at t=5, and the change of the mass-loss rate with time is dṀ/dt((M⊙ yr−1)/yr) ≃ 10−6.

Comparing distributions of v and n we conclude, for example, that the apparent minima

of vp ≃ vr correlate (with a certain lag) with maxima of n and vise a versa, reflecting

conservation of mass flux.

As in model A6, the model B6 funnel wind carries mass flux which doesn’t change much

during the evolution. The maximum velocity is as high as ∼ 1000 kms−1 near the axis, and

typically 200 . vmax . 600 km s−1 at 15◦ . θ . 50◦. The bulk of the gas, which potentially

may produce warm absorber features, moves with comparable speed. However the largest

observed velocity in B6 model is vmax(θ ≃ 3◦) = 1200 km s−1, at t=5. The mass-loss rate is

Ṁ(M⊙ yr−1) ≃ 3.4 · 10−3, at t=3, and Ṁ(M⊙ yr−1) ≃ 7 · 10−2, at t=5.
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Spectra

Computing absorption spectra is a key test for the warm absorber flow model. Several

sample spectra are shown here, although the detailed discussion of methods and results of

calculations of such spectra is postponed to a later paper.

Figure 9 shows the model A6 spectrum observed at different inclinations. This figure

shows the warm absorber spectrum at t = 3 and at t = 4. At t = 4 a rich X-ray line

absorption spectrum exists in the range 43◦ . θ . 52◦, and in the range 47◦ . θ . 55◦ at

later times, t = 5.

At t = 3 the B6 model predicts a rich spectrum for 42◦ . θ . 47◦. At later times

a similar spectrum appears at lower inclinations. Figure 10 shows the model B6 spectrum

observed at different inclinations at t = 4. At t = 5 the spectrum exists between 45◦ .

θ . 50◦. Notice that the region of the funnel wind in this model is bounded by the area

unshadowed by the torus: 0◦ . θ . 40◦. At θ & 30◦ column density becomes N23 ≃ 0.45 and

the ionization parameter is ξ . 20. At higher inclinations the X-ray flux in the 1 < E < 2

keV range becomes severely absorbed.

Figure 11 shows the evolution of the observed properties of the warm absorber flow with

time (in the same time units) for model A3. It can be seen that warm absorber spectra are

changing slowly on a timescale ∆t ∼ 1. This is typical for most of our models and shows

the range of times over which our solution can be considered as a representation of a steady

state warm absorber flow.

A quantitative analysis of our synthetic spectra and comparison with observations will

be done in a later paper. This is due in part to the need for full 3-dimensional treatment of

the transfer and scattering of line photons, which we do not present here. Rather, the spectra

in figures 9, 10 and 11 are calculated assuming pure absorption. We can calculate crudely

some of the properties of individual lines, and show that these are generally consistent

with observations. A convenient way to do this is to discuss the profile of what is likely

to be the strongest line in any synthetic spectrum, the Lα line of OVIII. In model A6 at

t = 3 the full width at half-maximum (FWHM) of this line is ∼ 200km s−1 . Closer to

the BH, the maximum observed velocity is greater, i.e. models A3 and B3 give FWHM

∼ 400km s−1 at θ ∼ 43◦, and 40◦, respectively. The centroid energy of the line is at a

blueshifted velocity (50 − 200)km s−1 with respect to line center. These velocities are less

than those observed from, eg., NGC 3783, but are comparable to those observed from other

objects (McKernan et al. 2007). Such comparisons should also include the effects of scattered

emission, which may skew the line centroid and red edge, and which we have not considered

here.
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Analytical estimates of the mass-loss rate

The mass-loss rate found from numerical calculations is in approximate agreement with

theoretical expectations. The value of the mass-loss rate, Ṁ , can be estimated by integrating

the average mass flux 〈j〉 over the surface area of the torus exposed to X-ray radiation,

Σ ∼ 2π2 R2
0 /∆, where ∆ = R0/H ∼ 1. 〈j〉 may be estimated using the same arguments as

those of Basko et al. (1977) and McCray & Hatchett (1975). Namely, heating from a BH

creates a narrow transition layer, a ”skin” on the surface of the torus. There, temperature

rises almost discontinuously from inner ”cold” (T ∼ 104, T . Tvir), to outer ”hot” (T & Tvir)

value. This transition can be seen in Figure 6.

