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Abstract-Interpolating scattered data points is a problem of 
wide ranging interest. Ordinary kriging is an optimal scat- 
tered data estimator, widely used in geosciences and remote 
sensing. A generalized version of this technique, called cok- 
riging, can be used for image fusion of remotely sensed data. 
However, it is computationally very expensive for large data 
sets. We demonstrate the time efficiency and accuracy of ap- 
proximating ordinary kriging through the use of fast matrix- 
vector products combined with iterative methods. We used 
methods based on the fast Multipole methods and nearest 
neighbor searching techniques for implementations of the fast 
matrix-vector products. 

Keywords-geostatistics, image fusion, kriging, approximate 
algorithms, fast multipole methods, fast Gauss transform, 
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Scattered data interpolation is a problem of interest in numer- 
ous areas such as electronic imaging, smooth surface model- 
ing, and computational geometry [I ,2]. Our motivation arises 
from applications in geology and mining, which often involve 
large scattered data sets and a demand for high accuracy. For 
such cases, the method of choice is ordinary kriging [3]. This 
is because it is a best unbiased estimator [3-51. Also in re- 
mote sensing, imagefusion of multi-sensor data is often used 
to increase either the spectral or the spatial resolution of the 
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images involved [6,7]. A generalized version of the ordinary 
kriging, called cokriging [3,5], can be used for image fusion 
of multi-sensor data [8,9]. Unfortunately, ordinary kriging 
interpolant is computationally very expensive to compute ex- 
actly. For n scattered data points, computing the value of 
a single interpolant involves solving a dense linear system 
of order n x n, which takes 0 ( n 3 ) .  This is infeasible for 
large n. Traditionally, kriging is solved approximately by lo- 
cal approaches that are based on considering only a relatively 
small number of points that lie close to the query point [3,5]. 
There are many problems with this local approach, however. 
The first is that determining the proper neighborhood size is 
tricky, and is usually solved by a d  hoc methods such as select- 
ing a fixed number of nearest neighbors or all the points lying 
within a fixed radius. Such fixed neighborhood sizes may not 
work well for all query points, depending on local density 
of the point distribution [5]. Local methods also suffer from 
the problem that the resulting interpolant is not continuous. 
Meyer showed that while kriging produces smooth continu- 
ous surfaces, it has zero order continuity along its borders 
[lo]. Thus, at interface boundaries where the neighborhood 
changes, the interpolant behaves discontinuously. Therefore, 
it is important to consider and solve the global system for 
each interpolant. However, solving such large dense systems 
for each query point is impractical. 

Recently an approximation approach to kriging has been 
proposed based on a technique called covariance tapering 
[I  1,121. However, this approach is not efficient when covari- 
ance models have relatively large ranges. Also, finding a valid 
taper, as defined in [ l l ] ,  for different covariance functions is 
difficult and at times impossible (e.g. Gaussian covariance 
model). 

In this paper, we address the shortcomings of the previous 
approaches through an alternative based on Fast Multipole 
Methods (FMM). The FMM was first introduced by Greengard 
and Rokhlin for fast multiplication of a structured matrix by 
a vector [13,14]. If the Gaussian function is used for gen- 
erating the matrix entries, the matrix-vector product is called 
the Gauss transform. We use efficient implementations of the 
Gauss transform based on the FMM idea (see [IS, 161) in com- 
bination with the SYMMLQ iterative method [17] for solving 
large ordinary kriging systems. Billings et al. [I81 had also 
suggested the use of iterative methods in combination with 
the FMM for solving such systems. 

The remainder of this paper is organized as follows. Section 



2 describes the ordinary kriging system and solving it via an method requires one 0 ( n 2 )  matrix-vector multiplication per 
iterative method. In Section 3 we introduce the matrix-vector iteration. The storage is O ( n )  since the matrix-vector multi- 
products involved in solving such systems. We mention two plication can use elements computed on the fly without stor- 
existing efficient and approximate implementations of such ing the matrix. Empirically the number of iterations required, 
products in Section 4. Section 5 describes our data sets. Our k, is generally small compared to n  leading to a computa- 
experiments and results are presented in Sections 6 and 7 re- tional cost of 0 ( k n 2 ) .  
spectively. Section 8 concludes this paper. 

