
Using Sequence Diagrams to Detect Communication
Problems between Systems

Mikael Lindvall, Chris Ackermann
Fraunhofer Center for Experimental Software Engineering Maryland (FC-MD)

4321 Hartwick rd, suite 500, College Park, MD 20740
mlindvall@,fc-md.umd.edu, cackermann0,fc-md.umd.edu

William C. Stratton, Deane E. Sibol
Johns Hopkins University Applied Physics Laboratory Space Department Ground Applications Group (APL)

11 100 Johns Hopkins Road, MS 4-1 18, Laurel MD 20723-8099
William.Stratton@ihua~l.edu, Deane.Sibol@ihua~l.edu

Arnab Ray, Lyly Yonkwa, Jan Kresser (FC-MD)
arrav@fc-md.umd.edu, lvonkwa@,fc-md.umd.edu, ikresser@fc-md.umd.edu

Sally Godfrey
Code 583, Bldg 23, E215

Goddard Space Flight Center (GSFC), Greenbelt, MD 20771
Sara.H.Godfrey@,nasa.gov

Jens Knodel
Fraunhofer Institute for Experimental Software Engineering (IESE)

Fraunhofer-Platz 1,67663 Kaiserslautern, Germany
Jens.Knodel@iese.ftaunhofer.de

Abstract-Many software systems are evolving complex
system of systems (SoS) for which inter-system
communication is both mission-critical and error-prone.
Such communication problems ideally would be detected
before deployment. In a NASA-supported Software
Assurance Research Program (SARP) project, we are
researching a new approach addressing such problems. In
this paper, we show that problems in the communication
between two systems can be detected by using sequence
diagrams to model the planned communication and by
comparing the planned sequence to the actual sequence. We
identify different kinds of problems that can be addressed
by modeling the planned sequence using different level of
abstractions.

TABLE OF CONTENTS

INTRODUCTION ... 1
BACKGROUND ... 2
TROUBLE REPORTS ... 2
THE PROPOSED SOLUTION .. 2
THE COMMON GROUND SYSTEM (CGS) 3
PROBLEMS FROM TROUBLE REPORTS 4
THE STUDY .. 5
CONCLUSIONS ... 8
REFERENCES ... 9
BIOGRAPHIES .. 9
ACKNOWLEDGEMENTS .. 10

1-4244-1488-1/08/$25.00 02008 IEEE.
IEEEAC paper#1099, Version 3, Updated 2007:12: 1 1

Many software systems are actually evolving complex
system of systems (SoS) for which inter-system
communication is both mission-critical and error-prone.
Software failures in the communication between the
participating systems in a SoS, e.g. between Flight Software
and the Ground System, can cripple system capabilities,
cause loss of data, and even result in mission failure. Such
problems ideally would be detected before deployment, but
current state-of-the-art technologies do not easily support
their detection calling for new research.

A preliminary analysis of APL's Common Ground System
(an evolving SoS) identified 15 trouble reports related to
problems with inter-system communication that had adverse
mission impacts and for which there were no workarounds.
This finding motivates our research to develop automated
support for architects and (I)V&V to check system
communication across a SoS.

Previous efforts have analyzed static architectures [l] and
have led to the development of a general understanding of
dynamic architectures of small software systems [2], but
they do not typically address the problems APL has been
facing. In a NASA-supported Software Assurance Research
Program (SARP) project called Architecture Analysis of
Evolving Complex Systems of Systems, we are researching
a new approach that will explicitly address such problems.

In this paper, we describe the background to this SARP
project, the problems we are addressing and problems we
encountered in the existing technology that had to be dealt
with, aspects of the proposed solution, as well as the results
from a study we conducted in order to determine the
feasibility of the proposed solution.

no systematic way for architects, or a V&V or IV&V team,
to describe and check these rules in a consistent manner
across a SoS. This is especially true in situations where
systems are composed of third-party components, since it is
often impossible to program such checks when the system
has been developed and provided to the system integrator.
These problems are typical for complex and evolving SoS.