Matching momentum, p+ρv2 and mass flux, j = ρv below and above this discontinuity,

we obtain a well known relation: j2 = (Ph − P0)/(ρ−1
0 − ρ−1

h ), where subscripts 0 and h

refer to values below and above the discontinuity. Being heated, the gas expands and its

specific volume, V = 1/ρ increases. Above the discontinuity the flow is assumed to be

isothermal so that P ∼ 1/V . In the P-V plane, the transition between points P0, V0 and

Ph, Vh goes through the straight line with an inclination, (Ph − P0)/(Vh − V0) > (dP/dT )T ,

and it follows j2 < −(dP/dV )T = ρ2
h c2

s,h, where cs = (RT/µ)1/2 is the velocity of sound.

Since j = ρhvh, it follows vh < cs,h and the flow immediately above the discontinuity is

subsonic (Basko et al. 1977; McCray & Hatchett 1975). From the momentum conservation,

P0 ≃ Pm = Ph + ρhv
2
h, and the mass flux associated with such heating, can be estimated as

〈j〉 =
Pm

vh Mh(1 + M2
h)

, where Mh is the Mach number above the discontinuity, Pm is the

pressure below the discontinuity, and for simplicity we assumed vh ≃ cs,h.

McCray & Hatchett (1975) have calculated the state of the gas in the optically thin

layer of a stellar atmosphere heated by X-rays. From their results it follows that the relation

between Pm and Fx can be cast in the form: Pm = 10−12α−12 Fx, where α−12 ∼ 1, reflecting

the shape and effective temperature of the incident spectrum (Basko et al. 1977). Although

it is essential (in order to obtain stationary transonic flow, correctly matching boundary

conditions at infinity) that the flow above the discontinuity is subsonic, we assume that the

sonic surface is located not far from the discontinuity, estimating v2 = cs,h, Mh = 1. Next,

we write: Fx =
Lx

4πR2
(1 + A), where A is the effective X-ray albedo of the X-ray heated skin

and we take A = 0.4 (which we simplistically assumed to be optically thin), and assume

µ = 0.5. Calculating Ṁ =< j > Σ, we finally obtain:

Ṁ (M⊙/yr) ≃ 0.16
fx Γ

√

Th,6

M6

∆
, (12)

where Th,6 is the temperature above the discontinuity in units of 106K. Inserting relevant

parameters, such as Γ = 0.5, fx = 0.5,R = 1 pc, M6 = 1, ∆ = 1, and adopting the value
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of Th taken from our numerical model A6, Th ≃ 106 K, we estimate the mass-loss rate:

Ṁ(M⊙ yr−1) ≃ 4 · 10−2. Comparing results from this approximate formulae with those

summarized in the Table 1 we conclude that they are in good accord. Given the torus mass

in the A6 model Mtor = 9.3 · 104 M⊙, we conclude that it may sustain such mass loss for

∼ 1 · 106yr. The upper limit may be inferred from Table 1, and is found to be ∼ 108yr.

Adiabatic loses

The characteristic time scale at which the energy is deposited to the flow via Compton

processes, tx can be cast in the form:

tx(s) ≃ 9.4 · 1010
r2
pc

Γfx

T̃

T̃ − 1
, (13)

where T̃ ≡ T/Tx and Tx = 2.9 · 107K. This should be compared with the dynamical time,

tdyn of the flow:

tdyn(s) ≃ 4.3 · 1010 rpc

√

T̃. (14)

When tdyn . tx, the outflowing gas departs from thermal equilibrium and one must account

for adiabatic losses, Λad, when calculating the temperature of the gas. Notice that the

properties of the two-phase (or multiple-phase) gas are conventionally described by the S-

curve on the T − Ξ diagram (Krolik et al. 1981), where Ξ = Fx/(nkTc) is the other form

of the ionization parameter. That is on the T − Ξ plot those places where dT/dΞ > 0

are stable to isobaric perturbations. Places where dT/dΞ < 0 are unstable. Including Λad,

may significantly lower the temperature of the hot phase (Chelouche & Netzer 2005). This

temperature can be estimated by equating the Compton heating rate, ΛIC ≃ 4kFx
σen

mec2
Tx to

the adiabatic losses rate, Λad ∼ v

r
ρc2

s. The flow near the funnel walls is less divergent than

it would be in the case of a spherically-symmetric wind, in which case the latter expression

is a factor of 2 larger. Assuming that above the discontinuity v ∼ cs, we obtain:

Th(K) ≃ 5.7 · 106

(

fxΓ

rpc

)2/3

, (15)

which gives Th ∼ 2 · 106K, for parameters adopted in this paper. This value is in good

agreement with the value of Th, which is found from T (̟, z) distributions shown in Figure

6. Three major regions within the funnel flow may be emphasized: i) a ”discontinuity”

where temperature is rising from the inner ”torus” value to Th ∼ 106K; ii) a ”plateau” where

T ∼ Th and thermodynamic characteristics of the flow result from the interplay between ΛIC

and Λad; iii) region of hot, overionized flow where T → Tx.
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Returning current

From Figures (5) and (8) we see that there exists a region, behind the dense torus,

where outflow is switched to inflow. This gas rejoins the torus in the shadowed region. For

example, taking the model A6, and integrating the mass flux over the region where vp < 0,

we obtain Ṁin = 4 · 10−6 M⊙ yr−1 at t=3. That makes ∼ 6% of the total accretion rate

Ṁaccr, required to maintain 0.5 Ledd luminosity of the BH, given the efficiency of accretion,

η = 0.06. At the same time, much more mass, ∼ 2 · 10−3 M⊙ yr−1, is lost within the funnel

(θ . 50◦) in the X-ray excited wind. Matter that is removed from the funnel is replaced

by gas from the torus interior. Thus, a weak large scale convection flow is observed in the

simulations. This effect is most clearly seen in models with large d, such as model C2, shown

in Figure 5 and is due to a strong drop of vp as the outflowing gas is passing the shock wave

front behind the torus (c.f. Figure 3) and being unable to escape from the potential well.

Radiation force

The dependence of the radiation pressure on the ionization parameter, ξ, is determined

by equations (8) and (10). In the region of the fast flow the wind is too overionized for

the radiation force to be important. This resembles Low Mass X-ray Binaries (LMXB)

case in which the radiation pressure is also found to be insufficient to drive a significant

outflow (Proga & Kallman 2002). The ionization parameter drops below ∼ 100 at θ & 40◦

- the value determined by the torus aspect ratio, ∆. Thus the radiation pressure may be

of importance at higher θ and at these inclinations its relative strength is determined by

the attenuation of the X-ray and UV fluxes. For model A6 we have τ ≃ 6 at θ ≃ 90◦ and

τ ≃ 1 at θ ≃ 60◦; i.e. the torus becomes Compton thin at θ . 60◦. The radiation pressure

exhibits complicated behavior with varying θ, having multiple maxima and minima. The

force multiplier, M(t, ξ(θ)) peaks at 44◦ at r ≃ 2, where grad/ggrav ∼ 5. Generally, two

maxima of grad are observed at a given θ along a radial line. The second peak becomes smaller

at higher inclinations, i.e. in models Ai the radiation pressure is determined mainly by the

properties of the X-ray heating (i.e. ξ(θ)) rather than by the attenuation of the UV flux. At

higher θ smaller maxima occur at smaller r; the inner skin of the torus exerts considerable

radiation pressure, although at large θ it is opposed by the back pressure of the torus interior.

We calculated a model which has the same parameter values as model A6 but with grad ≡ 0.

At t = 3 this model gives vmax(θ = 10◦) = 564 km s−1 and vmax(θ = 45◦) = 194 km s−1.

Comparing with Table 1 values we see that for the range of angles where warm absorber

flow is observed the radiation pressure doesn’t play a major role in the flow acceleration.

In models Bi the attenuation is much stronger than in models Ai and consequently the
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secondary maxima of grad which were observed in models Ai are suppressed by the e−τ

attenuation. The radiation pressure is important only on the skin of the torus but almost

everywhere points in the wrong direction, opposing the back pressure of the torus interior.

Only at θ ∼ 45◦ it points in the direction tangential with the torus surface, but as r ∼ 3pc

the density drops and ξ rises so that M(t, ξ) becomes small.

Dependence on Γ, Rc,0,τ
C
⊥ , and d

If the interior of the torus is optically thick to X-rays then the torus loses mass mostly

from the surface, much as in the ’self-excited wind’ scenario for X-ray binaries (Basko et al.

1977). As shown above, in such a case the torus throat serves as a funnel and the gas is

injected to the flow from the funnel walls.