3. MATRIX-VECTOR MULTIPLICATION 

Kriging is an interpolation method named after Danie Krige, 
a South African mining engineer [5]. Kriging and its vari- 
ants have been traditionally used in mining and geostatistics 
applications [3-51. Kriging is also referred to as the Gaus- 
sian process predictor in the machine learning domain [19]. 
The most commonly used variant is called ordinary kriging, 
which is often referred to as a Best Linear Unbiased Esti- 
mator (BLUE) [3,1 I]. It is considered to be best because it 
minimizes the variance of the estimation error. It is linear 
because estimates are weighted linear combination of avail- 
able data, and is unbiased since it aims to have the mean error 
equal to zero [3]. Minimizing the variance of the estimation 
error forms the objective function of an optimization prob- 
lem. Ensuring unbiasedness of the error imposes a constraint 
on this function. Formalizing this objective function with its 
constraint results in the following system [3,5,12]. 

where C is the matrix of points' pairwise covariances, L is a 
column vector of all ones and of size n ,  and w is the vector 
of weights wi, . . . , wn. Therefore, the minimization prob- 
lem for n  points reduces to solving a linear system of size 
( n  + I ) ~ ,  which is impractical for very large data sets via di- 
rect approaches. It is also important that matrix C be positive 
definite [3, 121. Pairwise covariances are often modeled as 
a function of points' separation. These functions should re- 
sult in a positive definite covariance matrix. Christakos [20] 
showed necessary and sufficient conditions for such permis- 
sible covariance functions. Two of these valid functions are 
the Gaussian and Spherical covariance functions [3,5,20]. In 
this paper, the Gaussian covariance function is used. For two 
points xi and xi ,  the Gaussian covariance function is defined 
as Cij = exp (-3llxi - xj l12/a2), where a is the range of 
the covariance function. 

For large data sets, it is impractical to solve the ordinary krig- 
ing system using direct approaches that take 0 ( n 3 )  time. It- 
erative methods generate a sequence of solutions which con- 
verge to the true solution in n  iterations. In practice, however, 
we loop over k  << n  iterations [21]. In particular, we used 
an iterative method called SYMMLQ which is appropriate for 
solving symmetric systems [17]. Note that the coefficient ma- 
trix in the ordinary kriging linear system while symmetric is 
not positive definite since it has a zero entry on its diagonal. 
Therefore, methods such as conjugate gradient are not appli- 
cable here [22]. The actual implementation of the SYMMLQ 

The 0 ( k n 2 )  quadratic complexity is still too high for 
large data sets. The core computational step in each 
SYMMLQ iteration involves the multiplication of a matrix 
C  with some vector, say q. For the Gaussian covari- 
ance model the entries of the matrix C  are of the form 
[CIij = e x p ( - 3 1 1 ~ ~ - ~ ~ 1 1 ~ / a ~ ) .  Hence, the jth ele- 
ment of the matrix-vector product C q  can be written as 
( C q ) j  = Cy='=, qi exp (-3 [\xi - xj l12/a2)-which is the 
weighted sum of n  Gaussians each centered at xi and eval- 
uated at xi. 

Discrete Gauss transform (GT) 

The sum of multivariate Gaussians is known as the discrete 
Gauss transform in scientific computing. In general, for each 
targetpoint { y j  E ~ ~ ) j m _ ~  (which in our case are the same as 
the source points xi) the discrete Gauss transform is defined 

where h (in our case h = a/&) is called the bandwidth of 
the Gaussian. Evaluating discrete Gauss transforms for m 
target points due to n  different source locations arises in may 
applications. In this paper, the Gauss transform (GT) refers to 
this direct implementation, which takes O(mn)  time. 

Various fast approximation algorithms [15,23] have been pro- 
posed to compute the discrete Gauss transform in O ( m  + n )  
time. These algorithms compute the sum to any arbitrary c 

A 

precision. For any c > 0, we define G  to be an €-exact ap- 
proximation to G  if the maximum absolute error relative to 
the total weight Q = ELl lqi 1 is upper bounded by E ,  i.e., 

max Yj [ l P ( y j )  Q -  ill] c. 