THE PROPOSED SOLUTION

In 2006, APL and FC-MD conducted a joint research
infusion project. The infused technology, the Fraunhofer
SAVE (Software Architecture Visualization and
Evaluation) tool was applied to APL's Common Ground
System (CGS). Fraunhofer SAVE is a joint development
effort between FC-MD and Fraunhofer Institute for
Experimental Software Engineering (IESE). The goal of the
infusion project was to eliminate maintenance and evolution
problems. All of APL's NASA missions use the CGS for
spacecraft I&T and operations. CGS is currently supporting
operations for three deep space missions: MESSENGER,
STEREO, and New Horizons. Flight software, scientific
data processing software, and ground equipment software
interface with CGS and depend on its services. The
infusion project provided results that are used to improve
CGS's architecture [3]. As part of the technology infusion
project, we identified a set of problems related to dynamic
aspects of CGS that are beyond the scope of the basic
SAVE technology, which is based on static analysis of
source code.

TROUBLE REPORTS

For this SARP project, we conducted an analysis of APL's
databases of Change Requests and Anomaly Reports in
order to understand how common and serious these
problems are in reality. The analysis focused on the Ground
System and the 15 trouble reports, which are related to
problems with system interfaces and system
communication. Currently, there is a lack of research and
technology to address these problems. In particular, there is
no automated support to describe and compare expected
dynamic profiles of a SoS with the actual dynamic profiles
in order to detect problems. Dynamic profiles are

The proposed solution will address problems related to
interfaces and the dynamic profiles of systems that
communicate in runtime. The technology will allow the user
to define and navigate the expected (a.k.a. planned,
specified, desirable, ideal, baselined etc.) dynamic profile of
a system as well as comparing it to the planned profile so
that s h e may evaluate whether the system conforms to
specifications or not. We are researching different ways to
define and navigate these dynamic profiles. For example,
we are researching adding dynamic information to static
descriptions and diagrams and formulating ways to
explicitly define interface rules. These interface descriptions
will be based on the already existing interface
specifications. In these specifications, e.g. the order of calls
and events, the size and format of data, as well as timing
information are specified. We are also investigating ways to
describe and collect data about resource allocation, since
resource allocation can be viewed as a communication
between a system and the operating system. We consider
using a combination of static connection diagrams,
sequence diagrams, rules, and assertions to describe the
dynamic profiles. We are researching ways to collect data
from the system during run-time as well as ways to compare
the expected dynamic profile with run-time data in order to
detect problems.

The tool will be developed as an extension to the SAVE
tool. SAVE is a tool that visualizes and compares the
implemented software architecture (actual) with its planned
architecture based on static analysis. One of the missing
features of the SAVE tool in the context of SoS is its ability
to detect dynamic linkages between systems. While analysis
of individual systems is useful, there is also a need to
analyze their interaction.

characteristics of a system during runtime i s observed
through an interface, such as call and event ordering, data What makes such an is that the

and data formats, resource consumption, and timing communication between these subsystems is established

information. only at run-time for which mere static analysis, as is done in
SAVE, is inadequate. The problem is that static analysis,

While interfaces permit systems to communicate with each though sound, would report many false positives (spurious

other, they are also often the source of problems. One connections that do not actually exist), because static

reason for such problems is that systems are developed by analysis always constructs conservative over-

different teams with different interpretations of interface approximations. For example, if two components listen to

specifications. Individual developers may occasionally ports defined from the same sets of ports, then static

attempt to include run-time checks in their code ensuring analysis would flag a dependency even if the ports they

that interface specifications are followed, but there is often listened to did not have the same port id. One important part

of this project is to research ways to detect such dynamic
dependencies.

Because SAVE has some of the needed capabilities (e.g.
features for comparison of expected and actual
architectures, visualization, navigation, etc), we will reuse
its basic functionality, add a dynamic dependency detection
and visualization component, and use a combination of
static and dynamic analysis to extract the actual architecture
from the code. At a very high level, this consists of taking a
set of executions of the system then deducing dynamic
dependencies based on trace analysis. In addition, SAVE'S
approach for defining, visualizing, and navigating planned
static architectures and comparing them with the actual has
been shown to be very beneficial in other projects and thus
provides a good foundation for this research. Thus, SAVE
already has basic support for some of the required features
that need to be added. However, before SAVE can detect
problems in the interfaces, the tool has to be improved
because such dynamic couplings remain undetected and
applications cannot be analyzed together.

