
Linking and Combining Distributed Operations Facilities
Using NASA's "GMSEC9' Systems Architectures

Dan smith1, Thomas ~ r u b b ~ and Jaime ~ s ~ e r ~
National Aeronautics and Space Administration, GotEciard Space Flight Center, Greenbelt, M a ~ l a n d 20771, USA

NASA's Goddard Mission Services Evolution Center (GMSEC) ground system
architecture has been in development since late 2001, has successfully supported eight
orbiting satellites and is being applied to many of NASA's future missions. GMSEC can be
considered an event-driven service-oriented architecture built around a publishlsubscribe
message bus middleware. This paper briefly discusses the GMSEC technical approaches
which have led to significant cost savings and risk reduction for NASA missions operated at
the Goddard Space Flight Center (GSFC). The paper then focuses on the development and
operational impacts of extending the architecture across multiple mission operations
facilities.

Nomenclature

API
COTS
DOD
GMSEC
GSFC
MOC
NASA
ORS
SOA
AFRL
SMEX
ST5
TRMM
A5WL

= Application Programming Interface
= Commercial Off-the-shelf
= Department of Defense
= Goddard Mission services Evolution Center
= Goddard Space Flight Center
= Mission Operations Center
= National Aeronautics and Space Administration
= Operational Responsive Space
= Service Oriented Architecture
= Air Force Research Laboratory (AFRL) and the Naval Research Laboratory (NRL)
= NASA's series of Small Explorer Satellites
= NASA's Space-Technology 5 constellation of three satellites
= NASA's Tropical Rainfall Measuring Mission
= Extensible Markup Language

I. Introduction

NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, USA
operates most of NASA's sub-orbital and low-earth orbit unmanned scientific
spacecraft. GSFC manages a wide variety of missions, from balloon and
sounding rocket experiments to flagship missions like Hubble Space
Telescope. Mission durations for orbiting spacecraft have ranged from several
months to over 20 years.

About 30 satellites are managed by GSFC at any time, with about half of these

1 GMSEC Project Manager, Software Engineering Division, Mail Stop 580
Senior Engineer, Software Engineering Division, Mail Stop 583

3 Senior Systems Engineer, Systems Engineering and Advanced Concepts Division, Mail Stop 592
1

American Institute of Aeronautics and Astronautics
092407

operated from mission operations centers (MOCs) on the Greenbelt campus. Others are managed by universities
across the United States and suborbital missions are managed from GSFC facilities at Wallops, Virginia, USA.

Historically, the missions each have had their own mission control center. Each mission was given full latitude to
develop its mission control system and its operations plans as it wanted, with software commonality between
missions being limited. At least five different telemetry and command systems were in use. Most software was
developed by GSFC employees and their contractors. System designers often used the tools they were most familiar
with from previous nlissions. Although some very advanced new tools were developed for specific missions, they
often were not compat~ble with other missions systems.

Several problems emerged from the approach of having each mission responsible for development of its own
mission operations center. Innovation was slowed as each budget-constrained mission worked to meet only its own
requirements and to minimize additional system enhancements. Studies, designs and implementations efforts were
often repeated for each new mission. COTS product lines were typically not even considered because they had
never been integrated with other GSFC products.

The problems with the traditional approach were made worse with the increased cost pressures of the late 1990's
and the outlook for a healthy set of planned missions. The decision was made in 2001 to begin development on
reference architecture for fiture missions. The new paradigm would represent a significant change from the
previous approach of integrating selected components to create mission-unique systems. The new architecture,
named the Goddard Mission Services Evolution Center (GMSEC) ground system, has been in development since
late 2001 and has now successfully supported eight orbiting satellites. It is being applied to many of NASA's future
missions and is being used outside of the control center environment.

The use of GMSEC has led to many observed benefits ranging from shorter development and integration times to
increased automation and efficiency of the operations efforts. It has also led to a natural progression of user requests
for additional capabilities, with many of the requests involving new interfaces to other GMSEC-based and non-
GMSEC-based operations centers. Work is now underway to develop more standardized approaches for
interoperability between these systems.