The constant in O ( m  + n )  depends on the desired accuracy E ,  

which however can be arbitrary. At machine precision there 
is no difference between the direct and the fast methods. The 
method relies on retaining only the first few terms of an infi- 
nite series expansion for the Gaussian function. These meth- 
ods are inspired by the fast multipole methods (FMM), origi- 
nally developed for the fast summation of the potential fields 
generated by a large number of sources, such as those arising 
in gravitational potential problems [13]. The fast Gauss trans- 
form (FGT) is a special case where FMM ideas were used for 



. the Gaussian potential 1231. The improved fast Gauss trans- 
form (IFGT) is a similar algorithm based on a single different [ ( )  ( 1  1.1 factorization and data structure. It is suitable for higher di- IQ/<P--1 

mensional problems and provides comparable performance 
in lower dimensions [15]. Rearranging the terms Equation (5) can be written as 

n 

Improved fast Gauss transform (IFGT) 

IFGT is an efficient algorithm for approximating the Gauss 
transform. The fast Gauss transform, first proposed by 
Greengard and Strain [23], is an €-exact approximation al- 
gorithm for the Gauss transform. This algorithm reduces the 
Gauss transform's computational complexity from O(mn) to 
O(m + n). However, this algorithm's constant factor grows 
exponentially with dimension d. Later improvements, includ- 
ing the IFGT algorithm, reduced this constant factor to asymp- 
totically polynomial order in terms of d. The IFGT algorithm 
was first introduced by Yang et al. [IS]. Their implementa- 
tion did not use a sufficiently tight error bound to be useful 
in practice. Also, they did not adaptively select the necessary 
parameters to achieve the desired error bound. Raykar et al. 
later presented an approach that overcame these shortcom- 
ings [16,24]. We used the implementation due to Raykar et 
al. We briefly describe some of the key ideas in IFGT. Please 
see [16,24] for more details. For any point x, E IRd the Gauss 
Transform at yj can be written as, 

In Equation (4) the first exponential inside the summation 
e-lixi-x*112/h2 depends only on the source coordinates xi. 
The second exponential e - l l ~ j - ~ *  1 1 2 / h 2  depends only on the 
target coordinates yj. However for the third exponential, 
e 2 ( y j - x * ) ' ( x t - x * ) / h 2 ,  the source and target are entangled. The 
crux of the algorithm is to separate this entanglement via Tay- 
lor series using multi-index notation. The p-term truncated 
Taylor series expansion for e 2 ( y ~ - x * ) , ( x ; - x * ) l h 2  can be writ- 
ten as [16,24], - 

The truncation number p is chosen based on the prescribed 
error E .  Ignoring error terms for now G(yj) can be approxi- 
mated as, 

where, 

The coefficients C, can be evaluated separately in O(n). 
Evaluation of 2 (y j )  at m points is O(m). Hence the com- 
putational cost has reduced from the quadratic O(nm) to the 
linear O(n + m). We have omitted the constants in the com- 
putational cost. A detailed analysis of the cost can be seen in 
[16,24]. 

Thus far, we have used the Taylor series expansion about a 
certain point x,. However if we use the same x, for all 
the points we typically would require very high truncation 
number since the Taylor series is valid only in a small open 
ball around x,. The IFGT algorithm uses a data adaptive 
space partitioning scheme-the farthest point clustering algo- 
rithm [25]-to divide the n sources into K spherical clusters- 
and then build a Taylor series at the center of each cluster. 

The final algorithm has four stages. The first stage involves 
determining parameters of the algorithm based on specified 
error bounds, bandwidth, and data distribution. Second, the 
d-dimensional space is subdivided using a k-center cluster- 
ing [25]. Next, a truncated representation of the Gaussian 
inside each cluster is built using a set of decaying basis func- 
tions. Finally, the influence of all the data in a neighborhood 
using coefficients at cluster centers are collected and the ap- 
proximate GT is evaluated. Please see [16,24] for details. 