THE COMMON GROUND SYSTEM (CGS)

CGS [4] consists of 83 different evolving systems
(applications). These applications are developed, compiled,
and launched independently from each other, and participate
in a complex pipe-and-filter architecture established during
run-time, see Figure 1.

Figure 1 - Archivesewer and EngDump in
Common Ground's pipe&-filter architecture

In this paper, we focus our examination on two applications
that are representative of the Common Ground software
architecture and which belong to the Assessment sub-
system, see rectangle in Figure 1 :

Archive Server - an application that serves
selected telemetry packets from the archive

Engineering Dump - a client to the archive server
that extracts selected telemetry points from the
archived packets, converts the raw telemetry points
into engineering units using calibration data, and
formats and stores the converted points in a file.

Common - The two applications reuse source code
through a component called common.

Figure 2 -Planned Architecture: Engineering Dump is
a run-time client of Archive Sewer; both applications
are built using shared modules stored in "Common."

The SAVE tool was used to analyze the structure of
Archive Server and Engineering Dump. The planned
architecture of the selected applications was modeled as
shown in Figure 2. The figure illustrates that the
Archive-Server and the Eng-Dump are dependent on each
other and that they both use code from Common.

I

Figure 3 - Actual Architecture

The actual architecture of the selected applications in Figure
3 illustrates how the source code is organized in the file
system. Each application has a folder called app-specific in
which the code that is unique for that application is stored.
Each application also has a folder called common. As the
figure illustrates, there is one common folder for each
application, but any file that exists in both folders are
identical.

Figure 4 - The planned dynamic dependencies between
Archive Server and Engineering Dump are not visible to

the SAVE tool, but there are some spurious couplings.

The comparison of planned vs. actual architecture is shown
in Figure 4, which is a combined diagram that illustrates
several facts. On the one hand, the diagram illustrates the
fact that the SAVE tool did not discover the direct
dependencies between Engineering Dump and Archive
Server. These "missing" couplings are illustrated by red
crosses. SAVE does not detect these couplings because
there are no static dependencies between the two
applications since the two processes communicate
dynamically via sockets and SAVE only detects
dependencies that are present in the static code.

On the other hand, the diagram illustrates that there are
spurious couplings between Engineering Dump and Archive
Server. To examine coupling of the Archive Server and
Engineering Dump through the common modules, we
analyzed the code together with the SAVE tool. This caused
some confusion in the tool because the applications are not
supposed to be compiled together causing namespace
conflicts to occur. For example, in several cases, the same
name was used for a global variable that exists in both
applications. Since SAVE assumes that all names are
unique, spurious couplings were introduced between the
two applications. The spurious couplings are illustrated by
exclamation marks in the diagram.

In addition, there are some extra couplings between
Engineering Dump and common as well as between
Archive Server and common. These couplings are due to the

fact that unexpected access and import dependencies are
present in the source code.

Thus, before the SAVE tool can be used for analysis of
more dynamic problems related to two applications that are
based on dynamic dependencies, a strategy has to be
developed that allows for such analysis, removes spurious
couplings, and identifies missing couplings as the ones
described above. The strategy we discuss in this paper
avoids these issues by viewing each application as a black
box and by only focusing on the communication that occurs
between the client and the server. In the future, we plan to
develop a strategy that allows an analyst to move freely
between the applications of such a system and analyze both
structure and behavior on arbitrary levels of abstraction.

PROBLEMS FROM TROUBLE REPORTS

The analysis of APL's databases of Change Requests and
Anomaly Reports identified 15 problems that could
potentially be detected using dynamic analysis. These
problems were discussed in a series of workshops with
APL. Following are examples that are representative of
such problems.

APL has experienced several significant problems in getting
the CGS to work with other systems such as the Flight
Software, the Jet Propulsion System (JPL), Deep Space
Mission System (DSMS), the APL Ground Support
Equipment (GSE), and the remote Payload Operations
Centers (POCs). Interface Control Documents (ICD) govern
the communications with each of these external systems.
However, APL frequently encounters systems that do not
comply with ICD's. Another example is the Archive Server
and the Engineering Dump. The Archive Server serves
many other clients beyond the Engineering Dump. Other
teams often develop those other clients and since there is
little or no communication between the different teams,
interface problems are introduced that are difficult to detect.
APL conducts integration testing to a large extent, but
problems still occur in operations because of incorrect use
of communication protocols.