11. The Goddard Mission Services Evolution Center (GMSEC) Architecture

A. High-Level Architecture Concepts

GMSEC can be considered an event-driven service-oriented architecture built around a publishisubscribe
message bus middleware. The GMSEC Applications Programming Interface (API) allows any of several different
middleware packages to be utilized simultaneously. Standard message formats for common interfaces allow for
simplified integration of many of today's most
aovular commercial ~roducts. Situational

component recommendations or
selections. By standardizing
interfaces, GMSEC encourages the

2
American Institute of Aeronautics and Astronautics

092407

access to a broad selection of tools and the development of new and innovative products.

2. Middleware Infrastructure. At the heart of the architecture is a message oriented middleware (MOM).
It can be a commercial package, open source or GSFC-developed.

3. User Choice. GMSEC is not trying to select the best component in each functional area. The GMSEC
team is not trying to compare COTS products against each other or against a heritage system. Instead,
the architecture allows the user to select the most appropriate products based on functional need or
personal preference and easily integrate them into a ground system. Keeping this responsibility with the
mission teams has greatly increased the acceptability of the GMSEC approach.

4. General-Purpose Approach with Flight-Ground Capabilities. The architecture itself should be
designed to be adaptable to any number of missions. The key concepts should be applicable to either
flight software or ground control systems and should, ideally, be extensible to other domains.

The GMSEC architecture is not a full formal Service Oriented Architecture (SOA). It does not include a full
dynamic registry of available services. GMSEC does, however, have attributes to meet some of the goals of a SOA.
The message-oriented middleware keeps track of the locations of the software components so hard-code node
routing is not needed and IogicaVphysical location transitions can occur instantly in the case of failovers. The use of
an API separates the applications code from the underlying details. The use of message standards, adapters and the
available API allows for the integration of existing or newly developed components. The message adapters allow
COTS components to be used without changes.

B. The Message Bus and Standard Message Formats

The GMSEC Architecture uses a message bus (sometimes called an information bus or software bus) for inter-
process and inter-node communication. Instead of traditional socket connections among components, each
component only interfaces with the message bus. The middleware keeps track of where processes are located and
which process requires the data when it is published to the bus.

The message bus provides publishisubscribe message passing mechanisms. Applications "publish" messages to
the bus. Each message contains a subject name and the normal message contents. The subject name, for GMSEC
applications, indicates the mission, originating node, type of message, etc. Applications that need the data
"subscribe" to the pertinent subject name(s) and the middleware delivers the messages which match the subscribe
request. Although the publishisubscribe mechanisms are common to many different middleware products, each
product uses its own proprietary message structure for passing the data on the bus. The commercial middleware
products are therefore not compatible with each other and applications are normally written to match the specific

Components

GFjiSEC Messages

GMSEC API

Middleware

Operating Systems

rniddleware package selected for the system
development effort. The GMSEC API normalizes
the basic capabilities of multiple middleware
products so they each appear the same to the
applications software. In this way, a change to the
rniddleware product does not require a change to
the applications software and vendor lock-in is
avoided. This middleware flexibility allows for
product swapping if necessary, but also allows for

low-cost middleware to be used for development,
The GMSEC APr provides the getreralized itiferjzce between high-reliability and high-perfomance middleware
applications progranls and the systenz niiddleware. Multiple
lat~gziages, ~niddleware products, platfonrzs and operating

to be used for operations and small-footprint

systerizs are supported. middleware to be used for flight - all with the
same hnctional behavior.

3
American Institute of Aeronautics and Astronautics

092407

The GMSEC system, with its middleware, can transfer 10's of megabits of data per second - a rate 100's of time
beyond what missions today typically require for command and control and health and safety data. Typical
overhead of the GMSEC middleware is less than 2% of the CPU.

The GMSEC API provides isolation between the applications programs and the underlying messaging software.
As discussed above, any of several different middleware packages can be used without modifying the applications.
In addition, the API supports multiple languages, operating systems and platforms. It normalizes the behavior of the
middleware while allowing access to special functions or capabilities of individual middleware products.