GT with nearest neighbors (GTANN) 

GTANN is also an efficient algorithm for calculating matrix- 
vector products. This method was implemented by 
Raykar [26], where it is referred to as the FigTree method. 
This method is most effective when the Gaussian models be- 
ing used have small ranges, while IFGT gives good speed-ups 
when dealing with large range values. 

First, based on the desired error bound, a search radius is cal- 
culated. Then, for each target point, source points within that 
radius are considered. Since the Gaussian function dissipates 
very rapidly, nearby points have the greatest influence. These 



source points are calculated via fixed-radius nearest neighbor 
search routines of the A N N  library [27]. Finally, for each tar- 
get point, their nearest neighbor source points are calculated 
in matrix-vector product calculations, involving the covari- 
ance matrix C in the ordinary kriging system. 

5. DATA SETS 

We generated three sets of sparse data sets. For the first set, 
the number of sampled points varied from 1000 up to 5000, 
while their covariance model had a small range value of 12. 
For the second set, we varied the number of samples in the 
same manner, except that the points' covariance model had a 
larger range equal to 100. Finally, we sampled 5000 points 
from dense grids, where points' covariance model had ranges 
equal to a = 12,24,100,250, and 500. For each input data 
set we use 200 query points which are drawn from the same 
dense grid but are not present in the sampled data set. One 
hundred of these query points were sampled uniformly from 
the original grids. The other 100 query points were sampled 
from the same Gaussian distributions that were used in the 
generation of a small percentage of the sparse data. 

We used the SYMMLQ iterative method as our linear solver. 
We set the desired solutions' relative error, or the convergence 
criteria for the SYMMLQ method, to €2 = 1W3. Thus, if 
SYMMLQ is implemented exactly, we expect the relative er- 
ror to be less than The exact error is likely to be higher 
than that. We developed three versions of the ordinary krig- 
ing interpolator, each of which calculates the matrix-vector 
products involved in the SYMMLQ method differently. 

Gauss Transform (GT): Computes the matrix-vector prod- 
uct exactly. 
Improved Fast Gauss Transform (IFGT): Approximates 
the matrix-vector product to the E precision via the IFGT 
method mentioned in Section 4. 
Gauss transform with nearest neighbors (GTANN): Ap- 
proximates the matrix-vector product using the GTANN 

method mentioned in Section 4. 

All experiments were run on a Sun Fire V20z running Red 
Hat Enterprise release 3, using the g++ compiler version 
3.2.3. Our software is implemented in C++ and uses the 
Geostatistical Template Library (GsTL) [28] and Approxi- 
mate Nearest Neighbor library (ANN) [27]. GsTL is used 
for building and solving the ordinary kriging systems, and 
ANN is used for finding nearest neighbors when using the 
GTANN approach. In all cases, for the IFGT and GTANN ap- 
proaches we required the approximate matrix-vector products 
to be evaluated within E = accuracy. All experiments' 
results are averaged over five runs. We designed three experi- 
ments to study the effect of covariance ranges and number of 
data points on performances of our different ordinary kriging 
versions. 

Experiment 1: We varied number of scattered data points 
from 1000 up to 5000, with a small fixed Gaussian covariance 
model of range a = 12. 
Experiment 2: We varied number of sampled points. This 
time, points had a larger range equal to a = 100 for their 
covariance model. 
Experiment 3: Finally, we examined the effect of different 
covariance ranges equal to a = 12,25,100,250, and 500 on 
a fixed data set of size 5000. 

In this section we compare both the quality of results and the 
speed-ups achieved for solving the ordinary kriging system 
via iterative methods combined with fast approximate matrix- 
vector multiplication techniques. 