A related example is a failure that occurred during the
communication between the ground system and a satellite
using the file transfer system CFDP. The satellite system
was supposed to send a series of files and the ground system
was supposed to acknowledge receipt of those files. A
software valve had been added to the system so that the
operators would be able to block uplink of CFDP
acknowledgement messages while more important
commands were being sent since bandwidth is always
limited. At one point, the valve was closed and when the
ground system started to recognize that file data was
missing, it responded with NACKs (not acknowledged).
However, due to the closed valve, these NACKs could not

be transmitted and were stuck in a queue. The NACKs
could only go through later when the valve was opened.
Once the valve was opened, the NACKs caused the satellite
system to send all the missing messages again. In fact, there
were multiple NACKs for each file in the queue since a
NACK is resent after each communication timeout. Thus,
the missing file data was sent multiple times, crowding the
connection and misusing the valuable bandwidth.

It should be noted that in this example, both systems
behaved according to the specified protocol. In addition,
this problem was only detected by chance during an
unrelated investigation, illustrating how difficult it is to
detect such problems. What is missing is a way to analyze
the behavior from the viewpoint of the architecture. From
this viewpoint, a high number of NACK's is an indication
that there is misbehavior. Another similar example that was
mentioned is that in one case, the client connected to and
disconnected from the server 4,000 times during a short
time. On a micro level, this behavior matches the
specification, but on a macro level it does not. The desired
macro level behavior is to connect, stay connected, and only
disconnect when there is no need to stay connected
anymore.

In both these examples, the main concern is intersystem
communication, i.e. the communication of APL software
with other systems, such as the satellite software. APL's
interest is in verifying whether systems follow the
communication procedures according to the ICD. However,
mainly only micro level behavior (short sequences) is
specified in the ICD while macro level or architectural
behavior is not. Issues that frequently occur are ones related
to

Message sequencing

Content of control messages

Timing of messages

Message sequencing is related to the order in which the
messages are supposed to occur. Problems occur when
messages appear in a different order than the specified one.
Problems occur when the system expects a certain message
but receives a different one. Timing of messages can be
important, especially in situations when a message has to
amve within a certain time period. Problems also occur
when messages do not amve within the specified time
period. Especially data messages can be large in size, but
most of the time only the header of such a message is
interesting for analysis, not the data itself. In this SARP
project, we have started addressing problems related to
message sequencing and content of control messages. In the
future, we will address timing problems.

Dynamic Compliance Checking Approach

We studied whether our proposed solution would be
feasible for detecting problems stemming from deviations
from interface control documents. More specifically, we
studied whether it would be possible to compare a planned
sequence diagram with actual sequences in order to detect
deviations. We were especially interested in identifying
different kinds of communication problems, for example in
terms of how much modeling would be necessary to detect
them. Software development teams often lacks time and
resources and if such modeling requires too much effort and
too much modeling background, chances are that a new
technology that relies on such modeling will never be used.

The study was conducted in the following way.

(1) The APL team produced a sequence diagram that
specifies the planned communication between the
server and the client. This sequence diagram was
based on information provided in the ICD.

(2) The APL team then captured dynamic data from a
correct communication between server and the client.
The communication was correct in that sense that it
matches the planned sequence diagram (with one
exception, see below).

(3) The FC-MD team developed a parser based on the
ICD and dynamic data provided. The parser reads the
dynamic data and outputs the messages that were sent
between the two applications. For each message, the
timestamp, the message type, and the message content
were provided.

(4) Once it was determined that the parser worked
correctly, the APL team produced a set of three
communication sequences that each was not compliant
with the planned sequence in one of the following
ways: 1. There were missing messages, 2) there were
extra messages, or 3) there were messages whose
parameter values were inconsistent with the
specification. The defects were specified by the APL
team as well as the actual and correct system behavior.

(5) The FC-MD team imported the sequences into SAVE
and used the new SAVE prototype extension in
combination with manual analysis to compare the
planned sequence diagram to each of the actual
sequence diagrams.

(6) Deviations between the planned and the actual
sequences were analyzed, documented, and reported to
the APL team.