GMSEC standard messages meet the needs of the key interfaces for mission control applications. Additional
messages may be created as needed. A subject name is specified with each message published via the API. The
subject is used for routing to the subscribing applications and contains information including the mission identifiers,
nodes, message type (e.g., telemetry), etc. The messages themselves include a common header used by all messages
followed by a message-specific body. The message header contains some of the same subject information, but also
includes time stamps and more details on the message type. The body of the message may contain a telemetry frame
or packet, a text message, user directive, archive request, etc.

Documentation from many commercial products and from over a dozen GSFC in-house systems were examined
to create standard message formats which would stand the test of time and allow for easy adaptation from messages
which may be output by existing systems.

C. Compliant Components

GMSEC uses the common interface approach to allow many different products of the same hnctional domain
area to be integrated. By having choices in each functional area, missions can avoid vendor lock-in and can select
each component based on its own merits (technical, cost, etc.). Components can be as major as telemetry and
command systems or planning systems or as small as performance monitoring tools.

An "adapter" approach is used for the exlsting ~n-house or commercial components. The adapter is a piece of
software whlch works l~ke an API-to-API interface and converts from the ex~sting package's ~nterfaces to the
GMSEC mnterfaces. Because the GMSEC ~nterfaces were developed with knowledge of many COTS Interface
defin~tions, this adaptation has been proven to go very quickly (from a day to about 2 weeks). COTS packages that
do not have clean, exposed APIs are more
difficult to adapt and their underlying design
may not be amenable to GMSEC adaptation.
Obviously, new software can be wrltten to
directly use the GMSEC API calls.

Each major component is requlred to
meet certaln standards to be considered
"GMSEC comphant":

1. It must meet ~ t s functional
requirements; although
verification responslb~l~ty is with
the miss~ons

2. It should publish a heartbeat
message on a per~odlc basis

3. It should publlsh statusllog
messages to ind~cate an actlon

has taken place Or an event has
occurred

4. It should allow user directives for
the component's control to be received over the message bus

4
American Institute of Aeronautics and Astronautics

092407

These simple rules can yield very powerful results. The heartbeats allow for system monitoring, configuration
displays and failovers. The log messages across nlultiple tools provide a new level of situational awareness.
Allowing directives to be sent to any component allows for scripting and, combined with situational awareness,
provides new levels of reactive system automation.

A typical GMSEC control center includes a simulator, front-end processor, telemetry and command system,
trending system, automation tools, scheduling tools and a set of general support and performance tools. The
GMSEC catalog of available components lists several choices in each of these categories. The end result is a set of
GMSEC-based control centers, each with the same basic architecture and some common tools, but also with
differences in some of the key components selected.

D. Current Use and Observed Benefits

GMSEC-based mission operations systems at GSFC have been operational since 2005 and most of GSFC's
major satellite systems now in development will be using the GMSEC core capabilities.

TRMM was the first mission to apply the GMSEC technologies. By basing
their reengineering effort around the GMSEC Architecture and concepts, the
TRMM mission was able to add significant levels of automation and move to
fewer operational shifts per day without any science data loss. The annual
operating budget was reduced by about 50% and the reengineering efforts were
fully paid for out of incremental budget savings. The reengineered system has paid
for itself within 2 years.

The Small Explorer (SMEX) missions, including the TRACE, SWAS and Wire satellites implemented the
GMSEC architecture to enable new capabilities associated with satellite fleet operations and constellation
operations. The system has successfully demonstrated continuous "lights-out" operations. No direct operator
involvement in the control room is required - the system pages users if a problem is detected. The SMEX
reengineering effort is considered a pathfinder for future GSFC low-cost fleet operations and the operations
involving of satellite constellations.