Figure 1 presents results of the first experiment mentioned. 
When utilizing approximate methods IFGT and GTANN the 
exact residuals are comparable to those obtained from GT. 
The IFGT approach gave speed-ups ranging from 1.3-7.6, 
while GTANN resulted in speed-ups ranging roughly from 50- 
150. This is mainly due to the fact that the covariance func- 
tion's range is rather small. Since there are only a limited 
number of source points influencing each target point, collect- 
ing and calculating the influence of all source points for each 
target point (the IFGT approach) is excessive. The GTANN 

approach works well for such cases by considering only the 
nearest source points to each target point. In both cases, the 
speed-ups grow with number of data points. Algorithms per- 
form similarly for points from the Gaussian distribution to 
those from uniform distribution. 

Figure 2 shows results of the second experiment. While the 
GTANN approach did not result in significant speed-ups, the 
IFGT gave constant factor speed-ups ranging roughly from 1.5 
to 7.5, as we increased the number of data points. The IFGT 
approach results in larger residuals for small data sets, and 
when solving the ordinary kriging system for query points 
from the uniform distribution. In particular, for n = 1000 
and n = 2000, the performance of IFGT is not acceptable with 
respect to the exact residuals calculated. This poor overall re- 
sult for these cases is because the SYMMLQ method did not 
meet its convergence criteria and reached maximum number 
of iterations. Increasing the required accuracy for the IFGT 
algorithm, by changing the E = to lop6 resolved this 
issue and gave residuals comparable to those obtained from 
the GT method. As the number of points increases, the qual- 
ity of results approaches those of the exact methods. For the 
query points from the Gaussian distribution, the quality of 
results are comparable to the exact method, when using the 
IFGT approach. The GTANN approach also results in compa- 
rable residuals to the exact methods in all cases. 

Figure 3 presents results of the last set of experiments. In all 
cases, the quality of results is comparable to those obtained 
from exact methods. The IFGT approach resulted in speed- 
ups of 7-15 in all cases. The GTANN approach is best when 



used for covariance functions with small range values of 12, 
and 25. While the GTANN approach is slower than the exact 
methods for range values larger than 100, it results in speed- 
up factors of 151-153, and 47-49 for range values 12 and 25 
respectively. Thus, the GTANN approach is efficient for small 
range values, and so is the IFGT approach for large ranges. 

We integrated efficient implementations of the Gauss Trans- 
form for solving ordinary kriging systems. We examined 
the effect of number of points and the covariance functions' 
ranges on the running time for solving the system and the 
quality of results. The IFGT is more effective as number of 
data points increases. Our experiments using the IFGT ap- 
proach for solving the ordinary kriging system demonstrated 
speed-up factors ranging from 7-15 when using 5000 points. 
Based on our tests on varying number of data points, we 
expect even higher speed-up factors compared to the exact 

June 2004. 

[8] N. Memarsadeghi, J. L. Moigne, D. M. Mount, and 
J. Morisette, "A new approach to image fusion based 
on cokriging," in the Eighth International Conference 
on Information Fusion, vol. 1, July 2005, pp. 622-629. 

[9] N. Memarsadeghi, J. L. Moigne, and D. M. Mount, "Im- 
age fusion using cokriging," in IEEE International Geo- 
science and Remote Sensing Symposium (IGARSS'06), 
July 2006, pp. 25 18 - 252 1. 

[lo] T. H. Meyer, "The discontinuous nature of kriging in- 
terpolation for digital terrain modeling," Cartography 
and Geographic Information Science,, vol. 3 1, no. 4, pp. 
209-216,2004. 

[ l l ]  R. Furrer, M. G. Genton, and D. Nychka, "Covari- 
ance tapering for interpolation of large spatial datasets," 
Journal of Computational and Graphical Statistics, 
vol. 15, no. 3, pp. 502-523, September 2006. 

- - 

method when using larger data sets. In almost all cases, the 
quality of IFGT results are comparable to the exact meth- [12] N. Memarsadeghi and D. M. Mount, "Efficient imple- 

ods. The GTANN approach outperformed the IFGT method mentation of an optimal interpolator for large spatial 
data sets," in Proceedings of the International Confer- for small covariance range values, resulting in speed-up fac- 

tors as high as 153 and 49 respectively. The GTANN approach ence on Computational Science (ICCS'07), ser. Lec- 
ture Notes in Computer Science, vol. 4488. Springer- is slower than the exact methods for large ranges (100 and 

over in our experiments), and thus is not recommended for Verlag, May 2007, pp. 503-5 10. 

such cases. The quality of results for GTANN was compara- 
ble to the exact methods in all cases. Please see [26,29] for 
details of methods used in this work. 