(7) The APL team determined whether the detected
deviations were true or false.

(8) The APL team and the FC-MD discussed the
feasibility of the proposed approach and potential
improvements to make it useable in a "live" situation
at APL.

The next subsections will discuss two of the three sequence
diagrams. First, the specification will be presented, and then
the evaluation and analysis results are discussed.

Specification: The protocol as a high level planned

sequence diagram

The client (eng-dump) and the server (archive-server)
communicate using a protocol that specifies four
different types of messages:

(1) The client defines a set of filters that together specifies
the type of data that it requests the server to return.
Examples of filters are: Type of data, e.g. STP or TP,
and Time range, specified by start time and stop time.
The filters from the client to the server can be sent in
arbitrary order.

(2) When the client has specified, using filters, what data
to download, it sends a BeginPlayBack command to
the server. Once this command has been issued, the
client is not expected to send more messages.

(3) As soon as the BeginPlayBack message has been
received, the server starts sending data messages. Each
data message must match the filter specification
received earlier. For example, the type of each data
message must be as specified and the time stamp of
each message must fall within the specified time
range.

(4) When there are no more messages, the server sends an
End Of Transmission (EOT) message to the client
signaling. that the data transmission is complete;
thereafter the communication link is closed.

Since the goal is to develop a modeling and evaluation
method that requires limited effort, we started by modeling
the protocol using high level sequence diagrams, see Figure
5. This model models the facts that there might be several
filters followed by one Beginplayback message, and that
there might be several data messages followed by one EOT
message. This high level model (since it does not provide
any information about the type of filters or data messages
that we expect to occur, is called "high level planned
sequence diagram.")

Figure 5 - High-level planned sequence diagram

Evaluation based on the high-level sequence diagram

The next step was to evaluate sequences based on the
planned sequence diagram. We started by applying it to the
first sequence that we received. This sequence is expected
to be correct, i.e. we expected it to match the specification
without any extra or missing messages. The evaluation
result is provided in Figure 7. As one can see in that figure,
the final message EOT appears to be missing from the
actual sequence. This is surprising because this sequence
was supposed to be correct. The APL team analyzed the
original 'nominal case' data and even re-ran the test
example to verify that everything was correct. Still, it was
difficult to understand why the EOT is not being sent from
the archive server nor how the client knows when to close
the socket. This can be a significant problem because clients
are expected to close the socket to the server once they have
received all the requested data, as indicated by the EOT
message. If the EOT message is not being used for its
intended purpose, clients may be employing some other
means of recognizing that all the resulting data has been
received. For example, they might check that the time
stamp on the data is equal to exceeds the stop time
specified. For a variety of reasons, including timestamp
precision, multiple of packets from different paths andlor
sources with the same timestamp, etc., this may lead to the
client prematurely closing the socket and missing data
subsequently to be returned by the server. During extended
analysis, the APL team realized that the missing EOT
message is actually not missing at all. Because the TCP
packets, as reported by snoop, can aggregate data, the EOT
message is actually at the end of the last TCP packet from
the server to the client (i.e., the server produced two write
statements for the STP and EOT, but it ended up as one

TCP packet). This is perfectly legal, with Nagles algorithm
enabled. Our issue in the analysis was that we were treating
each snoop TCP packet as a message. This illustrates that
our parsing algorithm has to be able to detect aggregated
data situations.

-I, I
Flier

Filw

Begl~Flaybock

Ra:a

Data

Raia

EOT

C

I I

I I

Figure 6 - EOT is undetected

In the next example, it was detected that a filter
changeladdition was sent from the client to the server after
BeginPlayback was sent while data from server to client
was flowing. This filter message is ignored by the server (in
fact, it might not even get read off the socket). The server
assumes that clients read as fast they can, which could be
severe problem if that is not the case. Thus, the risk is that
the server gets stuck because that one client blocks the
server. In addition, the client might expect the ignored filter
to be in effect and thus receives the wrong data.

