Surveillance and Control of Malaria Transmission in Thailand using Remotely Sensed Meteorological And Environmental Parameters

Richard Kang, Facility Admin. Vientiane, Laos

In collaboration with

WHO SEARO
Dr. Khang Vinh Tran
Dr. Ramesh Rang

Tropical Medicine, Clinical Lab.
Dr. Prapa Sangnue
Dr. Khang Vinh Tran
Dr. Ramesh Rang

AFRIMS
Dr. Jose Luis Salazar
Dr. Javier Solis

In collaboration with

AFRIMS
Dr. Jose Luis Salazar
Dr. Javier Solis

OBJECTIVES

- Detection of vector habitats
- Predicting current and future vector habitats
- Detection of disease transmission

BENEFITS

- Enhancing local control measures
- Improving public health support
- Cost-effectively monitoring vector habitats

Meteorological & Climatological Parameters

The Greater Mekong Subregion is the world's premier area for multidrug-resistant Plasmodium parasites.

Detection of Ditches using Pan-sharpened InSAR Data

Satellite-Observer Meteorological & Environmental Parameters for Four Thailand Seasons

- Surface Temperature
- Vegetation Index
- Rainfall

Actual Malaria Incidence

Historical Incidence
Plasmodium vivax Distribution

Modelled and observed prevalence.

Plasmodium falciparum Distribution

Example: A Small Hamlet

Modelled and observed prevalence.

Modelled and observed sporozoite rates.
Modeled and Observed Entomological Inoculation Rates

Well Mixed Farm Animal Sheds and Zoological Prophylaxis May Significantly Reduce Malaria Transmission

Bednets, Personal Projections and Improved Dwelling Significantly Reduce Malaria Transmission

Sensitivity Studies and Simulations Performed

- Abundance of Anopheles Habitats
- Access to health care and appropriate treatment
- Asymptomatic cases
- Accidental immunity
- Active and passive case detection
- Vector or personal protections
- Improved dwelling condition
- Parasite infectivity in mosquitoes
- Zoological prophylaxis
- Annual of non-immune populations (e.g., migrant workers, refugees, foreign military officers)

Thank you!
Surveillance and Control of Malaria Transmission in Thailand Using Remotely Sensed Meteorological and Environmental Parameters

Richard Kiang, Farida Adimi, Valerii Soika, Joseph Nigro
NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

At 4,200 km, the Mekong River is the tenth longest river in the world. It directly and indirectly influences the lives of hundreds of millions of inhabitants in its basin. The riparian countries form the Greater Mekong Subregion. This geographical region has been the world’s epicenter of falciparum malaria. Depending on the country, approximately 50 to 90% of all malaria cases are due to this species.

In the Malaria Modeling and Surveillance Project, which is part of the NASA Applied Sciences Public Health Applications Program, we have been developing techniques to enhance public health’s decision capability for malaria risk assessments and controls. The main objectives are: 1) identification of the potential breeding sites for major vector species; 2) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity; 3) implementation of a dynamic transmission model to identify the key factors that sustain or intensify malaria transmission. The potential benefits are: 1) increased warning time for public health organizations to respond to malaria outbreaks; 2) optimized utilization of pesticide and chemoprophylaxis; 3) reduced likelihood of pesticide and drug resistance; and 4) reduced damage to environment.

Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. The NASA Earth science data sets that have been used for malaria surveillance and risk assessment include AVHRR Pathfinder, TRMM, MODIS, NSIPP, and SIESIP.

Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of the remotely sensed parameters. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Discrete event simulations are used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors. The output of the model includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Results are in good agreement with mosquito vector and human malaria data acquired by Coleman et al. over 4.5 years in Kong Mong Tha, a remote village in western Thailand.

Application of our models is not restricted to the Greater Mekong Subregion. Our models have been applied to malaria in Indonesia, Korea, and other regions in the world with similar success.