Future work involves efficient kriging via fast approximate 
matrix-vector products for other covariance functions, where 
a factorization exists. We also plan on using precondition- 
ers [21] for our iterative solver, so that the approximate ver- 
sions converge faster, and we obtain even higher speed-ups. 

[I] I. Amidror, "Scattered data interpolation methods for 
electronic imaging systems: A survey," Journal of Elec- 
tronic Imaging, vol. 11, no. 2, pp. 157-176, April 2002. 

[2] P. Alfeld, "Scattered data interpolation in three or more 
variables," Mathematical methods in computer aided 
geometric design, pp. 1-33, 1989. 

[3] E. H. Isaaks and R. M. Srivastava, An Introduction to 
Applied Geostatistics. New York, Oxford: Oxford Uni- 
versity Press, 1989. 

[4] A. G. Journel and C. J. Huijbregts, Mining Geostatistics. 
New York: Academic Press Inc, 1978. 

[5] P. Goovaerts, Geostatistics for Natural Resources Eval- 
uation. New York, Oxford: Oxford University Press, 
1997. 

[6] D. L. Hall, Mathematical techniques in multisensor data 
fusion. Norwood: Artech House Inc, 1992. 

[7] Y. Zhang, "Understanding image fusion," Photogram- 
metric Engineering and Remote Sensing, pp. 657-661, 

[13] L. Greengard and V. Rokhlin, "A fast algorithm for 
particle simulation," Journal of Computational Physics, 
vol. 73, no. 2, pp. 325-348, 1987. 

[14] L. Greengard, "The rapid evaluation of potential fields 
in particle systems," Ph.D. dissertation, Yale, NYU, 
1987. 

[15] C. Yang, R. Duraiswami, and L. Davis, "Efficient ker- 
nel machines using the improved fast Gauss transform." 
in Advances in Neural Information Processing Systems, 
L. K. Saul, Y. Weiss, and L. Bottou, Eds., vol. 17. MIT 
Press, 2005, pp. 1561-1568. 

[16] V. C. Raykar, C. Yang, R. Duraiswami, and 
N. Gumerov, "Fast computation of sums of Gaussians 
in high dimensions," Department of Computer Science, 
University of Maryland, College Park, MD, 20742, 
Tech. Rep., 2005, CS-TR-4767. 

[17] C. C. Paige and M. A. Saunders, "Solution of sparse 
indefinite systems of linear equations," SIAM Journal 
on Numerical Analysis, vol. 12, no. 4, pp. 617-629, 
September 1975. 

[18] S. D. Billings, R. K. Beatson, and G. N. Newsam, "In- 
terpolation of geophysical data using continuous global 
surfaces," Geophysics, vol. 67, no. 6, pp. 1810-1822, 
November-December 2002. 

[19] C. E. Rasmussen and C. K. I. Williams, Gaussian Pro- 
cesses for Machine Learning. MIT Press, 2006. 

[20] G. Christakos, "On the problem of permissible co- 
variance and variogram models," Water Resources Re- 
search, vol. 20, no. 2, pp. 25 1-265, February 1984. 



Figure 1. Experiment 1, Left: Average absolute errors. Right: Average CPU times 

Average Exact Residuals Average CPU Time for Solving the System 
Over 200 Query Points Over 200 Query Points 

15E-4 I I I 

+ 
3 
8 1E-3- 
d - 
P 
3 I 

Average Exact Residuals 
Over 200 Ouerv Points 

P 9 5E-4 
d 

Average CPU Time for Solving the System 
Over 200 Query Points 

- - 

I I I 

Number of Scattered Data Points (n) 

lEi'bCQ 2000 3000 4000 5000 1000 2000 3000 4000 5000 
Number of Scattered Data Points (n) Number of Scattered Data Points (n) 

Figure 2. Experiment 2, Left: Average absolute errors. Right: Average CPU times 

Average Exact Residuals 
Over 200 Query Points 

Average CPU Time for Solving the System 
Over 200 Ouerv Points . , 

Range of the Gaussian Covariance Function 

Figure 3. Experiment 3, Left: Average absolute errors. Right: Average CPU times 



I 

' [21] Y. Saad, Iterative methods for sparse linear systems. 
SIAM, 2003. 