Specification: The protocol as a low-level planned sequence

diagram

We proceeded by adding more information to the sequence
diagram, see Figure 8. Two rules were modeled. 1. The rule
that specifies that start time must be less that stop time, as
well as 2. The rule that the data type of each of the received
data messages must be the same as the specified type. We
modeled these rules as assertions and added parameters to
the messages. The parameters are used by the assertions and
the assertions are evaluated for each message. Since we
added more information to the model, we also needed to
specify that the order between the different filters is not
important. This is denoted by adding a star "*" in front of
each filter. In addition, we needed to express the fact that
there might be filters of other kinds than the ones we focus
on. We express this by adding a general filter with stars as
parameters. Since we needed to connect the data messages
to the filter messages, we added a parameter Type.

I EOT

Figure 8 - Low level planned sequence diagram

Evaluation based on the low-level sequence diagram

We evaluated the captured sequences by applying the low
level planned sequence diagram and matching it to the
actual sequence. We use a lightning symbol to indicate that
the names of the messages are correct but that there is a
mismatch between the parameters of the messages. Thus the
lightning symbol in Figure 9 indicates that the time
specified in the 'STRT' (start time) was after the 'STOP'
(stop time). Unfortunately, the ICD does not allow for an
indication from the server to the client that it has specified
an invalid filter. So a close() from the server, without an
EOT message, is actually expected. Thus, though not a
nominal case, this case illustrates compliance to the protocol
defined in the ICD.

Figure 7. An illegal extra filter is sent after
BeginPlayback message has been sent.

Figure 9 - Start time occurs after Stop time.

Figure 10. "STF" was requested "STP" was received

server simply ignored the invalid filter and used its default
which is STP. The correct server behavior should have been
to close the socket on an invalid filter. Dependent on how
robustly the client was implemented, this can be a
significant problem because the client might assume that
same type of data that was requested will be returned and
process the incoming data according to that type. In fact,
several internal clients, including Eng-Dump, are indeed
coded in this fashion and do not verify that the type returned
and about to be processed is of the type requested.
Obviously, processing data of the incorrect type will cause
incorrect data to be generated or even client application
crashes.

The SARP project develops an approach for dynamic
compliance checking and visualizing the results using
sequence diagrams. The approach has been implemented as
an extension to the SAVE tool and was validated in a first
pilot study for APL's CGS.

The results from the study show that problems in the
communication between two systems can be detected by
using sequence diagrams to model the planned or expected
communication and by comparing the planned sequence to
the actual sequence. The results also show that there are
different kinds of problems and'that they can be addressed
by modeling the planned sequence using different level of
details. Sequencing problems, that is, messages that occur
unexpectedly or out of order, can be detected by using high
level sequence diagrams without details. Content problems,
that is, problems which are related to the content of
messages rather than to the order of messages require a
more detailed modeling approach. The suggested approach,
which is based on assertions in combination with sequence
diagrams, seems to be a feasible approach for this problem.
High-level modeling may be used without low-level

modeling and vice-versa, allowing the user full flexibility
over of the amount of time and resources helshe chooses to
use the tool to detect such issues. The fact that only simple,
standard modeling skills are necessary to become
immediately productive with the proposed tool makes the
approach appealing.

In the last example, it was detected that data messages of
the wrong type were sent to the client. The root cause is
actually that a bad filter is sent from the client to the server:
TYPE:STF. STF used to be a supported type, but no longer
is. Old legacy clients might still request STF-data, if they
have not updated to the new ICD. Since STF is not a valid
option, the server returns STPs, which is not expected. The

REFERENCES His current research interests include empirical software
engineering, static and dynamic software analysis and

[11 Knodel, Jens, Lindvall, Mikael, Muthia, Dirk, and Naab, verification.
. .

Matthias Static ~val&tion of softwftw&e kchitectures
2006,279-294. Conference on Software Maintenance and
Reengineering, CSMR 2006.

[2] Claudio Riva, Jordi Vidal Rodriguez, "Combining Static
and Dynamic Views for Architecture Reconstruction"
Conference on Software Maintenance and Reengineering ,
2002 and Hong Y. et al. "DiscoTect: a system for
discovering architectures from running systems," ICSE
2004.