The ST5 inission \vas a 90-day operation consistin2 of a constellation of tluee small
sstcllites launched in March 2006. Its control center ivas used to support satellite
integration. pre-launch checkout, training, and on-orbit operations. Power and solid
state recorder subs>rstems were modeled using MatlabiSimulink within a GMSEC-
compliant cornponcnt. Real-t~me telemetry \vas usect to update the model so that
predictions could be made based on scheduled future acIi\.ities. If problems were
projected, the modeling system notified thc scheduling system to make adjustments.

ST5 reported that GMSEC saved them money while allowing them to demonstrate more advanced capabilities. ST-
5 also demonstrated automated "lights out" automation with GMSEC for a full 2-week operations period with the
system pagihg the operations team as needed.

The GMSEC architecture is also being applied to reengineering efforts and new development efforts for 5 GSFC
control centers currently under development. It has also been used in labs across other NASA Centers and is
operational at the Marshal Space Flight Center. Some of the key benefits realized by the developers and their
missions include the following:

1. There has been a significant reduction in integration time
2 . Components can be addedlupgraded without impacting the existing system
3. The message bus approach is ideal for using multiple small distributed development teams and vendors
4. New concepts are emerging for small independent components that integrate with the bus and provide

immediate benefits
5 . Missions are more willing to adopt the approach if "old favorite" components can still be used
6 . Some vendors see message compliance as a way to enter what had appeared to be a closed marketplace
7. The standard message approach provides collaboration possibilities with other organizations

5
American Institute of Aeronautics and Astronautics

092407

8. Automation for cost and risk reduction is the #1 selling point

E. Future Application Example: Operational Responsive Space (ORS)

In addition to being planned for specific NASA missions, the GMSEC architecture is also being evaluated for
use on entire ranges of missions within NASA and for other large space organizations. Operational Responsive
Space (ORS) is one such example.

"Responsive Space7' refers in general to the ability to bring on-line systems in a rapid or accelerated fashion.
"Operational Responsive Space" refers to such systems used to satisfy the current needs of either NASA
applications (e.g., astronaut health and safety requiring immediate attention), or Department of Defense (DOD)
applications (e.g., need to deploy strategic assets in short order). Since 2003 NASA GSFC has been worlung with
the DOD on space flight systems that feature modular plug-and-play interface standards as a means of enabling
rapid integration and test, system cross-compatibility, and reduced costs (Refs: 1 and 2). Concurrent developments
by DOD laboratories such as the Air Force Research Laboratory (AFRL) and the Naval Research Laboratory (NRL)
have seen considerable progress in recent years. Although the evolution of modular, reconfigurable systems can be
traced back at least 38 years to the Multi-Mission Modular Spacecraft and other GSFC programs and missions, the
GMSEC architecture provides a recent and successful application of generalized principles of multi-use to the data
system domain, and specifically to mission operations. It also represents an archtecture and framework of high
relevance to the current DOD ORS formulation.

Up to this date, ORS has concentrated on developing flight systems (modeling and simulation, spacecraft, launch
vehicles) that feature rapid delivery from concept to operations. Less has been done in expanding on the
Eundamental need to "operate" such systems efficiently, incorporating the latest application software components
quickly, and serving the operational need of distributed systems either on the field or in space. GMSEC provides
such capability today. One of the main premises of ORS is to simplify the rapid infusion of technology over time.
By concentrating on the interface and normalizing the capabilities of multiple middleware products, GMSEC allows
the incorporation of software components and applications in an efficient and rapid fashion, enabling the acquisition
of "new" data as quickly as the application is ready or as quickly as it can be acquired from the commercial market
as a COTS product. There is no need for extensive testing of a proprietary message structure. Simply, "plug-and-
play" or "configure and operate". Many different products can operate concurrently in the GMSEC Lab
environment; creating a new mix of products can be as simple as turning off the ones not needed. In addition to
preventing data system obsolescence, GMSEC also enables the rapid delivery of information across its framework.