Notice that the location of the narrowest part of this funnel determines the characteristic

terminal speed of the wind. In order to explore this, we have made a set of runs similar to

models A3 and A6, but with reduced τC
⊥ . For model Ã3 which has τC

⊥ = 2 and R0 = 0.5, we

find that for θ = 10◦ and t = 4.5, the maximum velocity vmax
p equals 738 km s−1. For model Ã6

which has τC
⊥ = 2 and R0 = 1, we find vmax

p = 432 km s−1 for the same θ. If in the latter model

we make optical depth smaller, τC
⊥ = 1 we obtain: vmax

p (T = 4.5, θ = 10◦) = 400 km s−1.

This shows, in accord with our expectations of the mass flux conservation, that the torus is

losing mass from deeper inside. As shown in Table 1, reducing R0 has the effect of increasing

the maximum velocity. An increase of Γ has the same effect. However, this maximum

velocity may be observed at a different inclination. Increasing the distortion parameter, d

has an effect of some increase of the maximum velocity, redistributing vmax
p (θ) to higher

inclinations. From numerical solution we notice that the torus aspect ratio, ∆ = r/H ∼ 1

does not strongly influence the evolution. That is because it is the most inner part of the

throat which determines the dynamics of an evaporative flow. This inner throat is located

at high θ so that it remains optically thick most of the time. Numerical experiments confirm

that the geometry of this inner throat remains approximately unchanged in time.

Figure 2 shows that the geometry of the innermost part of the torus, i.e. the densest

part (roughly located between 0.5 and 2 pc) shrinks considerably in the vertical direction

during the process of the evolution. This is the result of the joint action of the radiation

pressure and the back pressure of the hot evaporative flow. This is particularly interesting

as it resembles the geometrically thick outskirts of AGN accretion disks which are known

to be unstable to self-gravity (Kolykhalov & Syunyaev 1980; Shlosman & Begelman 1989).

The physics of such systems is complicated, and is subject to various possible competing

effects. The self-gravitating instability may operate also in the torus body, perhaps leading
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to a dynamical system of molecular-dusty self-gravitating clouds (as in Krolik & Begelman

(1988)). If this is the case, the optical depth of the torus, τC
⊥ is crucial as in the optically

thin case the torus will effectively cool and collapse to a thin disk with subsequent star

formation (Toomre 1964). In the other extreme (τC
⊥ >> 1) the released energy can go

to increase the velocity dispersion of the clouds, effectively supporting the torus thickness

(Paczynski 1978). Strong IR radiation pressure exerted on these clouds, which can come

from internal reprocessing of X-rays, can produce significant vertical force (Thompson et al.

2005; Honig & Beckert 2007), and may suppress the self-gravity instability and at the same

time provide pressure support against vertical collapse (Krolik 2007). Vertical support, and

partial suppression of gravitational collapse, may also be provided by radiation pressure

from star formation within the torus or the obscuring flow (Wada & Norman 2002). Further

heating and loosing mass induces a torus to expand and change of shape.

We have calculated models B6 and A6 with 100x100 resolution further in time to learn

the late time evolution. At T = 17 in the B6 model the torus has two extended lobes in

both hemispheres with an opening angle 45◦. They have a certain degree of asymmetry with

respect to the equatorial plane. The shape of the obscuring structure no longer resembles the

initial torus; the column densities are in the range of N23 = 10 at 30◦, and N23 = 103 at 30◦.

The radial velocities in this structure are in the range of 200 − 400 km s−1. Our model does

not allow for the replenishing of the torus; obviously the torus will evaporate completely if

given enough time. Thus, in the the model A6 the torus evaporates completely by the time

T = 15. These results imply that in order to get a quasi-stationary warm absorber flow the

replenishing time should be of the order of the mass-loss time. The whole torus configuration

may be unstable in a secular sense; the instability is driven by the long characteristic time

of the global torus heating/cooling (due to expansion, winds, radiation loses), advection of

heat in the torus body by internal flows etc. For example, the mass-loss rate, Ṁ ∼ Σ; the

surface area Σ increases during the torus expansion. If after some time of extensive heating,

the torus separates into several parts, further mass loss will increase due to the larger total

surface area of the fragments.

6. Conclusions

We have studied X-ray excited winds from the putative gas-dusty torus in AGN. We ap-

proach this problem using numerical methods combining detailed hydrodynamical modeling

with calculation of the warm absorber spectra. Hydrodynamical calculations include two-

dimensional, axially-symmetric rotating flow, driven primarily by X-ray heating. Compton,

bremsstrahlung, and photoionization heating/cooling processes were taken into account as
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well as the radiation pressure force, which was calculated in the Sobolev approximation. A

code combining XSTAR for photoionization calculations with the Sobolev radiation transfer

has been developed for the calculation of the spectra.