Mr. Bill Stratton is a Senior
Professional Staff member in the
Ground Applications Group of the
JHUIAPL Space Department,
currently sewing as the Radiation Belt
Storm Probes (RBSP) Ground
Software Lead Engineer. For the past
six years, he has developed Common
Ground software and contributed to
the ground software portion of the

[31 William C. stratton, D~~~ E. sibol, ~ i k ~ ~ l and Space De~artment's Software Develo~ment Process. Bill

Patricia Costa, Technology Infusion of the SAVE Tool holds a BsC in Applied Mathematics from Brown

into the Common Ground Software Development Process University, 1977, and a Masters in Computer Science with a

for NASA Missions at JHUIAPL. IEEE Aeros~ace concentration in Software Engineering from JHU, 2003.

Conference, 2007.

McKerracher, P, Tillman, D, Furrow R M, Herrera, L.,
Complete Ground Software Re-use: The Common
Ground Approach to a Re-usable, Shared Ground System.
The Fifth International Symposium on Reducing the Cost
of Spacecraft Ground Systems and Operations
(RCSGSO). July 8-1 1,2003.

Dr. Mikael Lindvall is a senior
scientist and the director of the
software architecture and embedded
systems division at Fraunhofer
Center for Experimental Software
Engineering Maryland. He is
interested in best practices and
methodologies for software
engineering in general and

' % specializes- on software architecture
evaluation and software evolution. He received his PhD in
computer science from Linkopings University, Sweden in
1997. Lindvall's PhD work focused on evolution of object-
oriented systems and was based on a commercial
development project at Ericsson Radio in Sweden.

design, change impac

Mr. Christopher Ackermann is a
scientist at the Fraunhofer Center for
Experimental Software Engineering,
Maryland and is pursuing a Ph.D. in
Computer Science at the University
of Maryland, College Park. He
received his Bachelor's Degree from
the University for Applied Sciences
Mannheim, Germany in 2006. He has
been active in the fields of software
:t analysis, and software verification.

ground software a

Mr. Deane Sibol is a Senior
Professional Staff member in the
Ground Applications Group of the
JHUIAPL Space Department,
currently sewing as the Radiation Belt
Storm Probes (RBSP) Ground
Software Deputy Lead Engineer.
Prior to this role, he served as the
Common Ground Software Lead
Engineer, overseeing the overall

lrchitecture and directing the ground
software development for four (4) NASA missions. He
holds a BS in Computer Science from Loyola College,
1993, and a MS in Computer Science from Old Dominion
University, 1995.

Dr. Arnab Ray is a research scientist
at Fraunhofer Center for Experimental
Software Engineering Maryland. He is
interested in formal approaches in
software architecture, requirements
engineering, design security and has
experience in formal
modeling/verification of automotive
and medical device software. He holds
a Bachelor of Com~uter Science and

Engineering from Jadavpur University, india (1999) and a
PhD from State University of New York at Stonybrook
(2004) where his dissertation focused on compositional
semantics of input notations used for modeling distributed
systems.

Ms. Lyly Yonkwa has been
working on design and development
of software applications as well as
in research on various software
engineering areas since 2005. She is
currently a scientist at the
Fraunhofer Center for Experimental

Fraudbow USA hc
Center for E-l
SaPhuaw Engnemc+
WarVbM

Using Sequence Diagrams to Detect
Communication Problems between

Systems
- a feasibility study

IEEE Aerospace Conference

Mikael Lindvall (FC-MD)
Chris Ackermann (FC-MD)
William C. Stratton (APL)

Deane E. Sibol (APL)
Arnab Ray (FC-MD)

Lyly Yonkwa (FC-MD)
Sally Godfrey (GSFC)

Fraunhofer Center for Experimental Software Engineering Maryland (FC-MD)
Johns Hopkins University Applied Physics Laboratory Space Department Ground Applications Group (APL)

Goddard Space Flight Center (GSFC)

1 USA h
GNlra fa L-
m w a m ErlqIl-
&*&

Project Goal

Goal
- To research and develop a tool for run-time architecture analysis

The new tool, Dyn-SAVE,
- will extend the already existing static Software Architecture

Visualization and Evaluation (SAVE) tool

Background
- SAVE successfully applied to JHUIAPL's Common Ground System

in 2006 NASA Research Infusion project
- Architecture = structure + behavior
- Need for dynamic architecture analysis was identified
- NASA IV&V support for a Software Assurance Research Project

(SARP) to develop such a tool

".kwnhokKUSAInc E Center fw ExperimeoPEll
b f t w a r e tirprnecnng
Haryland

The (static) SAVE Tool a
Objective: Make ArchitectureIDesign specifications alive!