The following application example highlights the operational benefits of GMSEC. Although this scenario is
geared toward a civilian time-critical application, it is also equally applicable to the military and ORS. In this
scenario a team of scientists in Antarctica require the use of the vast facilities of the home organization for analyzing
seismic data from Mount Erebus. The equipment on the field has failed to operate as planned and the only surviving
hardware at their disposal is a seismometer, a laptop, a transponder, and a satellite lmk. This scenario is similar to
having a "remote service" request to the MOC. In the GMSEC framework, connectivity and use of the home
organization's analytical tools is as simple as connecting the seismometer to the laptop, and sending the information
for further real-time analysis. Warnings of an impending eruption can be issued to the team at the base of the caldera

GMSEC enables the rapid, flexible
integration of rernote locations,
leverages rzew or enistir~g applications,
and allowsfor high-speed data transfers
tlzrozlglz its software bus, all features
desirable to ORS.

6
American Institute of Aeronautics and Astronautics

092407

with advance time for safe evacuation. Additional application components can be brought on-line as quickly as
required to interpret the results from the field. Better yet, other remote locations can be added to the message bus
middleware as needed to enhance the data acquisition. This scenario is illustrated in the figure below.

111. Expanding Beyond the Initial Boundaries

A. Requirements for Interoperability and New Interfaces

As GMSEC has matured, the types of new
capabilities for future systems have changed.
The basic component-based concepts and use
of COTS have been proven operationally. The
automation tools have reduced the operations
costs. Each mission operations center,
however, is generally still run as its own
system, with external interfaces being kept to a
minimum and often very labor-intensive to
work with. Many of the new requests now
being received by the GMSEC team seek to
create new or better connections between
mission operations centers and either other
centers or facilities. Although the requests
appear as fknctionally independent ideas, many
actually have much in common with each
other.

I 8. GMSEC Labs at multlple NASA The diagrams to the right show some of the centers are connected to allow loint I
interconnection requests received by the I test~ng and operations demonstra'ions.

GMSEC team in the Dast vear. some of which
A # ,

have been developed as single-use solutions. In some cases, like distributed
operations concepts, high volumes of data must be exchanged. In other cases,
such as having the GSFC solar weather center issue warnings or receive
problem indications from control centers, hours or days may go by between
message exchanges. For flight dynamics, there is a mix of simple messages
(product request and product ready messages, telemetry value messages, etc.)
and product file transfers. In some cases, the two systems may be literally next
door to each other and in other cases the systems may be thousands of
kilometers away.

The sections below describe some of the challenges of developing general
purpose interface capabilities to cover the range of interoperability concepts
now being considered.

B. Industry Trends Affect Interoperabiiity Approaches

C. MOC would like to extend its operations
area into an area across the GSFC campus
to take advantage of additional operations

engineers.

/ with Flight Dynamics Facility to receive
I notificaOons and files and to make
I processing requests.

E.C. GSFC would like to exchange mission
status and limited data with mission

operations centers at other NASA locations.

notifications. Solar weather facility
would like to refine prediction models

using actual recognized vehicle events.

requires rapid configuration to remote
systems and selvices.

Interoperability challenges are easy to resolve. All that is needed is agreement for every mission control center
and every supporting system and facility to use the same architecture, software, messages, protocol, security and
operations concepts.

Clearly, the world is not headed towards a single ground system implementation approach. There will always be
a mix of old and new systems. There are several very positive trends taking place in the ground system industry
which affect the handling of interfaces:

7
American Institute of Aeronautics and Astronautics

092407

1. COTS vendors now have well defined interfaces for accessing different message types.
2. Message-oriented rniddleware such as GMSEC have introduced the concepts of robust standard

message formats adaptable to many different products and missions.
3. The Object Management Group has established standards for publishisubscribe middleware and for

CORBA
4. The CCSDS standards committee is working on a ground system Service Oriented Architecture

standard for use by space agencies around the world
5 . NASA, as part of its Exploration Initiative, is investigating the concepts of common approaches to

enable interoperability across many of the future NASA systems.
6. Many major aerospace companies are developing advanced Enterprise systems and Service Oriented

Architectures for space mission control

Individually, these ideas represent significant advances focused on simplified integration, common tools and
interoperability. Collectively, however, these ideas are creating a lack of corrunonality in the name of commonality!
Additional architecture and design work is needed to incorporate concepts to enable interoperability between similar
and dissimilar systems. More often than not, remote systems are not constructed the same way as the local system.