[22] S. G. Nash and A. Sofer, Linear and Nonlinear Pro- 
gramming. McGraw-Hill Companies, 1996. 

[23] L. Greengard and J. Strain, "The fast Gauss transform," 
SIAM Journal of Scientijic and Statistical Computing,, 
vol. 12, no. 1, pp. 79-94, 199 1. 

[24] V. C. Raykar and R. Duraiswami, Large Scale Kernel 
Machines. MIT Press, 2007, ch. The Improved Fast 
Gauss Transform with applications to machine learning. 

[25] T. Feder and D. H. Greene, "Optimal algorithms for ap- 
proximate clustering," in Proc. 20th Annual ACM Sym- 
posium on Theory of Computing, 1988, pp. 434-444. 

[26] V. C. Raykar, "Scalable machine learning for massive 
datasets: Fast summation algorithms," Ph.D. disserta- 
tion, University of Maryland, College Park, MD, 20742, 
March 2007. 

[27] D. M. Mount and S. Arya, "ANN: A library for approx- 
imate nearest neighbor searching," http://www.cs.umd. 
edu/lmountlANN/, May 2005. 

[28] N. Remy, "GsTL: The Geostatistical Template Library 
in C++," Master's thesis, Department of Petroleum En- 
gineering of Stanford University, March 2001. 

[29] N. Memarsadeghi, "Efficient algorithms for clustering 
and interpolation of large spatial data sets,'' Ph.D. dis- 
sertation, University of Maryland, College Park, MD, 
20742, April 2007. 

Nargess Memarsadeghi is a computer 
engineer at the Information Systems Di- 
vision (ISD) of the Applied Engineer- 
ing and Technology Directorate (AETD) 
at NASA Goddard Space Flight Center 
(GSFC) since July 2001. She received 
her Ph.D. from the University of Mary- 
land at College Park in Computer Sci- 
She is interested in design and devel- 

Medical Solutions, 
clude developing sc, 

Vikas C. Raykar received the B.E. de- 
gree in electronics and communication 
engineering from the National Institute 
of Technology, Trichy, India, in 2001, 
the M.S. degree in electrical engineering 
from the University of Maryland, Col- 
lege Park, in 2003, and the Ph.D. degree 
in computer science in 2007 from the 
currently works as a scientist in Siemens 
USA. His current research interests in- 
alable algorithms for machine learning. 

Ramani Duraiswami is an associate 
professor in the department of computer 
science and UMIACS at the Univer- 
sity of Maryland, College Park. He di- 
rects the Perceptual Interfaces and Re- 
ality Lab., and has broad research in- 
terests in scientific computing, computa- 
tional acoustics and audio, computer vi- 

sion and machine learning. 

David Mount is a professor in the De- 
partment of Computer Science at the 
University of Maryland with a joint ap- 
pointment in the University's Institute 
for Advanced Computer Studies (UMI- 
ACS). He received his Ph.D. from Pur- 
due University in Computer Science in 
1983, and since then has been at the 

University of Maryland. He has written over 100 research 
publications on algorithms for geometric problems, partic- 
ularly problems with applications in image processing, pat- 
tern recognition, information retrieval, and computer graph- 
ics. He currently serves as an associate editor for the jour- 
nal ACM Trans. on Mathematical Software and served on 
the editorial board of Pattern Recognition from 1999 to 2006. 
He served as the program committee co-chair for the 19th 
ACM Symposium on Computational Geometry in 2003 and 
the Fourth Workshop on Algorithm Engineering and Experi- 
ments in 2002. 

opment of efficient algorithms for large data sets with ap- 
plications in image processing, remote sensing, and optics 
via computational geometry and scientific computation tech- 
niques. 