We find that a rotationally supported torus heated by radiation from the inner accretion

disk and black hole can indeed be a source of the material we observe in the warm absorber

flow. We find that the inner throat of the torus is not only important as a source of the gas

but also because it creates a funnel for the outflowing wind. This leads generally to larger

velocities within the funnel, and different velocity distribution within the warm absorber flow

from those derived from models based on spherically-symmetric winds. The wind mass-loss

rate within the funnel is not very sensitive to the details of the initial torus distribution and

approaches ∼ 0.02− 0.09 Ṁ⊙ yr−1. Strong X-rays heat the gas within the funnel, producing

a fast, ∼ 1000 km s−1, ionized flow near the axis, and slower, . 500 km s−1, flow closer to

the funnel walls. This is where optical depth effects become important and a warm absorber

spectrum is produced. Using methods developed in studies of X-ray binaries we were able

to estimate the mass-loss rate from such funnel flow, finding it to be in a good agreement

with our numerical solution.

The funnel flow is found to be promising with respect to obtaining high velocity warm

absorber flows. What is beyond the scope of our models is the possibility of having mul-

tiple phases in such high velocity flow, on spatial scales smaller than our grid resolution.

Our treatment of the gas thermal properties will produce two-phase behavior at our grid

resolution; we do not find this behavior, owing to the fact that the cooling timescales are

generally too long. The answer to the question of whether there can be high velocity ’bullets’

or ’embedded clouds ’ on length scales smaller than the resolution of the grid is related to

the problem of the origin of broad and narrow UV/optical line emitting clouds, and requires

different computational methods from those employed here.

Our models which have initial Compton depths τC
⊥ & 1, aspect ratio R0/H ∼ 1, and

located at 0.5 . r . 1.5 pc predict warm absorber spectra, thus confirming the main

conclusion made in paper 1. The existence of such spectra depends on the fact that the

flow is intrinsically two-dimensional, meaning that both the dynamics of the funnel flow is

different from 1D models and optical depth effects are important as they strongly depend on

inclination. The latter point requires that we include the entire torus in the computational

domain rather than considering it as a boundary condition. The distribution of the ionization

parameter, ξ depends strongly on θ, further confining the range of angles where conditions

are right for the warm absorber flow to be observed. In most of our models warm-absorber-

like spectra are produced in a 10◦ range, at θ ≃ 40 ± 5◦. This range is set both by the

initial aspect ratio of the torus, which we take to be ∼ 1, and by the thickness of the X-ray
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heated ’skin’ of the torus. More optically thin models produce warm absorber-like spectra for

θ ≃ 40 ± 10◦ , as they potentially provide more partially optically thin gas for evaporation.

The bulk of the gas in this scenario has a terminal velocity of the order of the escape

velocity at the inner torus edge. Because of the funnel mechanism part of the gas is re-

distributed to lower inclinations and acquires a higher terminal speed, ∼ 1000 km s−1. In a

real AGN environment such flow may contain clumps and irregularities and even dust, which

are not captured in our studies because of the intrinsic limitations our methods. Accounting

for the multiple phases of a gas (on a subcellular level) may reveal this in more detail and

may also broaden the range of angles where the warm absorbers appear.

The part of the flow that is shielded by the optically thick part of the torus body can

also flow out as part of a torus global expansion. Thus it strongly depends on the deposition

of energy directly to its interior. This problem is related to one of the infrared support of the

AGN torus vertical structure against gravitational collapse (Krolik 2007) and also requires

additional investigation.
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Fig. 2.— Model B6; Color-intensity plots of the logarithm of the dimensionless density as

a function of time which is given in orbital periods. In the northern hemisphere this is

superimposed with velocity vectors. Axes: distance in parsecs.
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Fig. 3.— Model B6; Color-intensity plots of the logarithm of the dimensionless pressure at

t = 3; at northern hemisphere superimposed with velocity vectors. The location of the sonic

surface is marked in red. Axes: distance in parsecs.
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at time, t = 3. Curves are marked by a inclination angle θ. Horizontal axis: distance in
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Fig. 5.— The effect of distortion parameter d; Velocity streamlines superimposed on contours

of the number density. Model B6 (left panel), model C2 (right panel) at time, t=4. Axes:

distance in parsecs.
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Fig. 8.— The effect of Γ; velocity streamlines superimposed on contours of the number

density. Model A1 (left panel), model A5 (right panel) at time, t=4. Axes: distance in

parsecs.
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