C. Connectivity and Interoperability Factors

The following factors should be considered when developing solutions for connecting independent systems for
the purpose of exchanging known data types:

1. Can not simply design the new best architecture and apply it to all systems and users.

2. Can not expect to join multiple Service Oriented Architecture systems using a shared master registry.

3. Can not declare a new universal standard - other can not be expected to follow.

4. Can not disregard the different security requirements associated with each system or even that security
requirements will remain stable.

5 . Can not assume that the internet is the answer - many networks for satellite control are not open to the
public networks

6. Must allow for the configuration of routing and data filtering parameters to control the interface operation

7. Must assume a wide mix of remote system designs

8. Must assume that other systems are operational - special care is needed

9. Must allow for either end of an interface to disconnect in case of problems

10. Must assume there will be sensitivities to what data can be shared

11. Must be low cost, high dependability

IV. Solutions for Linking and Combining Operations Facilities

GMSEC enables easy inter-application communication to make powerful systems of interconnected
applications. However, a system is rarely operating in a vacuum. Linking and combining operations facilities is a
vital part of expanding enterprise architectures. This inter-system communication poses unique challenges. Inter-

8
American Institute of Aeronautics and Astronautics

092407

system communication nlust not only solve the technical challenge of communication (e.g., data translation, data
exchange and protocols) but must deal with issues dealing with trust, security, and control.

Do two systems trust each other? Is the problem really just one of making the two systems talk and act like one
big virtual system? Does every application have the same privileges with respect to other applications regardless of
which system they are located? This is the simplest case. However, often each system is an island, and the system
managers want to control the access and interchange of information. Perhaps, instead of a two-way communication,
really all that is wanted is one-way stream to publish warning events to external systems. These cases require a
more nuanced solution.

Within the GMSEC project, there have been two basic techniques for inter-system communication: adapters and
bridges. These have been specific case-by-case solutions in the past, and the GMSEC team is now developing
general purpose interface capabilities to meet the new functional requests.

A. Virtual Networks (Middleware Extension)

The simplest case for inter-system communication is creating a virtual network that comprises two (or more)
systems. The goal is to create a one large virtual system, that is comprised of two or more physically separated
systems. Every application acts like it is connected to one middleware system, not differentiating between the two
systems.

With two GMSEC systems that use the same middleware, it may be possible to extend the system network
virtually. Tibco SrnartSockets allows connecting the servers of two systems so that they act as one system. Using
Tibco SrnartSockets, GMSEC has successfully created a virtual network between two operation centers to make one
virtual system. Both physically separated systems would publish messages normally, subscribe normally, and
receive messages normally. In thls case, for the applications of the systems, it truly appears like one system.

GMSEC has also used this technology to create networks between multiple NASA centers. GMSEC systems
were installed at five different NASA Centers as part of a coordinated Exploration Initiative test effort.
Communications over both NASA and public networks were established and collaborative tests were conducted to
show distributed test and operations concepts. The entire effort took place on one large virtual system.

B. Inter-GMSEC Bridging

CMSEC has also bridged between .." - - -.- - ? - - - -,- , - .-.-.- -,-,- ' ..-,....
? ? two or more GMSEC systems that use 1 w, I

i different middleware products. : ! !

it i j
?

GMSEC created a bridge that can be I / !
configured to connect to any two
GMSEC systems, regardless of their
middlewares. The bridge connects to !

each GMSEC system, subscribes to !

!
both systems, and passes messages
between the systems (See Figure).
When the GMSEC bridge receives a message from one system, it unwraps the message, creates a new message on
the other system, and then wraps and publishes the message to the other system.

Using configurations of subscriptions and filters, the GMSEC bridge is able to control what messages are passed
through to each system. The bridge can create two-way streams or a one-way stream. The GMSEC Bridge is a
generic solution for bridging two or more GMSEC systems.