Helps answer: Does the implementation match the plan?
- Define a planned (andlor target) architecture (using rules etc);
- Create an actual architecture from source code;
- Compare planned architecture w l actual, identifying architectural violations

Features for Zooming, Filtering, Refactoring
Language independent: C/C++, Java, Delphi, Ada, Simulink, Fortran

Conclusion after applying SAVE at APL and to many other systems:
- The SAVE approach is useful and practical
- One can quickly model and analyze software architectures
- But has some weaknesses since it's based on static analysis

F r ~ l J S A , I J K

mi Center fw Ex-
m a r e wmetnng m ~ 5 e Common Ground System

Assessment CSCl Telemetry Data Flow Diagram

Timekeeping System expanded separately

h-aonhodsrUSAtM
Center fw E x p m S a l
%aftwarn meemq Static Drawbacks
g g . Undetected Dynamic Connections

Telemetry
Client

Undetected , ,
8 ,

8
8 , , , , ,

Socket , I
I

I ,
8 ,

z 8

Communication , ,,/;;*rO .

Reuse Planned
Behavior

-8:--k Dyn-SAVE Capabilities iBi Center fa Expmimenal
Sattwam Bqmumg
*"pand

Compare Planned

What components in and Actual

the client are affected Behavior

by unspecified Form Actual
communication?

Telemetry
Server

Specify Level of Abstraction
For analysis

*= FraurJIofsrUyl bK h W e r fa E ~ p e M n e n a l
bffware Enplnemnq

Feasibility Study
Deviations from Interface Control Documents

- One organization develops Ground Systems
Think of it as a server

- Other organizations develop clients
- Everybody follows the same ICD (Interface Control

Document), but interpret them differently
- The systems are never tested together until they are

made operational
- The result is subtle deviations from specified behavior

that are difficult to spot
- Need a way to specify expected behavior and compare

to actual

***: Ffauuddw USA, kc

iiBl Center for Expenmm+al
bft*.aiv f3gneamg
13alybnd

Research Questions

Would it be possible to model the
communication as a sequence diagram
and use it to detect deviations?
Can we identify a way to do iterative
modeling, i.e. start with abstract models
and add more details as necessary?
How would we visualize deviations?
Would such an approach be practical?

'"" F r W us& hc B Center fa txpefImemal
SWtviate Englnemng
).(arvland

Evaluation based on high level planned
sequence diagram

I

L I
Rlter -
Rlter

BeginPlayback

Data

Data

Data

EOT

1. I

F~lter

Fiiter

Beginmayback

Fitter

Data
d *-

Data

EOT

I T
1 I

Left: EOT is missing from "correct sequence". Right: An
illegal extra filter is sent after Beginplayback message
has been sent.

r=:Frwnhokru*bK L Center fa Exp3menal
Softwarp Engtnemng
WFpand 4llir Low level planned sequence diagram

Rules:
1. Start time must be less that stop time
2. The data type of each of the received data messages must be the same as

the specified type.
Mechanisms: assertions and message parameters

Assertions evaluated for each message

Fri%amhofsr USA, lrrc
center fa

w e m n g
HmVbnd

Evaluation based on low level planne
sequence d~agram

Left: Stop time < Start time. Right: STF ordered - STP received.

haMhofcvOSAkc
Center fa Erperinmtai
bftwam E n @ w u q

Observations

Sequencing problems
- Messages that occur unexpectedly or out of order,

can be detected by using high level sequence
diagrams without details

Content problems
- Problems related to the content of messages rather

than to the order of messages require a more detailed
modeling approach

The suggested approach
- Is based on assertions in combination with sequence

diagrams
- Seems to be a feasible approach for this problem.

5% FraddwUSA lac L Center fm Exper&nvnal
sortwan Enqinemns
-rVknd

Research Approach

Work as one team with problem-owners at APL
Experiment with technology; apply to our testbed
Evaluate technology; apply it to APL's CGS

l mprove technology based on feed back, results
Repeat

Extend to NASA projects
- e.g. through the Research Infusion program