Advanced Iftter-GMSEC Bridging

9
American Institute of Aeronautics and Astronautics

092407

There are a couple of issues with Inter-GMSEC bridging. The first issue is with performance. There is a
performance penalty for unwrapping and wrapping the many individual fields that can make up a message. In a
high-volume situation, this penalty can become prohibitive. However, there are ways to address this issue by
treating the entire message contents as a single aggregated data field to avoid the field-by-field extraction and
repackaging.

The bigger issue is with
security and trust. If you use
only one bridge between two
systems, the bridge must
contain all the security for
decrypting and encrypting
messages for both systems.
As can be imagined, this super
user application is a huge
security vulnerability. It also
requires a lot of trust between the two systems, as the keys are known between the systems.

A better bridging scenario is to provide two bridges, one bridge per system (See Figure). Each system is
responsible for running one bridge within their system. The two bridges then connect and pass messages between
them. This scenario has a number of advantages. The system now gets to control not only the security information
but also the traffic into and out of the system. The local bridge can filter out many messages before passing them
over a possibly slow connection to the other system. There is generally no need to send the large volume of local
publiskisubscribe traffic between systems. The two bridges need share only the keys necessary to pass information
securely between each other.

Of course, there are issues with this scenario as well. First, the local bridges are still super user applications,
with access to all the keys of the local system (something possibly not desired by the system builder). Also, two
applications cannot talk privately, there is always an interpreter (the bridges) between them. In some cases, it may
not be possible for an application to sign its communications because the signing keys are not shared. Finally, there
is the performance penalty, the unwrapping and wrapping messages has been doubled over the single bridge case.

C . GMSEC to Other Middleware Bridging

When you need to bridge between GSMEC and some other middleware and non-GMSEC systems , the bridging
becomes more difficult. A unique solution may need to be created. GMSEC has experience with this type of
bridging as well. For connecting a large data management system to a GMSEC inission control center, a one-way
bridge was created that passed specific messages from the data management middleware onto a GMSEC bus. It
didn't occur in this case, but data t~-anslation may also be an issue when exchanging messages between GMSEC and
another system.

A GMSEC-to-Other designer must be careful to preserve the syntax and the semantic meaning between
messaging systems. The GMSEC team is currently developing an adapter to connect the GMSEC mission
operations center systems at GSFC to GSFC's solar weather science center and to another NASA operations center.
In both cases, the communications can be limited to simple logltext messages. Even with this simple exchange,
translations are needed between the standard GMSEC message format and the formats used by the other systems.

Another application was created that bridges a GMSEC bus with Web Services, Java RMI, and Corba ORBS.
The adapter is responsible for passing messages back and forth between GMSEC and these other technologies. In
this case, there are issues between the different messaging systems. For example, web services use essentially a
polling mechanism. A web service consumer (which would call this adapter) needs to call the web service in order
for any information to be exchanged. However, GMSEC is a publish and subscribe architecture, whch uses a push
mechanism (e.g., a publisher pushes the information onto the bus to be delivered to any application that has
subscribed to it). The two mechanisms are very different and the applications that used the adapter needed to be
aware of that.

10
American Institute of Aeronautics and Astronautics

092407

In general, in order to bridge between GMSEC and any other middleware, a bridge application will need to be
built for each non-GMSEC middleware. A designer must build an application that connects to GMSEC and their
target system, subscribe to a subset of messages on both systems, and translate between the two.

GMSEC has considered ways to make a generic GMSEC-to-Other Bridge using XML. GMSEC is able to input
and output any message as XML. If the other middleware also has this option, an XSLT could be created to
transform messages between GMSEC format and the other middleware's format. Of course, the performance hit
would be considerable, but it could be a possibility in low-volume connections.

D. System As A Service(s)
b \ A

Another option for inter-system interoperability
is to present the system as a sewice. With System-
as-a-service, the system integrator builds an
application that acts as one or more service
interfaces to the system. T l s service interface

7,-,-.-.".-,-,T

application is responsible for receiving operation i- '
requests on the system, translating them into the j

System j
system "language", communicating with the :
applications of the system to provide the operation ! 4

results (usually using the framework of the native 1 !

For example, the system could create a telemetry
i

service application. This service would have ;
operations such as GetMnemonic, j
ConvertRawToEU, etc. When this service is called j
from an outside entity, the application converts the t
operation call into a message ;hat it would publish
on the GMSEC bus. The real telemetry provider would be subscribed to these messages and publish a response
back. The telemetry service interface application would take the response from the bus and respond to the original
operation call.

Note that there is not necessarily a one-to-one mapping between a service interface like telemetry and
applications on the system bus. The service interface application can present a composite service interface which is
a combination of functionality fulfilled by multiple applications in the system.

To the outside world, the service looks like one entity, the service (or group of services)

The System-as-a-service provides the system builders with the advantage that they completely control what
functionality of the system is exposed to the outside world. In addition, any responsibility for data translation
burdens can be passed onto the service consumer. Finally, the security of the system is encapsulated at the service
level and the applications on the system bus don't have to wony about these concerns.

A disadvantage of the System-as-a-service is that it is relatively static. To expose new capabilities of the system
requires changing the service interface and the service interface application. The system builder must also maintain
and host the service interface application. Finally, the system acts only as a service provider (at the least, the
external entities control initiation of the service). In order for the system to act as a service consumer, another
solution must be found or the system must rely on the external entities to call the service and provide any data.

11
American Institute of Aeronautics and Astronautics

092407

V. Conclusions

GMSEC is now a mature component- and message-based system whlch has been proven with support to eight
satellites across three missions for the past three years. More systems will become operational in 2008. The
standard message capabilities of GMSEC have simplified the integration of many commercial and GSFC-developed
software components and have allowed other organizations to develop applications "per the message specification."
Missions using the GMSEC architecture have benefited from reduced development and integration time, a greater
selection of products to choose from, and reduced operations costs resulting from increased automation of routine
activities.

The next logical extension of GMSEC is to allow interaction between GMSEC systems and other GMSEC- or
non-GMSEC systems. Uses can be as simple as simple warning message exchanges or as complex as distributed
operations across multiple sites using different system approaches. The advancement of service oriented
architectures and emerging standards to support interoperability have actually complicated the efforts to interconnect
systems because of the wide range of independent system implementations now underway. Although many external
interaction requests can be generalized to the same basic problem, a single solution may not be practical. Depending
on the data to be exchanged and the differences in the two systems, the solution may involve single or multiple
bridging applications or the encapsulation of system capabilities into a service exposed for external access. One
bridging approach could connect a GMSEC system with a web services application.

The GMSEC team has developed solutions for many different system interconnection requests and is continuing
to work on reducing the number of solution types to create more flexible, general purpose system gateways that can
be easily configured and deployed. The same challenges are being faced by all large system designers as the needs
for interaction across broader and broader information communities continues to expand.

References

'~sper, J., "Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and
Affordable Space Exploration, Space Technology and Applications International Forum, American Institute of
Physics, 2005.

'~sper, J., Andary, J., Oberright, J., So, M., Wegner, P., Das, A., Hauser, J., "Modular, Reconfigurable, and Rapid
Response Space Systems: the remote sensing advanced technology microsatellite," 2nd Responsive Space
Conference, El Segundo CA, 2004.

Madden, M., Cary, E. Jr., Esposito, T., Parker, J., Bradley, D., "Lessons Learned from Engineering a Multi-Mission
Satellite Operations Center ", IEEE Aerospace Conference, Big Sky Montana, 2006.

Smith, D., Bristow, J., Wilmot, J., "A Successful Component Architecture for Interoperable and Evolvable Ground
Data Systems", AIAA Space Ops 2006 Confere~zce, Rome, Italy.

Joshi, R. Real Time Innovations, Inc., "Data-Oriented Architecture: Loosely Coupling Systems into "System of Systems"",
RTC Magazine, January 2008.

12
American Institute of Aeronautics and Astronautics

092407

